Curso 2024/2025
En cada uno de los siguientes 25 apartados, analiza el coste temporal del fragmento de código que se proporciona en función de N, y elige una solución correcta entre las seis siguientes (no hace falta que lo demuestres):
O(N)
O(N2)
O(N3)
O(log N)
O(N log N)
O(log2 N)
Para obtener ese tipo de gráficas, puedes utilizar esta versión de Gnuplot online modificando su Script. Por ejemplo:
set xlabel 'n' set ylabel 'Tiempo' plot [0:100] x * log(x) title 'O(n log n)'
Si quieres ver dos o más gráficas juntas, puedes hacer algo así:
plot [0:100] x title 'n', log(x) * log(x) title 'log^2 n', log(x) title 'log n'
int pasos = 0; for (int i = 0; i < N; i = i + 1) pasos++;
O(N)
int pasos = 0; for (int i = 0; i < N; i = i + 2) pasos++;
O(N)
int pasos = 0; for (int i = 1; i <= N; i = i * 2) pasos++;
O(log N)
int pasos = 0; for (int i = N; i > 0; i = i - 1) pasos++;
O(N)
int pasos = 0; for (int i = N; i > 0; i = i - 2) pasos++;
O(N)
int pasos = 0; for (int i = N; i > 0; i = i / 2) pasos++;
O(log N)
int pasos = 0; for (int i = 0; i < N * N; i = i + 1) pasos++;
O(N2)
int pasos = 0; for (int i = 0; i < N * N; i = i + N) pasos++;
O(N)
int pasos = 0; for (int i = 1; i <= N * N; i = i * 2) pasos++;
O(log N2) = O(2 log N) = O(log N), aplicando esa propiedad matemática de los logaritmos.
int pasos = 0; for (int i = 1; i <= N * N * N; i = i * 2) pasos++;
O(log N3) = O(3 log N) = O(log N), aplicando esa propiedad matemática de los logaritmos.
int pasos = 0; for (int i = 0; i < N; i = i + 1) pasos++; for (int j = 0; j < N; j = j + 1) pasos++; for (int k = 0; k < N; k = k + 1) pasos++;
O(N)
int pasos = 0; for (int i = 1; i <= N; i = i + 1) pasos++; for (int j = 1; j <= N * N; j = j + 1) pasos++; for (int k = 1; k <= N; k = k * 2) pasos++;
O(N2)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 0; j < N; j = j + 1) pasos++;
O(N2)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = i; j < N; j = j + 1) pasos++;
O(N2)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 1; j <= N; j = j * 2) pasos++;
O(N log N)
int pasos = 0; for (int i = 1; i <= N; i = i * 2) for (int j = 1; j <= N; j = j * 2) pasos++;
O(log2 N)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 0; j < N * N; j = j + 1) pasos++;
O(N3)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 1; j <= N; j = j * 2) pasos++; for (int k = 0; k < N * N; k = k + 1) pasos++;
O(N2)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 0; j < N; j = j + 1) for (int k = 0; k < N; k = k + 1) pasos++;
O(N3)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = i; j < N; j = j + 1) for (int k = j; k < N; k = k + 1) pasos++;
O(N3)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 0; j < 10; j = j + 1) for (int k = 0; k < 10; k = k + 1) pasos++;
O(N)
int pasos = 0; for (int i = 0; i < N; i = i + 1) for (int j = 0; j < 10; j = j + 1) for (int k = j; k < 10; k = k + 1) pasos++;
O(N)
int pasos = 0; for (int i = 1; i < N * N * N; i = i * 2) for (int j = 0; j < 1000; j = j + 1) for (int k = 0; k < 1000; k = k + 1) pasos++;
O(log N)
int pasos = 0; for (int i = 1; i < N * N * N; i = i * 2) for (int j = 0; j < 1000; j = j + 1) for (int k = 0; k < 1000; k = k + 1) for (int m = 0; m < 1000; m = m + 1) pasos++;
O(log N)
int pasos = 0; for (int i = 0; i < N; i = i + 1) pasos++; for (int j = 1; j <= N * N * N; j = j * 2) pasos++; for (int k = 0; k < N; k = k + 1) for (int m = 0; m < N; m = m + 1) pasos++;
O(N2)