

Experiment # 4: Simulation of electric circuits. Thévenin theorem

- Electric network: nodes, branches, meshes, loops
- Kirchhoff rules
- Mesh analysis
- Thévenin theorem
- Circuit simulation software: Electronics Workbench

Basic definitions:

Electrical network: A number of elements connected together forming a set of interrelated circuits.

Active (source of energy) and passive elements (resistors, etc.):

Node: Point where three or more circuit elements are joined together.

Branch: Conducting path between two nodes.

Loop: Any closed conducting path in the network.

Mesh: Loop of a circuit that does not contain any other loops within it.

Kirchhoff's Laws of electric circuits

Junction rule (based on charge conservation), also Kirchhoff's current law (KCL): In any junction of the circuit,

$$\sum i_{entering} = \sum i_{leaving}$$

Loop rule (based on energy conservation), also Kirchhoff's voltage law (KVL): Around any closed loop in a circuit,

$$\sum_{k} \pm i_{k} R_{k} = \sum_{k} \pm \varepsilon_{k}$$

Sign convention:

Across a resistor, voltage drop >0 in the direction of iThrough a battery, potential difference >0 from + to - terminal

Loop rule

- 1. We choose a system of independent loops, including every branch in the circuit
- 2. We assign a number to each mesh, and choose an arbitrary current direction (same direction for every mesh, so opposite sign in shared branches)
- 3. We apply Kirkhhoff's loop rule, then we get n equations with n unknowns:

$$\sum_{k} (i_{j} - i_{k}) R_{jk} = \sum_{k} fem_{jk} \quad _{j=1,2,...}$$

Loop rule

$$\begin{pmatrix} R_{11}R_{12} & ... & ... & ... \\ R_{21}R_{22} & ... & ... & ... \\ R_{n1}R_{n2} & ... & ... & ... \\ R_{nn} & ... & ... & ... \\ In & ... & ...$$

- $\cdot R_{ii}$ sum of resistances in mesh i

- exit pole

$$J_{i} = \frac{\begin{vmatrix} R_{11}R_{12}.....R_{1,i-1} & V_{1} & R_{1,i+1}.....R_{1n} \\ R_{21}R_{22}.....R_{2,i-1} & V_{2} & R_{2,i+1}.....R_{2n} \\ R_{n1}R_{n2}.....R_{n,i-1} & V_{n} & R_{n,i+1}.....R_{nn} \end{vmatrix}}{\Delta_{R}}$$

$$\Delta_{R} \equiv \begin{vmatrix} R_{11}R_{12}....R_{1n} \\ R_{21}R_{22}....R_{2n} \\ ...R_{nn} \end{vmatrix}$$

Thévenin theorem

Any two-terminal network of resistance elements and energy sources is equivalent to an ideal voltage source V_T in series with a resistor R_T , where V_T is the open-circuit voltage of the network, and R_T is the equivalent resistance when all energy sources are turned off (short-circuit for voltage sources, open-circuit for current sources).

1st step: theoretical circuit solution

- 1. Find mesh currents
- 2. Determine V_{ab}, Thévenin voltage
- 3. Reduce voltage sources to zero by short-circuiting them and calculate equivalent resistance across points a and b, Thévenin resistance

