
IN THIS TUTORIAL

1

Getting started with MapObjects in
Visual Studio .NET and Visual Basic .NET

• Display a map with multiple
layers.

• Control panning and zooming.

• Create a toolbar control.

• Display map layers based on
scale.

• Perform spatial and logical que-
ries.

• Draw simple graphics on the map.

• Display features with thematic
renderers.

• Dynamically display data with an
event tracking layer.

• Programmatically add vector and
raster data to a map

In this introductory document you will use MapObjects® and Microsoft®
Visual Studio .NET® to build a simple mapping application using the Visual
Basic (VB) language. No familiarity with Visual Studio .NET or VB is
assumed, although some familiarity with basic programming concepts is
useful. Along the way you will learn how to:
• Create a new Windows application in Visual Studio .NET, using toolbars

and other controls standard in .NET.
• Add vector and raster data to a map, and perform queries on the map data

you added.
• Control panning and zooming, display map layers based on scale, and

render use thematic renderers to draw data based on attribute values.
• Draw simple graphics, and also dynamically display data.

MapObjects Software Developer Kit (SDK) for .NET

Before beginning this tutorial, you should check you have installed the
MapObjects SDK for .NET. This kit is optionally installed as part of the
MapObjects software installation.
The SDK contains signed assemblies, which by default will be located in the
\DotNet\Assemblies sub folder of your MapObjects installation folder. The
SDK also contains online reference documentation which integrates into the
Visual Studio environment. You should also check the MapObjects readme
document, for late-breaking information about the MapObjects SDK for
.NET.

2 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

About the lines of code in this tutorial

In this tutorial, lines of code to be added or altered are
shown in bold text. An elipsis (...) symbol is used to denote
missing lines of code which are not relevant to the
particular step. Some lines of code are shown split over two
or more lines. This may include lines of code with
hardcoded paths, where string variables are set with the
concatenation character ‘+’. This is simply to allow the
lines of code to be shown in this tutorial, and does not need
to be copied in your code. However, all lines of code can be
entered with these line continuations, if you wish.
Shortcut keys mentioned are the default settings for Visual
Studio .NET.

Sample data

If you accepted the defaults when installing MapObjects,
the geographic data and bitmaps that this tutorial refers to
can be found in the Data or Bitmaps folders, located under
the MapObjects install directory. For example
C:\Program Files\ESRI\MapObjects2\Samples\Data\Usa;
and
C:\Program Files\ESRI\MapObjects2\Samples\Bitmaps.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 3

You will start this tutorial by creating a new project in
Visual Studio .NET. You will add a map to the project, and
add layers to the map using the property sheet.
1. Open Visual Studio .NET, and click the New Project

button on the Start Page. Alternatively, if the Start Page
is not displayed, click the File menu, click New, then
click Project.

2. In the left-hand pane of the New Project dialog box,
select Visual Basic Projects.

3. In the right-hand pane, select Windows Application.
4. Name the project GettingStartedVBNET, and set the

location to save the project by clicking the Browse
button.

5. Click OK to create the new project.

The main document window should now display a Windows
Form in design mode.
Visual Studio will, by default, create a sub-directory of the
directory you selected to save your project files. The name
of the new directory will be the same as the Project name
you specifed. Your project is automatically added to a
solution (.sln) file, which is somewhat like a project group.
You can investigate the new project by browsing the
Solution Explorer window. This window shows all the files
referenced by the solution file. The shortcut key to open the
Solution Explorer is Ctrl+Alt+J.
You can also see a class-oriented view of your solution in
the Class Explorer, shown in the same window as the
Project Explorer. You will not be using the Class Explorer in
this tutorial.

Create a new Windows Application

2 3

4

4 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Add an AxMap control to a Form

You will need to reference the MapObjects Active X
control in your project.
A .NET application cannot use ActiveX controls directly.
However, the COM interoperability services provided by
the .NET framework allow you to use ActiveX controls by
using Runtime Callable Wrappers (RCW).
ESRI provides assemblies containing RCWs for the
MapObjects ActiveX control and objects. The MapObjects
ActiveX control is ‘wrapped’ inside a host class called
AxHost, allowing a Windows Form in .NET to host the
‘wrapped’ map control. The name of the wrapped
MapObjects map control is AxMap.
1. Click the Tools menu, and then click Customize Toolbox.
2. In the .NET Framework Components tab of the

Customize Toolbox dialog, find AxMap, and check the
box beside it. Click OK to close the dialog.

Note: Adding MapObjects to the Toolbox does not add a
reference to the MapObjects assemblies to your
project—you will perform this step next.

3. Click the Toolbox, shown at the left of the screen, to
open it. Click the tab named Windows Forms. Notice the
MapObjects wrapper class AxMap is now listed in the
Toolbox.
You may need to scroll down the list of controls to find
the control, by clicking the black arrow at the bottom of
the Toolbox tab.

Tip: An alternative way to open the Toolbox is to hover
the mouse cursor over the Toolbox icon for a moment.
The keyboard shortcut to open the Toolbox is the
combination Ctrl+Alt+X.

4. Double-click AxMap in the Toolbox to add an AxMap
control to the form.

When you add the AxMap class to your project by adding a
map to a form, references to the MapObjects assemblies
will be added to your project.

3

3

4

2

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 5

In Solution Explorer, navigate to the projects References,
you will see two references:
• ESRI.MapObjects2.Core - contains RCWs for the

objects in the MapObjects library.
• ESRI.MapObjects2.Control - contains a RCW for the

MapObjects map control.

The objects in both these assemblies reside in the
namespace ESRI.MapObjects2.Core. So to declare a
MapObjects Symbol for example, you would need to use
the full name ESRI.MapObjects2.Core.Symbol. You will
now add an imports statement to shortcut this requirement.

