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1. Preface

JavaSm is a Java implementation of the origina C++3M simulation toolkit, which was
developed as a direct consequence of research conducted within the scope of the Arjuna
project [8]. Therefore, it shares many of the same requirements:

easy to learn and use: the interface to the simulation library should be easy to
understand.

correct abstraction: existing Java programmers should not find the simulation
paradigm in conflict with the programming paradigm presented by Java. Simulation
programmers used to other environments should find the transition to JavaSm
straightforward.

flexible and extensible: it should be relatively easy for anyone to add new
functionality to the system, such as new distribution functions.

efficiency. the system should be efficient and produce efficient ssimulation runs.
Simulation packages which we have experience of tended to be extremely slow and
consume large amounts of system resources.

These requirements were realised in the following design decisions:

the discrete-event process based simulation facilities provided by SIMULA [1][2]
and its simulation classes and libraries have a considerable experience and user
community which have found them to be successful for a wide variety of
simulations. In later versions of the system additional simulation classes were added
which provide extra functionality.!

inheritance was to be used throughout the design to even a greater extent than is
already provided in SIMULA. This enables JavaSm to be more flexible and
extensible, allowing new functionality to be added without affecting the overall
system structure. For example, our I/O facilities, random number generators and
probability distribution functions are entirely object-oriented, relying on inheritance
to specialise their behaviour.

11 Availability

JavaSm has been tested with JDK 1.0.2 and 1.1.X on Solaris, linux, and Windows 95/NT 4.0.

Technical questions about JavaSm can be sent to M.C.Little@ncl.ac.uk.

1it is not necessary for the reader to know anything about the SIMULA programming language or its simulation
classes, but such knowledge would aid in the understanding of the concepts and classes presented within.
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2. Introduction

This manual is not intended as a tutorial on the concepts of simulation in general, but rather
how to write simulations in the JavaSm system. However, in order to be able to do this
certain key simulation concepts will be briefly described. The interested reader is referred to
[6] for detailed descriptions of these concepts and for further discussions on simulation
modelling.

2.1 Simulation models

To model asystem isto replace it by something which is:

. simpler and/or easier to study.
. equivaent to the original in al important respects.

Therefore, before constructing the actual simulation, it is first necessary to abstract from the
real system those components and their interactions that are considered important for the
actual model. Building a simulation system model involves making certain simplifying
assumptions to aid in the actual implementation and study of the simulation (without such
simplifications the model would be as complex as the system it is meant to be simulating).
However, the accuracy of the results obtained from the simulation depend upon how valid the
initial assumptions are. For example, when considering the trajectory of a projectile through
the atmosphere, the friction due to the air molecules is usualy ignored. This assumption is
valid only within certain boundaries: if the size of the projectile is on the same scale as the air
molecules and its speed is sufficiently small then friction plays a significant role in its
movement.

Thus, the first step towards building a simulation model of a system is to determine exactly
what are the important features which are to be measured, and what characteristics of the
system have an affect on them. Any boundary conditions for the simulation (e.g., size of
projectile) should be considered at the same time in order to simplify this procedure. Building
afinal model can often take several phases, where results from the initial model are compared
with those obtained from the real system to determine their accuracy. Any discrepancies are
taken into account by possibly adding new components to the simulation until, within certain
error boundaries, the simulation results match those from the real system.

2.2 Terminology

The system components chosen for the simulation are termed simulation entities. Associated
with each entity in the simulation are zero or more attributes that describe the state of the
entity and which may vary during the course of the ssimulation. The interaction of entities and
the changes they cause in the system state are termed events.

The collection of these component attributes at any given time t defines the system state at t.
In general, the system state can take any of a variety of values, and a given simulation run
results in one redlisation of a set of these values (the operation path) over the observation
period.
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2.3 Categories of smulation models

There are three categories of simulation model, described by the way in which the system
state changes as a function of time:

. Continuous time: is one whose state varies continuously with time; such systems are
usually described by sets of differential equations.
. Discrete time: the system is considered only at selected moments in time (the

observation points). These moments are typically evenly spaced. Some economics
models are examples of this, where economics data becomes available at fixed
intervals. Changes in state are noticed only at observation points. By choosing a
suitably small interval between observation points, a continuous time simulation can
be approximated by a discrete time simulation.

. Continuous time-discrete event: the time parameter is (conceptually) continuous and
the observation period is areal interval, usualy starting at zero for simplicity. The
operation path is completely determined by the sequence of event times (which need
not be evenly spaced and can be of arbitrary increments) and by the discrete changes
in the system state which take place at these times (i.e., the interactions of the
events). In between consecutive event times the system state may vary continuously.
Although it is possible to model the passage of real time by suitable event timing,
this is not necessary for a discrete event system: the simulation model can advance
its own internal time directly from one discrete event to another, taking any
appropriate action to advance the state accordingly.

It isthis latter category of simulation modelling that JavaSm supports. Examples of discrete-
event simulations are most queuing problems. entities (e.g., customers in a bank) arrive
according to a given distribution and change the system state instantaneously (e.g., the
number of customers in the queue). The operation paths for this system are step functions:
they jJump up (or down) by one when a customer joins (or leaves) the queue.

2.4 Event scheduling

Given that a simulation consists of a series of interacting events (the operation path), a
simulator can be defined as that program devoted to the generation of operation paths. The
simulator allows the creation of events and controls their interactions according to a set of
rules, using an internal “clock” to keep track of the passage of (simulation) time.

It maintains arevent list, which indicates which events are to be scheduled for execution at
specific simulation times. Events are executed according to their simulation times. There are
two approaches to the way in which a simulator can schedule events to produce an operation
path:

. event-oriented: there is a procedure associated with each type of event in the system:
it performs the action required to handle that type of event and it is invoked every
time such an event occurs. In an event-oriented approach, an operation path is
obtained by taking a global view of everything that happens in the system; the
manipulation of events is explicit.

. process-oriented: an operation path is obtained by the interacting of a number of
processes running in parallel. The management of events is implicit in the
management of the processes. The simulation system provides primitives for placing
processes at particular points on the event list, removing and re-scheduling them.
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The process-oriented approach best fits with the object-oriented paradigm which we want to
present to the programmer of JavaSm. As in SIMULA, simulation processes then become
active objects which interact with each other through message passing and the simulation
primitives. Refinements of these objects can then be obtained by inheriting from them and
redefining the appropriate methods.
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3. Basic smulation classes

This chapter describes the core elements of the JavaSm simulation system. It is not intended
as atutorial on Java, and basic knowledge of the language is assumed. Note, all of the classes
described in this section can be found inthe ar j una. JavaSi m Si nul at i on package.

3.1 Thesmulation scheduler

Chapter 2 described the event list and how simulation entities (processes) are executed
according to their position on the event list (i.e., with increasing smulation time). In JavaSm,
as in SIMULA, simulation processes are managed by a scheduler and are placed on a
scheduler queue (the event list). Processes are executed in pseudo-parallel, i.e.,, only one
process executes at any instance of real time, but many processes may execute concurrently at
any instance of simulation time. The simulation clock is only advanced when all processes
have been executed for the current instance of simulation time.

Inactive processes are placed on to the scheduler queue, and when the current active process
yields control to the scheduler (either because it has finished or been placed back onto the
scheduler queue), the scheduler removes the process at the head of the queue and re-activates
it.2 When the scheduler queue is empty, i.e., there are no further processes left to execute, the
scheduler terminates the simulation.

Scheduler Queue
o He  He He |
Q”s:heduler

Active Process

Figure 1: Scheduler-Process | nteraction

As Figure 1 shows, the scheduler co-ordinates the entire simulation run, effectively
monitoring the active and passive processes to enable it to determine when, and which,
process to activate next. A simulation application cannot affect the scheduler directly, but can
do so only indirectly through modifications of the scheduler queue.