Add an imports statement

1. Right-click the form, and from the context menu which
appears, select View Code.

2. At the top of the code window, below the existing
imports statements, add the following line of code.
Imports System.Data
Imports ESRI.MapObjects2.Core
...

Control the resize of the AxMap control

Visual Studio provides built-in resizing functionality, which
you will use to resize the map to fill the form.
1. Return to the form view by selecting the [Form1-Design]

tab in the main window, then click the AxMap control on
the form to select it.

2. Click the Properties window, shown by default at the
bottom right of the Visual Studio .NET window, and
scroll down to find the Dock property.
Tip: The keyboard shortcut to activate the Properties
window is F4.

3. Click the drop-down button next to the Dock property,
and then click the central button on the displayed
window, to select the Fill option.

Now the map should fill the form completely.

3

6 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Select the data to display on the map

You can specify the data that is displayed in the map by
interacting with the AxMap control's property sheet. Later
on you will perform the same task programmatically.
1. Right-click the AxMap control to display the context

menu.
2. Choose ActiveX Properties to display the MapObjects

property sheet.

Note: Choosing the ActiveX Properties option will
display the property sheet belonging to an ActiveX
control, if it has one.
Alternatively, you can click the Property Sheet button in
the Properties window.

3. In the Properties dialog box, click the Add button and
locate the folder containing the States sample data.
If you selected the defaults when you installed
MapObjects, the sample data will be located in
C:\Program Files\ESRI\MapObjects2\Samples\Data.

4. Click the States.shp file, then click Open.
5. Add the file USHigh.shp in the same manner.

Set properties for the layers

1. Click the States layer in the list, then click Properties.
2. In the Layer Properties dialog box, click the Color button

to select a color for the States layer.

3. Click OK to close the Layer Properties dialog box.
4. Select a color for the USHigh layer in the same manner.
5. Click OK to close the MapObjects property sheet.
6. Click the File menu, then click Save All to save your

project.
Tip: The keyboard shortcut to save all items in the
project is Ctrl+Shift+S.

2

3

2

3

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 7

Test your application

1. Click the Start button on the Visual Studio toolbar.
You should see the Build process progress in the Output
window at the bottom of the screen.

If the project builds correctly, the application will then
run in Debug mode, and you will see your map showing
USA states and highways.

If the Build process does not succeed, do not run the
application. Return to design mode and check the Task
List, shown in the window at the bottom of the screen,
to see what errors are causing the problem.

Correct the listed errors as described. If you double-
click the task, the line of code causing the error will
automatically be selected for you.

2. Click the Stop Debugging button on the Visual Studio
toolbar to stop running your application and return to
design mode.

3. You can check the results of the Build operation by
looking in the sub-directories of your project.

By default, a Debug version of your project is built. The
executable file (.exe) that results from the Build
operation will be stored in the \Bin directory. This
directory will also contain debug information (.pdb).
Note: The Obj sub-directory of the project directory
contains temporary files used by the compiler and by
Visual Studio.

8 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

At this point your application can display the map at its full
extent. In this section you will add some simple pan and
zoom controls that your application will activate in response
to mouse clicks inside the map.
You will write some code that the application will execute in
response to the MouseDownEvent event on the map.

Respond to the MouseDownEvent event

1. Select the form in the Solution Explorer, right-click it,
then select View Code.
The code window for your form is now displayed in the
main document window.

2. Click the Class Name drop-down list (top left of the
code window), and select AxMap1.

3. In the Method Name drop-down list, select
MouseDownEvent.

A code stub for the MouseDownEvent event handler is
added to the code window.
The Visual Studio environment automates the process of
responding to events, hiding the details from you.
Note that the names of some MapObjects events in
.NET end in ‘Event’; for example ‘MouseDownEvent’.
This is because the .NET host class, AxHost, has a
MouseDown event too—the ‘Event’ sufix is added to
differentiate the event of the host class from the event
of the underlying MapObjects Map class. See also the
CtrlRefresh method, later in this tutorial.
Note also that as you added the using statement in the
previous section, MapObjects variables can be declared
without the ESRI.MapObjects2.Core prefix, and have
been written without this prefix throughout this
document for brevity.
If you wish to find out more about how events are raised
and handled in .NET, please read the MSDN
documentation included with Visual Studio .NET.

4. Add the following lines of code to the
AxMap1_MouseDownEvent function.
Private Sub AxMap1_MouseDownEvent(ByVal _
sender As Object, ByVal e As _
MouseDownEventArgs) Handles _
AxMap1.MouseDownEvent
AxMap1.Extent = AxMap1.TrackRectangle()
End Sub

Tip: If you start by typing "AxMap1", the auto-
completion feature of IntelliSense will allow you to
complete the item of code by pressing Tab.

Adding pan and zoom controls

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 9

When the code window for the form opens, you will see there are
many lines of code already present in the code module, apart from
the MouseDownEvent event handler you just created.

It may help to be familiar with certain aspects of this code, and
items in the code window provided by the Visual Studio .NET
IDE, before going any further.

1. Classes are declared using the class keyword—all code
between the curly braces belongs to a class.

2. Class members are generally declared at the beginning of the
class definition. Members of a class are often referred to as class
fields in .NET, and may be prefixed with ‘-m’.

3. Constructor methods are called when an instance of a class is
created. They are named New, and may include parameters to
initialize the class.

4. Dispose methods are called when a class is no longer required
and can safely clear up all it’s resources; they are called at some
point before the garbage collector clears the class from memory.

5. Windows Forms Designer generated code is a region (see 9)
which is added by the Windows Forms Designer. It defines in
code the form which you created visually. You should generally
not edit this region.

6. Comments in VB.NET follow the familiar VB style of
commenting. Comments are preceded by a apostrophe (‘), and
can appear at the start of a line, or after code.

7. Outlining is a handy way to organize your code. Lines of code
between region directives can be hidden (collapsed), by clicking
the adjacent plus or minus symbols. Regions can be nested.

8. Class and Method name drop-down lists are found at the top
of the code window, and are often used in VB .NET to construct
function stubs, particularly for event handlers. The Class Name
drop-down lists all the public classes declared in the module. The
Method Name drop-down lists all the members of the selected
class.

9. Namespaces are used to uniquely identify objects, and can be
used to organize objects hierarchically, regardless of where they
are defined. Objects in the ESRI.MapObjects2.Core and
ESRI.MapObjects2.Control assemblies all belong to the
ESRI.MapObjects2.Core namespace.

The code window

8

1

3

5

4
6

7

2

10 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Test your changes

1. Click the Start button on the Visual Studio toolbar.
2. With the left mouse button, click the map and drag out a

rectangle.
3. Release the mouse button.

The map is redrawn at the location you specified.

TrackRectangle is a method that applies to a map. It tracks
the movement of the mouse while the user presses the
mouse button, rubber-banding a rectangle at the same time.
When the user releases the mouse button, the
TrackRectangle method returns a Rectangle object. The
code assigns this Rectangle to the Extent property of the
Map, causing the map to be redrawn with a new extent.
4. Click the Stop Debugging button in Visual Studio to

return to design mode.

Add panning

1. Scroll the code window to find the MouseDownEvent
you added previously.

2. Change the code as shown below.
Private Sub AxMap1_MouseDownEvent(ByVal sender
...
If e.Button = 1 Then
AxMap1.Extent = AxMap1.TrackRectangle()

ElseIf e.Button = 2 Then
AxMap1.Pan()

End If
End Sub

Note: The e argument of the event contains the
parameters which MapObjects passes into the event.
The Button property of the e object contains information
about which mouse button was pressed.
If the Button value is 1, the left button was pressed, and
the zooming code from the previous step will be
executed. If the Button value is 2, the right button was
pressed, and the code will call another method on the
Map control, Pan.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 11

Test your changes

1. Click the Start button in the Visual Studio toolbar.
2. With the left mouse button, click-drag a rectangle to

zoom in.
3. With the right mouse button, click-drag to pan the map.

When you release the mouse, the map is redrawn at the
new location.

Save the project

1. Click the Stop Debugging button in Visual Studio to
return to design mode.

2. Click the File menu, then click Save All to save your
project.

12 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

The pan and zoom capability of your application is
somewhat hidden from the user.
In this section you will create a toolbar with pan and zoom
buttons. You will also add a FullExtent button.

Add a ToolBar and an ImageList

Visual Studio provides a ToolBar control that can be used in
conjunction with an ImageList control, to display a
collection of buttons at the top of a form.
You will add these controls to your form, and use them to
control the actions which occur when the user interacts
with the map.
1. Select the Form1 [Design] tab at the top of the main

document window to select the Windows Forms
Designer view of your form.
Tip: You can display the Form Designer window of a
form by right-clicking the form in the Solution Explorer,
and selecting the View Designer option.

2. Open the Toolbox and make sure the Windows Forms
tab is selected.

3. Double-click the ImageList in the Toolbox to add an
ImageList control to the form.
Note: The ImageList control is not visible at runtime.
Visual Studio .NET places such controls in a separate
area of the Forms Designer, called the component tray.

4. Double-click the ToolBar in the Toolbox to add a
ToolBar control to the form, then reactivate the form by
clicking somewhere on the form.

Add images to the ImageList control

1. Select ImageList1 in the component tray, shown below
the Form.

2. In the Properties window, scroll down to find the Images
property, then click the button next to it.

3. In the Image Collection Editor dialog box, click Add.
4. In the dialog box which appears, browse to the folder

that contains the MapObjects sample bitmaps.
5. Click the Zoom.bmp file, then click Open.
6. Add the files Pan.bmp, Globe.bmp, Bex.bmp, and

Pennant.bmp in the same manner.

7. Click OK to dismiss the Image Collection Editor dialog
box.

Adding a toolbar to the Form

3

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 13

Set the TransparentColor of the ImageList

Setting the TransparentColor property of an ImageList
control specifies a color that will act as a mask for any
images contained by the control. The mask color will not be
drawn, resulting in an image with a transparent background.
1. Click ImageList1 in the component tray to select it.
2. In the Properties window, click the pull down next to the

TransparentColor property.
3. Click the Custom tab, and select the Teal color, as

shown.

Add buttons to the ToolBar

You can associate the ToolBar control with an ImageList
control to provide the graphic images for the buttons which
you will add.
1. Return to the Form Designer view, and click the ToolBar

control on the form, to select it.
2. In the Properties window, click the button next to the

ImageList property, and select ImageList1.
3. Scroll back up to find the Buttons property, and click the

pull down next to this property.
4. In the ToolBarButtons Collection Editor dialog box, click

the Add button.

5. Set the buttons Style property to ToggleButton, its
ImageIndex property to 0, and its Pushed property to
True.

6. Add a second button, and set its Style to ToggleButton
and it's ImageIndex to 1.

2

3

4

5

14 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

7. Add a third button, and set its ImageIndex to 2. Leave
the Style as PushButton.

8. Click OK to dismiss the dialog and add the buttons to the
ToolBar.

Resize the AxMap control

You may have noticed that the top of the AxMap control is
now obscured by the ToolBar. You will change the
properties of the AxMap control to avoid this conflict.
1. Click the AxMap control on the form to select it.
2. In the Properties window, click the pull-down next to the

Dock property and select None.
3. Scroll upwards and click the pull down next to the

Anchor property. Select the top, left, right and bottom
bars, then press Enter to confirm the selection.