Note: the scheduler queue can be structured in a variety of ways, including a linear list or a
tree. The implementation of the queue can depend upon the type of simulation being
conducted. For example, a simulation which involves many (concurrent) processes would
suffer from using a linear ordered queue which would typically have insertion and removal
routines with overheads proportional to the number of entries in the queue. However, alinear

2In SIMULA the currently active process is not removed from the head of the queue.
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list may work best for alow number of simulation processes. JavaSm comes with a suite of
scheduler queue implementations which can be chosen when the system is built.

3.1.1 Scheduler classinterface

The scheduler is an instance of the Schedul er class. It is the responsibility of the
application programmer to ensure that only a single instance of this classis created.

public class Schedul er
{ public static double CurrentTine ();

public static synchronized void reset ();

public static synchronized bool ean simul ati onReset ();
| public static synchronized void startSinulation ();

The scheduler maintains the ssimulation clock, and the current value of this clock is obtained
by invoking the Cur r ent Ti me() method.

To enable multiple simulation runs to occur within a single application, it is possible to reset

the scheduler and simulation clock by calling the reset () method. This causes the
scheduler to remove al processes (simulation objects) currently registered on the scheduler

gueue and to invoke a class specific method on each of them which resets their states
(detailed in the next section). Once this is finished the simulation is ready for an additional

run. A suspended process is informed that it has been “reset” by having the method it called
to originally suspend itself (i.e., place itself on the scheduler queue) raise the
Rest art Si mul ati on exception, which the object should catch. It must then perform any
work necessary to put itself back in a state ready for restarting the simulation, and should then
suspend itself again before the simulation can be restarted (typically by Calhog! .)

3.2 Simulation processes

As was described in the previous chaplavaSm supports the process-oriented approach to
simulation, where each simulation entity can be considered a separate process. Therefore in
JavaSm the entities within a simulation are representegimgess objects. These are Java
objects which have an independent thread of control associated with them at creation time,
allowing them to convey the notion of activity necessary for participating in the simulation.

In keeping with the object-oriented paradigm, and to make development of process objects
simpler, classes inherit the process functionality from the appropriate basé’clasegs).

This class defines all of the necessary operations for the simulation system to control the
simulation entities within it, and for them to interact with it and each other.

At any point in simulation time, a process can be in one (and only one) of the following
states:

. active: the process has been removed from the head of the scheduler queue and its
actions are being executed.

. suspended: the process is on the scheduler queue, scheduled to become active at a
specified simulation time.

. passive: the process is not on the scheduler queue. Unless another process brings it

back on to the queue it will not execute any further actions.
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. terminated: the process is not on the scheduler queue and has no further actions to
execute. Once a process has been terminated it cannot be made to execute further in
the same simulation run.

A process which is either active or suspended is said to be scheduled.
3.2.1 SimulationProcess classinterface

The Si mul ati onPr ocess class definition is shown below. Before considering how to
build an example class derived from Si mul at i onPr ocess we shall discuss the methods
which it provides.

Because the constructors are protected, it is not possible to create an instance of the
Si mul ati onProcess class, i.e., classes must be derived from this. Processes are threaded
objects, and typicaly each thread package schedules execution of threads according to a
priority. By default, all processes in JavaSm are created with the same priority, but this can
be altered by calling the set Pri ori t y method of j ava. | ang. Thr ead. Note, however,
that priorities have no effect on a simulation run.

public class SinulationProcess extends Thread

public final double Tinme ();
public synchroni zed Sinul ati onProcess next_ev ()
throws Simul ati onException, NoSuchEl ement Excepti on
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public final double evtime ();

public void ActivateBefore (SinulationProcess p)
throws SinulationException, RestartException;
public void ActivateAfter (SinmulationProcess p) throws SinulationException,
Rest art Excepti on;
public void ActivateAt (double AtTinme, bool ean prior)
throws Sinul ati onExcepti on,
Rest art Excepti on;
public void ActivateAt (double AtTine) throws SinulationException,
Rest art Excepti on;
public void ActivateDel ay (doubl e Del ay, boolean prior)
throws Sinul ati onExcepti on,
Rest art Excepti on;
public void ActivateDelay (double Delay) throws SinulationException,
Rest art Excepti on;
public void Activate () throws Sinmulati onException, RestartException;

public void ReActivateBefore (SinulationProcess p)
throws SinulationException, RestartException;
public void ReActivateAfter (SinulationProcess p)
throws SinulationException, RestartException;
public void ReActivateAt (double AtTime, boolean prior)
throws Sinul ati onExcepti on,
Rest art Excepti on;
public void ReActivateAt (double AtTime) throws SinulationException,
Rest art Excepti on;
public void ReActivateDel ay (doubl e Del ay, bool ean prior)
throws Sinul ati onExcepti on,
Rest art Excepti on;
public void ReActivateDel ay (double Delay) throws SinulationException,
Rest art Excepti on;
public void ReActivate () throws Sinmul ati onException, RestartException;

public void Cancel () throws RestartException;
public void ternminate ();
public synchroni zed boolean idle ();

public bool ean passivated ();
public boolean term nated ();

public static SimulationProcess current () throws SinulationException;
public static double CurrentTinme ();

public static void mai nSuspend ();
public static void mai nResunme () throws Sinulati onException;

protected SimulationProcess ();

protected void set_evtine (double tine) throws SinulationException;
protected void Hold (double t) throws SinulationException,

Rest art Excepti on;
protected void Passivate () throws RestartException;

protected void Suspend () throws RestartException;
protected void Resune ();

}s

There are five ways to activate a currently passive process, which results in it being brought
to the correct position in the scheduler queue corresponding to its associated simulation time.
If thisisthe head of the queue then it will become the active process.
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. Act i vat e() : this activates the process at the current simulation time.

. Acti vat eBef ore( Si nul ati onProcess proc) : this positions the process
in the scheduler queue before pr oc, and gives it the same simulation time. If pr oc
isnot present then aSi mul at i onExcept i on will be thrown.

. Activat eAfter (Si mul ati onProcess proc) : this positions the processin
the scheduler queue after pr oc, and gives it the same simulation time. If pr oc is
not present then aSi nul at i onExcept i on will be thrown.

. Acti vat eAt (doubl e At Ti ne, bool ean prior): the process is inserted
into the scheduler queue at the position corresponding to the simulation time
specified by At Ti me. The default for this time is the current simulation time. The
prior parameter is used to determine whether this process should be inserted
before or after any processes with the same simulation time which may already be
present in the queue. The default isf al se.

. Acti vat eDel ay(double AtTinme, boolean prior): the process is
activated after a specified delay (At Ti me). The process is inserted into the queue
with the new simulation time, and the pri or parameter is used to determine its
ordering with respect to other processes in the queue with the same time. The default
isfal se.

There are correspondingly five ReAct i vat e methods, which work on either passive or
scheduled processes. These will not be described in detail as they have similar signatures to
their Act i vat e counterparts and work in the same way.

Hol d(doubl e peri od) schedulesthe currently active process for re-activation after the
simulated delay of peri od time. If this is invoked by the object (e.g., through a publicly
available method) when it is not the current active process then it does nothing.

evti me() returnsthetime at which the processis scheduled for activation.

next ev() returns a reference to the next process to be scheduled for execution. If the
gueue isempty then nul | isreturned.

The static method cur r ent () returns areference to the currently active process.

The current simulation time can be obtained by using either the Current Ti me() or
Ti me() methods. The former method is static and as such can be invoked without an
instance of the Si mul ati onPr ocess class.