4. Return to the Form Designer, select the AxMap control,
and resize it to so that it is not covered by the ToolBar.

Change the MouseDown event

You will now change the code you previously added to the
Form, to make the pan and zoom functionality dependant on
which button in the ToolBar is selected.
1. Select the Form1.cs tab at the top of the main document

window to select the code window view of your form.
2. Scroll down to find the axMap1_MouseDownEvent

procedure and edit the code as shown.
Private Sub AxMap1_MouseDownEvent(ByVal sender
...

If ToolBarButton1.Pushed Then
AxMap1.Extent = AxMap1.TrackRectangle()

ElseIf ToolBarButton2.Pushed Then
AxMap1.Pan()

End If
End Sub

3

4

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 15

Add code to respond to clicking a ToolBar button

Your application now supports panning and zooming, but
once the user has zoomed into the map, there is no way to
get back to the full extent again.
You will complete the pan and zoom functionality by adding
code to respond to the third ToolBarButton by zooming the
map to its full extent. You will also ensure that only one
button at a time may be selected on the ToolBar.
1. Return to the code window of the form.
2. Click the Class Name drop-down list (top left of the

code window), and select ToolBar1.

3. In the Method Name drop-down list, select the
ButtonClick event.

An event handler for the ButtonClick event on the
ToolBar is added to the code window.

4. Add the following lines of code to the
ToolBar1_ButtonClick procedure.
Private Sub ToolBar1_ButtonClick(ByVal sender _
As Object, ByVal e As System.Windows.Forms. _
ToolBarButtonClickEventArgs) _
Handles ToolBar1.ButtonClick
If e.Button Is ToolBarButton3 Then
AxMap1.Extent = AxMap1.FullExtent

Else
SetSelected(e.Button)

End If
End Sub

This code specifies that for any button other than the
FullExtent button, the SetSelected procedure is called.
The FullExtent button is not a toggle button, so should
not change the state of any other button.

5. Below the ButtonClick procedure, add the following
function procedure.
Private Sub SetSelected(ByVal currBtn As _
ToolBarButton)
Dim btn As ToolBarButton
For Each btn In ToolBar1.Buttons
If Not (btn Is currBtn) Then
btn.pushed = False

End If
Next
End Sub

This procedure will ensure that only one tool on the
toolbar at a time is selected.

Test your changes

1. Click the Start button on the Visual Studio toolbar.
The zoom button on your ToolBar should be activated by
default when you start the application.

16 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

2. Click the map with the left mouse button and drag out a
rectangle.

3. Release the mouse button to redraw the map.

4. Click the map with the right mouse button and drag to
pan the map.

5. Release the mouse button to redraw the map.

The application should behave the same as before,
except the left/right mouse clicks are replaced by
selecting the buttons on the ToolBar.

6. Click the Full Extent button to redraw the map at the full
extent.

Save the project

1. Click the Stop Debugging button in Visual Studio to
return to design mode.

2. Click the File menu, then click Save All to save your
project.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 17

In this section you will add additional controls to your
application to implement a simple function for locating a
state by name.

Add controls to the form

1. Select the Form1 [Design] tab at the top of the main
document window to select the Forms Designer view.

2. Open the Toolbox, make sure the Windows Forms tab is
selected, then double-click the Label control entry in the
Toolbox to add a label control to the form.

3. In the Properties window for the Label control, set the
Text property of the Label control to be "State".

4. Scroll up in the Properties window to find the Anchor
property and click the pull-down next to it.

5. Select only the bottom and left bars, then press Enter.

6. Double-click the TextBox in the Toolbox to add a
TextBox to the form.

7. In the Properties window, clear the Text property of the
TextBox.

8. Scroll up to find the Anchor property, click the pull down
next to it and set the property equal to Bottom, Left,
Right.

9. Reposition the Label and TextBox controls at the bottom
of the Form, and resize the AxMap control so that it is not
obscured by the new controls, as shown.

Creating a find tool

9

5

18 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Attach code to the TextBox

You will use the text the user types into the TextBox to
perform a logical query.
You will add code to ensure the query is only performed
when the user presses Enter in the TextBox.
1. Return to the code window of the form.
2. Click the Class Name drop-down list (top left of the

code window), and select TextBox1.

3. In the Method Name drop-down list, select the
KeyDown event.

An event handler for the KeyDown event on the
TextBox is added to the code window.

4. Add the following lines of code to the
TextBox1_KeyDown procedure.

Private Sub TextBox1_KeyDown(ByVal sender As _
Object, ByVal e As System.Windows.Forms. _
KeyEventArgs) Handles TextBox1.KeyDown

If e.KeyCode = Keys.Return Then
Dim exp As String = "STATE_NAME = '" + _
TextBox1.Text + "'"

Dim lyr As MapLayer = _
AxMap1.Layers.Item("States")

Dim recs As Recordset = _
lyr.SearchExpression(exp)

If Not recs.EOF Then
Dim res As Polygon = _
recs.Fields.Item("Shape").Value

Dim ext As ESRI.MapObjects2.Core. _
Rectangle = res.Extent

ext.ScaleRectangle(2.0)
AxMap1.Extent = ext
AxMap1.CtlRefresh()
AxMap1.FlashShape(res, 3)