Cancel () removes the process from the scheduler queue or suspendsit if it is the currently
active process. In either case, the processis set to the passive state. Passi vat e() functions
similarly but only works on the currently active process, i.e,, if it is invoked by the object
(e.g., through a publicly available method) when it is not the current active process then it
does nothing.

t erm nat e() removes the process from the scheduler queue or it is suspended if it is
currently active. The process is then set to the terminated state, and can take no further part in
this simulation run.

I dl e() returns fal se if the process is either active or scheduled to become active.
Otherwiset r ue isreturned.
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passi vat ed() and t erm nat ed() indicate whether the process is in the passive or
terminated state, respectively.

Because Si mul ati onPr ocess extends the j ava. | ang. Thr ead class it is necessary
for the ssmulation class to provide an implementation of the r un method which will do the
actual work for the process. If this method ever returns then the thread is destroyed. However,
in order for JavaSm to detect the termination of the thread, thet er m nat e() method must
be used instead.

3.2.2 Example

To illustrate how a simulation process could be implemented from the Pr ocess class we
shall consider the example of a queue of customers arriving at a bank. For this example, this
involves three classes:

. Cust omrer : instances of this class represent the customersin the queue.

. Queue: the instance of this class (Qqueue) is the queue into which customers are
places.

. Arrival s: thisisthe process which creates new customers for insertion in queue.

The implementations of the Cust oner and Queue classes are not important to this
example. The implementation of the Ar ri val s class could be:

class Arrivals : public Process

éublic:
Arrivals () {};
~Arrivals () {};

voi d Body ();
I
void Arrivals::Body ()
{ for (;;)
{
Customer* ¢ = new Custoner();
gueue.insert(c);
Hol d( 20. 0);
}
}

3.3 Starting, ending and controlling a ssimulation

When a Si mul at i onPr ocess object is created in JavaSm it starts in the passive state,
and must be activated before it can take part in the smulation. Thisis typically performed by
the first process object to which control is transferred after the simulation is initialy started.
When writing JavaSm applications it is typical for the main thread to create a single
controller process which is responsible for co-ordinating the entire smulation run. This
creates and activates all of the simulation entities and the scheduler, and provides methods for
suspending the main thread, thus allowing the controller object to execute, and exiting the
application. An example controller interface is shown below, and the implementations for its
methods will be described in the following sections:
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public class Controller extends SimnulationProcess
éublic Controller ();

public void run ();

public void await ();

public void exit ();

}s

Because Cont r ol | er isasimulation process itsdlf, it derives from Si mul at i onr ocess
and defines ar un() method, which will do the actual controlling of the simulation. It also
provides the following methods:

. awai t () : this method is called within the main application thread and suspends it,
effectively transferring control the Cont r ol | er process.
. exi t () :thismethod is called to exit the simulation.

3.3.1 Suspending themain thread

When a threaded application is started it is important to realise that before any application
threads are created, the Java virtual machine has aready created one to run the application.
This thread must be suspended before any simulation threads can run.

Theawai t () method of Cont r ol | er isresponsible for suspending this thread:

public void await ()

Resune() ;
Si mul ati onProcess. mai nSuspend() ;

}

It must first resume the thread associated with the Control |l er instance (since
Control |l er isaSi nul ati onProcess it starts in the passive state). This thread does
not execute until the main thread is suspended by the call to the static mai nSuspend
method.

The code for mai n would then become:

public static void main (String[] args)

{

Controller ¢ = new Controller();
c.await();

3.3.2 Exitingtheapplication

In order to exit a simulation application, the application can call Syst em exi t . However,
if it is only necessary to resume the main thread, then this can be accomplished by using the
static mai nResumne method of the Si mul at i onPr ocess class. Once the main thread has
been resumed, it will continue to execute from the point it was suspended. In the example
above, this would be from within the awai t method. The thread which calls mai nResune
can then suspend or terminate itself, depending upon the application requirements.
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public void exit ()

{
i f (resumeMai nRequi r ed)
Si mul ati onProcess. mai nResune() ;
Suspend() ;
el se
System exit(0);
}

3.3.3 Controlling thesimulation

The controller’s body creates and activates the other simulation entities and the scheduler, and
controls the overall simulation (e.g., resetting the system between consecutive runs).

public void run ()

{ sc = new Schedul er ();
/'l create and activate any other sinulation entities
sc->Resune(); // we nmust create a scheduler for the simulation to run
/1 execute the simulation
/] print results
sc->Suspend(); // suspend schedul er
/1 suspend simulation entities
} Thread_Type: : mai nResumne() ;

The final call to mai nResumne prevents r un() from exiting, which we must do to ensure
the application is portable between thread implementations.

3.4 Resetting a ssimulation

Resetting a simulation involves resetting all of the objects involved in it which will be
required for subsequent runs. When the reset method is invoked on the Scheduler, this causes
the current ssimulation run to be terminated, and all simulation objects which are currently
suspended on the scheduler queue will be woken and the Rest art Excepti on will be
thrown to each. Any objects which are required to participate within a new simulation run
must catch this exception, reset themselves to a state consistent with the start of another
simulation, and then become suspended, to await the restart of the simulation.
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34.1 Example

If wetakethe Arri val s example above and add a reset method then the code could be:

public class Arrivals extends SinulationProcess

public void run ()

{
for (;;)
{
try
{
for (;;)
{
Custoner ¢ = new Custoner();
queue.insert(c);
Hol d( 20. 0) ;
}
catch (Restart Exception e)
{
}
}
}
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4. Distribution Functions

Many of the aspects of the real world which a simulation attempts to model have properties
which correspond to various distribution functions, e.g., inter-arrival rates of customers at a
bank queue. Therefore, simulation studies require sources of random numbers. Ideally these
sources should produce an endless stream of such numbers, but to do so either requires
specialised hardware or the ability to store an infinite (large) table of such numbers generated
in advance.

Without such aids, which are either impractical or not generally available, the alternativeisto
use numerical algorithms. No deterministic algorithm can produce a sequence of numbers that
would have all of the properties of a truly random sequence [3]. However, for all practical
purposes it is only necessary that the numbers produced appear random, i.e., pass certain
statistical tests for randomness. Although these generators produce pseudo-random numbers,
we continue to call the random number generators.

The starting point for generating arbitrary distribution functions is to produce a standard
uniform distribution. As we shall see, al other distributions can be produced based upon this.
(Interested readers are referred to [6] for a more complete treatment of this topic). All of the
distribution functions in JavaSm rely upon inheritance to specialise the behaviour obtained
from the uniform distribution class. These classes can be found in the
arj una. JavaSi m Di stri buti ons package.

4.1 RandomStream

The actual uniform distribution class is called Randontt r eam This returns a series of
random numbers uniformly distributed between 0 and 1. We experimented with severa
random number generators before settling on a shuffle of a multiplicative generator with a
linear congruential generator, which provides a reasonably uniform stream of pseudo-random
numbers.

public abstract class Randonttream

{
public abstract double get Nunmber () throws | OException,
Arithmeti cException;

public final double Error ();

prot ected RandonfStream ();
protected Randonftream (|l ong MSSeed, | ong LCGSeed);

protected final double Uniform();

}s

The multiplicative generator uses the following algorithms:
Y[i+1] = Y[i] * 5° mod 2%

, where the period is 2%, and the initial seed must be odd.

3Thanks to Professor |. Mitrani for his help in developing this.
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The Uni f or (') method uses the linear congruential generator (seed is LCGSeed, with the
default value of 1878892440L) based on the algorithm in [4], and the results of this are
shuffled with the multiplicative generator (see is MGSeed, with a default value of 772531L)
as suggested by Maclaren and Marsaglia [3], to obtain a sufficiently uniform random
distribution, which is then returned.

The Error () method returns a chi-square error measure on the uniform distribution
function.

By abstract method get Nunber must be provided by derived classes, and is used to obtain a
uniform means of accessing random numbers.