End If
End If

End Sub

Note that the Rectangle object is fully referenced using
the full namespace. This is because the System.Drawing
namespace, for which there is an imports statement at
the top of the form, also has a Rectangle object, and
therefore a full reference is required in this case to
define the Type.
The code first builds a simple SQL query expression
using the text in the TextBox control, then searches the
States layer using the SearchExpression method. The
result is a Recordset object.
If the value of the Recordset's EOF property is False,
the code positions the Recordset on the first record that
satisfies the search expression.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 19

The code then gets the value of the Shape field for the
first record. The code scales the Extent of the shape
and then sets it to be the extent of the map.
Finally, the map is redrawn using the CtlRefresh method,
and the shape is flashed three times. Note that the
CtrlRefresh method is used to redraw the map. This is
because the .NET host class, AxHost, has a method
called Refresh too—the ‘Ctrl’ prefix is added to
differentiate the method of the host class from the
method of the underlying MapObjects Map class.
Note also that as you added the using statement in the
previous section, MapObjects variables can be declared
without the ESRI.MapObjects2.Core prefix, and have
been written without this prefix throughout this
document for brevity.

Test your changes

1. Click the Start button in the Visual Studio toolbar.
2. Type the name of a state, e.g. Vermont, into the

TextBox, remembering the search is case-sensitive.
3. Press the Enter key.

The map zooms in to the selected state, and flashes the
state.

4. Click the Stop Debugging button on the Visual Studio
toolbar.

5. Click the File menu, then click Save All to save your
project.

20 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Your map currently appears the same, regardless of the
scale at which it is being displayed.
In this section you will add a new layer to your map and
add code that controls whether or not that layer is visible at
a given time, depending on the current display scale.

Add another layer

1. Return to the Forms Designer window, and right-click on
the AxMap control to display the context menu.

2. Choose ActiveX Properties to display the property sheet.
3. Click the Add button, and locate the folder where the

sample data is stored.
4. Click the Counties.shp file, then click Open.
5. Click the Counties layer in the Layers list to select it.
6. Click the down arrow to move the Counties layer below

the USHigh layer.
7. Click the Properties button, and in the Layer Properties

dialog box, change the color of the Counties layer.
8. Click OK to dismiss the Layer Properties dialog.
9. Click OK to dismiss the property sheet.
If you run your application now you will notice that it
displays every county in the United States.
At the full extent, there is no need to display that much
detail, so in response to the BeforeLayerDraw event, you
will selectively make the Counties and States layers visible
or invisible, depending on the current extent of the map.

Respond to the BeforeLayerDraw event

1. Return to the code window of the form.
2. Click the Class Name drop-down list (top left of the

code window), and select AxMap1.
3. In the Method Name drop-down list, select

BeforeLayerDraw.
An event handler for the BeforeLayerDraw on the Map
control is added to the code window.

4. Add the following lines of code to the
AxMap1_BeforeLayerDraw procedure.
Private Sub AxMap1_BeforeLayerDraw(ByVal _
sender As Object, ByVal e As _
BeforeLayerDrawEventArgs) _
Handles AxMap1.BeforeLayerDraw
Dim lyr As MapLayer = _
AxMap1.Layers.Item(e.index)

Dim ratio As Double = AxMap1.Extent.Width / _
(AxMap1.FullExtent.Width / 5)

If lyr.Name.ToLower() = "counties" Then
lyr.Visible = (ratio <= 1.0)

ElseIf lyr.Name.ToLower() = "states" Then
lyr.Visible = (ratio > 1.0)

End If
End Sub

Note: The code changes the value of the visible property
of each layer, based on the current extent of the map.
If the width of the current extent is less than or equal to
one-fifth of the full extent of the map, then the counties
will be visible and the states will be invisible.

Displaying map layers based on scale

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 21

Because this code executes in response to the
BeforeLayerDraw event for each layer, the code
changes the value of the Visible property before drawing
occurs.

Test your changes

1. Click the Start button on the Visual Studio toolbar.
The Counties layer is not visible.

2. Zoom into New England.
The Counties layer becomes visible.

3. Click the FullExtent button
The Counties layer is no longer visible.

4. Click the Stop Debugging button in Visual Studio to
return to design mode.

5. Click the File menu, then click Save All to save your
project.

22 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

In this section you will add a new tool to the toolbar that will
perform spatial queries on the map.
You will add code to your application that will draw the
results of the spatial query on the map.

Add a query button to the toolbar

1. Return to the Form Designer view, and click the ToolBar
to select it.

2. In the Properties window, click the Properties button,
then click the button next to the Buttons property.

3. In the ToolBarButtons Collection Editor dialog box, click
the Add button.

4. Set the new button's Style property to Separator.
5. Click the Add button again.

6. Set the new button's Style property to ToggleButton, and
its ImageIndex property to 3.

7. Click OK to dismiss the ToolBarButton Editor dialog box,
and add the buttons to the ToolBar.

Add a member variable to the form

1. Return to the code window of the form.
2. Scroll the code window to find the beginning of the

declaration of the form class.
3. Add a member variable of type MapObjects Recordset,

as shown below, to store the results of the spatial query.
Public Class Form1
Inherits System.Windows.Forms.Form

Private m_query As Recordset
...

The results of the spatial query must be stored in a
member variable, as the variable is accessed from two
different procedures. The spatial query is performed in
response to the MouseDownEvent on the AxMap
control. The results are displayed in the
AfterLayerDraw event of the AxMap control.

Implement the query tool

You will now change the code you previously added to
respond to the MouseDown event. It will now account for
the new query tool being the current tool.
1. In the code window view of your form, scroll down to

find the axMap1_MouseDownEvent procedure.

Adding a spatial query tool

5

6

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 23

2. Edit the procedure as shown below.
Private Sub AxMap1_MouseDownEvent(ByVal sender
...
If ToolBarButton1.Pushed Then
...

ElseIf ToolBarButton5.Pushed Then
Dim pt As ESRI.MapObjects2.Core.Point = _
AxMap1.ToMapPoint(e.x, e.y)

Dim highLayer As MapLayer = _
AxMap1.Layers.Item("UShigh")

Dim highRecs As Recordset = _
highLayer.SearchByDistance(pt, _
AxMap1.ToMapDistance(2), "")

If highRecs.EOF Then
m_query = Nothing

Else
Dim cntyLayer As MapLayer = _
AxMap1.Layers.Item("Counties")

Dim highLine As Line = _
highRecs.Fields.Item("Shape").Value

m_query = cntyLayer.SearchShape(highLine, _
SearchMethodConstants. _
moEdgeTouchOrAreaIntersect, "")

End If
AxMap1.CtlRefresh()

End If
End Sub

Note another use of a fully qualified variable, necessary
due to the Imports statement you added previously—the
System.Drawing namespace also has a Point object.
When the current tool is the spatial query tool, two
searches are performed.
The first search is a point proximity search on the
USHigh layer. The code obtains the point by converting
the x and y coordinates of the event from control units,
to map units.

If the first search is successful, the highway found is
used as the input to the second search, performed on the
Counties layer. The result of the second search is stored
in the member variable m_query.

Draw the results

1. Return to the code window of the form.
2. Click the Class Name drop-down list (top left of the

code window), and select AxMap1.
3. In the Method Name drop-down list, select the

AfterLayerDraw.
An event handler for the AfterLayerDraw event on the
Map control is added to the code window.

4. Add the following lines of code to the
AxMap1_AfterLayerDraw procedure.
Private Sub AxMap1_AfterLayerDraw(ByVal _
sender As Object, ByVal e As _
AfterLayerDrawEventArgs) _
Handles AxMap1.AfterLayerDraw
Dim lyr As MapLayer = _
AxMap1.Layers.Item(e.index)

If lyr.Name.ToLower() = "counties" Then
If Not (m_query Is Nothing) Then
If Not (m_query.EOF) Then
Dim sym As Symbol = New SymbolClass()
sym.SymbolType = _
SymbolTypeConstants.moFillSymbol

sym.Color = Convert.ToUInt32(_
ColorConstants.moOrange)

AxMap1.DrawShape(m_query, sym)
End If

End If
End If
End Sub

24 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Test your changes

1. Click the Start button on the Visual Studio toolbar, and
zoom into an area so that the Counties layer becomes
visible.

2. Click the spatial query tool, then click on a highway.
The counties intersecting the highway are highlighted in
orange.

3. Click the Stop Debugging button in Visual Studio to
return to design mode.

4. Click the File menu, then click Save All to save your
project.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 25

Currently the map displays no information about the layers
it contains.
In this section you will modify your application so that it
draws the Counties layer using the underlying attribute
information.

Attach a renderer to the Counties layer

You will use the MapObjects ClassBreaksRenderer to
represent continuous data—in this case, the number of
mobile homes per capita by county, stored in the
‘Mobilehome’ field.
Also, the colors of the ClassBreaksRenderer will be
ordered by this attribute.
1. Return to the code window of the form, click the Class

Name drop-down list (top left of the code window), and
select Base Class Events.

Base Class Events are the public events on the Form
class, from which your form class inherits.

Statistical mapping

2. In the Method Name drop-down, select the Load event.

An event handler for the Load event on the Form is
added to the code window.

3. Add the following lines of code to the Form_Load
procedure.
Private Sub Form1_Load(ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Load
SetupCounties()
SetupStates()
End Sub

4. Now add the procedure below to the code window, just
below the Form1_Load procedure.
Private Sub SetupCounties()
Dim ctLyr As MapLayer = _
AxMap1.Layers.Item("Counties")

Dim ctRnd As ClassBreaksRenderer _
= New ClassBreaksRendererClass()

ctLyr.Renderer = ctRnd
ctRnd.Field = "MOBILEHOME"

Dim stats As Statistics = ctLyr. _
Records.CalculateStatistics("MOBILEHOME")

Dim breakVal As Double = _
stats.Mean - (stats.StdDev * 3)

26 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Dim i As Integer
For i = 0 To 6
If (breakVal >= stats.Min And _
breakVal <= stats.Max) Then
Dim breakCount As Integer = _
ctRnd.BreakCount

ctRnd.BreakCount = breakCount + 1
ctRnd.Break(breakCount) = breakVal

End If
breakVal = breakVal + stats.StdDev

Next
cntyRnd.RampColors(Convert.ToUInt32 _
(ColorConstants.moLimeGreen), Convert. _
ToUInt32(ColorConstants.moRed))

End Sub

This procedure will render the Counties MapLayer
according to mobile home statistics.
A Statistics object is used to set the class breaks, based
on the standard deviation value. Only breaks inside the
actual range of values stored in the attribute are added
to the Renderer.

Attach a renderer to the States layer

1. Add the procedure below to the code window, just below
the SetupCounties procedure you just added.
Private Sub SetupStates()
Dim stLyr As MapLayer = _
AxMap1.Layers.Item("States")

Dim stRnd As ValueMapRenderer = _
New ValueMapRendererClass()

Dim stRecs As Recordset = stLyr.Records
stLyr.Renderer = stRnd
stRnd.Field = "SUB_REGION"

Dim regions As Strings = New StringsClass()
regions.Unique = True
While Not stRecs.EOF
regions.Add(stRecs.Fields. _
Item("SUB_REGION").ValueAsString)

stRecs.MoveNext()
End While
stRnd.ValueCount = regions.Count

Dim i As Integer
For i = 0 To regions.Count - 1
stRnd.Value(i) = regions.Item(i)

Next
End Sub

This procedure will render the States MapLayer
according to region. The colors of each different region
will be random.
The code uses a Strings object to collect the unique
values of the SUB_REGION attribute. These values are
added to the ValueMapRenderer.