The Randontt r eam class returns a large sequence of random numbers, whose period is
2724, However, unless the seeds are modified when each random distribution class is created,
the starting position in this sequence will always be the same, i.e., the same sequence of
numbers will be obtained. To prevent this, each class derived from Randontt r eamhas an
additional parameter for one of its constructors which indicates the offset in this sequence
from which to begin sampling.

4.2 UniformStream

The Uni f or n5t r eam class inherits from Randontt r eam and returns random numbers
uniformly distributed over a range specified when the instance is created.

public class Unifornttream ext ends Randonftream

{

public UniforntStream (double |0, double hi);

public UnifornStream (double | o, double hi, int Streantel ect);

public UnifornStream (double | o, double hi, int Streantel ect,
| ong MSSeed, | ong LCGSeed);

publ i ¢ doubl e getNunber () throws | CException, ArithmeticException;
};

The range covers the interval specified by | o and hi . St r eanSel ect indicates the offset
in the random number sequence to begin sampling, and MGSeed and LCGSeed can be used
to modify the seed values used by the Randontt r eamclass.

4.3 Exponential Stream

The Exponenti al St r eam class returns an exponentially distributed stream of random
numbers with mean value specified by mean.

public class Exponenti al Stream ext ends Randonftream

public Exponential Stream (doubl e nean);
publ i c Exponenti al Stream (doubl e nmean, int Streanfel ect);
public Exponential Stream (doubl e nmean, int StreanSel ect,

| ong M=Seed, | ong LCGSeed);

public doubl e get Number () throws | OException, ArithneticException;
1
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St r eantSel ect indicates the offset in the random number sequence to begin sampling, and
MSSeed and LCGSeed can be used to modify the seed values used by the Randontt r eam

class.

4.4 ErlangStream

Er | angSt r eamreturns an erlang distribution with mean mean and standard deviation sd.

public class ErlangStream extends

public Erl angStream (doubl e nean,
public Erl angStream (doubl e nean,
public Erl angStream (doubl e nean,

| ong MSSeed,

Randontt r eam

doubl e sd);

doubl e sd, int Streanfel ect);
doubl e sd, int Streantel ect,
| ong LCGSeed);

publ i ¢ doubl e get Nunber
};

() throws | OException, ArithneticException;

St r eantSel ect indicates the offset in the random number sequence to begin sampling, and
M3Seed and LCGSeed can be used to modify the seed values used by the Randonst r eam
class.

4.5 HyperExponential Stream

The Hyper Exponenti al class returns a hyper-exponential distribution of random
numbers, with mean mean and standard deviation sd.

public class Hyper Exponenti al St ream ext ends

publ i ¢ Hyper Exponenti al Stream (doubl e nean,
publ i ¢ Hyper Exponenti al Stream (doubl e nean,
publ i ¢ Hyper Exponenti al Stream (doubl e nean,

| ong MSSeed,

Randontt r eam

doubl e sd);

doubl e sd, int StreanSel ect);
doubl e sd, int Streantel ect,
| ong LCGSeed);

publ i ¢ doubl e get Nunber
};

() throws | OException, ArithneticException;

St r eantSel ect indicates the offset in the random number sequence to begin sampling, and
M3Seed and LCGSeed can be used to modify the seed values used by the Randonst r eam
class.

4.6 NormalStream

Nor mal St r eamreturns a norma distribution of random numbers, with mean nean and
standard deviation sd. operat or () uses the polar method due to Box, Muller, and
Marsaglia[3].

public class Normal Stream ext ends Randonftream

publi ¢ Normal Stream (doubl e nmean, doubl e sd);

publi ¢ Normal Stream (doubl e nmean, double sd, int StreanSel ect);

publi ¢ Norrmal Stream (doubl e nean, double sd, int Streantel ect,
| ong McSeed, | ong LCGSeed);

publ i ¢ doubl e get Nunber
};

() throws | OException, ArithneticException;
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St r eantSel ect indicates the offset in the random number sequence to begin sampling, and
MSSeed and LCGSeed can be used to modify the seed values used by the Randontt r eam
class.