Test your changes

1. Click the Start button on the Visual Studio toolbar and
look at the States layer.
Instead of drawing each state the same color, the
application now draws states colored according to the
sub region the state belongs to.

2. Zoom into an area so that the Counties layer becomes
visible.
Instead of drawing each county the same color, the
application now draws the counties in different colors,
depending on the underlying attribute values. The states
colored red indicate a higher number of mobile homes.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 27

3. Click the Stop Debugging button in Visual Studio to
return to design mode.

4. Click the File menu, then click Save All.

28 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Some applications must display geographic entities on top of
the map, especially if those entities have a tendency to
move. For example, a vehicle tracking system would want
to update vehicle locations frequently over time, without
redrawing all the layers of the map each time a vehicle
changes location.
In this section, you will add an event tracking layer to your
application to simulate this requirement.

Add an event tool to your application's toolbar

1. Return to the Form Designer view, and click the ToolBar
to select it.

2. In the Properties window, select the Properties button,
then click the button next to the Buttons property.

3. In the ToolBarButtons Collection Editor dialog box, click
the Add button.

Event tracking

4. Set the new button's Style property to Separator.
5. Click the Add button again.
6. Set the new buttons Style property to ToggleButton, and

its ImageIndex property to 4.
7. Click OK to dismiss the dialog and add the buttons to the

ToolBar.

Implement the event tool

You will again change the code which responds to the
MouseDown event, to account for the new event tool.
1. Return to the code window view of your form.
2. Scroll up to find the AxMap1_MouseDownEvent

procedure, and edit the code as shown.
Private Sub AxMap1_MouseDownEvent(ByVal sender
...
If ToolBarButton1.Pushed Then
...

ElseIf ToolBarButton7.Pushed Then
Dim pt As ESRI.MapObjects2.Core.Point = _
AxMap1.ToMapPoint(e.x, e.y)

Dim sym As Symbol = _
AxMap1.TrackingLayer.Symbol(0)

sym.SymbolType = _
SymbolTypeConstants.moPointSymbol

sym.Size = 5
sym.Style = _
MarkerStyleConstants.moTriangleMarker

AxMap1.TrackingLayer.AddEvent(pt, 0)
End If
End Sub

3

6

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 29

Test your changes

1. Click the Start button on the Visual Studio toolbar and
zoom in a little.

2. Click the event tool, then click in the map a few times to
add a few events.

3. Click the Stop Debugging button in Visual Studio to
return to design mode.

Add a timer to your form

To trigger the movement of the events, a Timer control will
be used. The events will be moved randomly around the
map, at intervals triggered by the Timer.
1. Select the Form1 [Design] tab at the top of the main

document window to select the Forms Designer view of
your form.

2. Open the Toolbox and make sure the Windows Forms
tab is selected.

3. Double-click the Timer in the Toolbox to add a Timer
control to the form.

4. Return to the Forms Designer window, and make sure
the Timer is selected.
Note: The Timer control is also invisible at run time, and
is therefore shown in the component tray.

5. In the Properties window, set the Interval property to
500.

6. Return to the code window of the form, click the Class
Name drop-down list, and select Timer1.

7. In the Method Name drop-down, select the Tick event.
An event handler for the Tick event on the Timer is
added to the code window.

8. Add the following lines of code to the Timer1_Tick
procedure.
Private Sub Timer1_Tick(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Timer1.Tick
Dim evCount As Integer = _
AxMap1.TrackingLayer.EventCount

Dim dist As Double = AxMap1.Extent.Width / 25
Dim rnd As System.Random = New Random()

Dim i As Integer
For i = 0 To evCount - 1
Dim gEvt As GeoEvent = _
AxMap1.TrackingLayer.Event(i)

gEvt.Move((rnd.NextDouble() - 0.5) * dist, _
(rnd.NextDouble() - 0.5) * dist)

Next
End Sub

Add a CheckBox to your form

To control the timer, you will add a CheckBox control.
1. Return to the Forms Designer view, and double-click the

CheckBox button in the Toolbox to add a CheckBox to
the form.

2. Move the CheckBox to as shown below.

9

30 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

3. In the Properties window, click the Properties button.
4. Scroll down to find the Text property of the CheckBox,

and change its value to Move Events.
5. Scroll back up to find the Anchor property, and change

its value to Bottom, Right.
6. Return to the code window of the form, click the Class

Name drop-down list, and select ToolBar1.
7. In the Method Name drop-down list, select the

ButtonClick event.
An event handler for the ButtonClick event on the
ToolBar is added to the code window.

8. Add code to the CheckBox1_CheckedChanged
procedure as shown.
Private Sub CheckBox1_CheckedChanged(ByVal _
sender As Object, ByVal e As System.EventArgs) _
Handles CheckBox1.CheckedChanged
If CheckBox1.Checked Then
Timer1.Start()

Else
Timer1.Stop()

End If
End Sub

Test your changes

1. Click the Start button on the Visual Studio toolbar.
2. Click and drag a rectangle on the map to zoom in to the

map a little.
3. Click the event tool on the ToolBar, then click a few

times on the map, to add a few events.
4. Click the Move events check box to select it.

The events start moving randomly on top of the map.

5. Click the check box again to stop the events.

Save the project

1. Click the Stop Debugging button in Visual Studio to
return to design mode.

2. Click the File menu, then click Save All to save your
project.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 31

In each of the previous sections, you have worked with
MapLayer objects that were specified interactively, using
the AxMap control's property sheet.
In this section, you will add code to your application that
creates MapLayer objects programmatically, using a
DataConnection object. First you will remove the existing
layers from the map, so they are not duplicated when the
application is run.

Remove the existing layers

1. Return to the Form Designer view of your form.
2. Right-click the mouse on the AxMap control to display

the context menu.
3. Choose Active X Properties to display the MapObjects

property sheet.
4. Click on the UShigh layer in the Layers list, then click

Remove to delete the highways layer.
5. Remove the Counties and States layers in the same

manner.
6. Click OK to dismiss the MapObjects property sheet.

Add a procedure that will initialize the map

1. Return to the code window of the form.
2. Scroll down the code window, and add the following

procedure below the last existing procedure, before the
end of the class.

Working with DataConnection objects

Private Sub InitializeMap()
Dim dc As DataConnection = _
New DataConnectionClass()

dc.Database = "C:\Program Files\ESRI" + _
"\MapObjects2\Samples\Data\USA"

If dc.Connect() Then
Dim layer As MapLayer = New MapLayerClass()
layer.GeoDataset = _
dc.FindGeoDataset("States")

AxMap1.Layers.Add(layer)

layer = New MapLayerClass()
layer.GeoDataset = _
dc.FindGeoDataset("Counties")

AxMap1.Layers.Add(layer)

layer = New MapLayerClass()
layer.GeoDataset = _
dc.FindGeoDataset("USHigh")

layer.Symbol.Color = Convert.ToUInt32(_
ColorConstants.moRed)

AxMap1.Layers.Add(layer)

Else
MessageBox.Show(_
"The data could not be located.")

Application.Exit()
End If

End Sub

32 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

3. Add a call to your procedure at the beginning of the
Form1_Load procedure.
Private Sub Form1_Load(ByVal sender As _
Object, ByVal e As System.EventArgs) _
Handles MyBase.Load
InitializeMap()
SetupCounties()
SetupStates()
End Sub

Test your changes

1. Click the Start button in the Visual Studio toolbar.
The map should appear as before, but the colors of the
MapLayers are specified in the code, and may be
different to the colors you selected in the Layer
Properties dialog box.

2. Click the Stop Debugging button in Visual Studio to
return to design mode.

3. Click the File menu, then click Save All to save your
project.

GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET 33

In each of the previous sections, you have worked with
MapLayer objects based upon vector data sources.
In this section, you will see how to add layers to your map
that are based on images. MapObjects allows you to use a
wide range of image types, including such common image
types as windows bitmaps (.bmp), tagged image file format
(.tiff), and CompuServe bitmaps (.gif).
For a full, up-to-date list of the image formats you can use
in a map, see "Supported Image Formats" in the "Using
MapObjects" section of the online help.

Adding an ImageLayer in code

Previously, you added a MapLayer programmatically, using
the DataConnection object.
Now you will add an ImageLayer programmatically. To do
this, you use the File property of the ImageLayer object.
1. Return to the code window of the Form.
2. Scroll down the code window to find the InitializeMap

procedure, and add edit it as shown below, to add an
ImageLayer after adding the other MapLayers.
Private Sub InitializeMap()
...
End If
Dim imgLayer As ImageLayer = _
New ImageLayerClass()

imgLayer.File = "C:\Program Files\ESRI\" + _
"MapObjects2\Samples\Data" + _
"\Washington\Wash.bmp"

AxMap1.Layers.Add(imgLayer)
End Sub

Working with ImageLayer objects

Set the coordinate system of the map

The USA data you added previously uses a projected
coordinate system to determine how the data in these layers
is projected to a flat screen.
ImageLayers however cannot be projected by MapObjects.
If you run your application at this point, you will find the
MapLayers you added previously do not align correctly with
the ImageLayer which you added in the last step. You can
however, project the data from the existing layers to match
up with the ImageLayer.
You will set the coordinate system of the map to be the
same as the coordinate system of the Washington
ImageLayer. This will re-project the USA MapLayer data
on the fly, to correctly align with the ImageLayer.
There is a projection (.prj) file stored in the Washington
directory which you can use to create a coordinate system
object applicable to the image.
For more information about coordinate systems and
projection of data, see "About projections and coordinate
systems" in the "Using MapObjects" section of the online
help.
1. In the InitializeMap procedure, add the lines of code as

shown to the bottom of the procedure.
This procedure will create a MapObjects projected
coordinate system (a ProjCoordSys object), and apply it
to the map.

34 GETTING STARTED WITH MAPOBJECTS USING VISUAL STUDIO .NET AND VISUAL BASIC .NET

Private Sub InitializeMap()
...
axMap1.Layers.Add (imgLayer)

dc.Disconnect()
dc.Database = "C:\Program Files\ESRI\" + _
"MapObjects2\Samples\Data\Washington"

If dc.Connect() Then
Dim pcs As ProjCoordSys = _
New ProjCoordSysClass()

pcs = dc.FindCoordinateSystem("Roads.prj")
AxMap1.CoordinateSystem = pcs

Else
MessageBox.Show(_
"Could not project the MapLayers.", _
"Display Warning")

End If
End Sub

Test your changes

1. Click the Start button in the Visual Studio toolbar.
The map should appear, but this time is reprojected to
the new coordinate system.
Try zooming in to find the Washington ImageLayer.
You might like to add your own tool to locate the correct
extent (try using the Extent property of the
ImageLayer).
You could also rearrange the order of the MapLayers to
display the US Highways over the top of the
ImageLayer.

2. Click the Stop Debugging button in Visual Studio to
return to design mode.

3. Click the File menu, then click Save All to save your
project.