4.7 Draw

The Dr aw class is the exception to the inheritance rule, instead using Randontt r eam
through delegation (for historical reasons). Thisreturnst r ue with the probability pr ob, and
f al se otherwise.

public class Draw

{

public Draw (double p);

public Draw (double p, int StreantSel ect);

public Draw (double p, int StreantSel ect, |ong MsSeed, |ong LCGSeed);

publ i ¢ bool ean getBool ean () throws | CExcepti on;

}s

St r eantSel ect indicates the offset in the random number sequence to begin sampling, and
MSSeed and LCGSeed can be used to modify the seed values used by the Randonst r eam
class.

4.8 Example
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5. Advanced Simulation Classes

Simulations formed by the interaction of objects derived from Si mul at i onPr ocess can
be considered causal (synchronous) in nature: events occur at specific times and form a well
defined order. However, it is sometimes necessary to simulate asynchronous real world
events, e.g., processor interrupts. To do this requires finer-grained control of the scheduling
of simulation processes than it provided by the scheduler; the scheduler ssimply activates
according to simulation time, whereas asynchronous events may have different activation
rules, e.g., activate when another process is terminated.

The Si mul ati onEnti ty class and others to be described in the following sections gives
this required level of control to the user, extending the types of simulation which are possible
with JavaSm. Asynchronous simulation processes are derived from Si mul ati onEntity,
but the implementation enables these asynchronous process to execute in the same simulation
as Si nul ati onPr ocess objects. However, because these processes are suspended and
resumed outside of the control of the scheduler, it is possible for deadlock situations to occur.
Therefore, some care must be taken when using these classes.

In addition to the active, suspended, passive and terminated states which a simulation process
can be in, asynchronous objects can also be in the following states:

. waiting: the process is suspended waiting for a specific event to occur (eg., a
process to be terminated). The waiting process is not placed on the scheduler queue.
. interrupted: the process, which was in the waiting state, has been interrupted from

this before the condition it was awaiting occurred.

The conditions on which a process can wait, and can thus be interrupted from, are:

. time: a process can attempt to wait for a specified period of simulation time.

. process termination: a process can wait for the termination of another
Si mul ti onEnt ity process before continuing execution.

. semaphore: critical regions of a smulation can be protected by semaphores, where

only a single Entity process can acquire the semaphore; other processes are
suspended until the semaphore is released.

. user specific: it is possible for other asynchronous conditions to occur which are not
covered above.

The classes to be described in  this chapter can be found in the
arj una. JavaSi m Si nul at i on package.
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5.1 Asynchronous entities

public class SinulationEntity extends SimulationProcess

public void Interrupt (SimulationEntity tolnterrupt, bool ean i medi ate)
throws SinulationException, RestartException;

public final void trigger ();

public void ternminate ();

protected SimulationEntity ();

protected void Wait (double waitTine) throws SinulationException,
Rest art Excepti on, |nterruptedException;

protected void WaitFor (SinulationEntity controller, boolean reAct)
throws Sinul ati onExcepti on,
Rest art Excepti on, |nterruptedException;
protected void WaitFor (SinulationEntity controller)
throws Sinul ati onExcepti on,
Rest art Excepti on, |nterruptedException;

protected void WaitForTrigger (TriggerQeue _queue)
throws Sinul ati onExcepti on,
Rest art Excepti on, |nterruptedException;

protected voi d Wit For Semaphore (Semaphore _sem) throws RestartException;

}s

Because Si mul ati onEnti ty is derived from Si nul ati onPr ocess, al of the usual
simulation methods are available, and can be used in conjunction with those provided by the
derived class.

Interrupt (Sinul ati onEntity tolnterrupt, bool ean i nmedi at e)
interrupts the asynchronous process t ol nt er r upt , which must not be terminated and
must be in the waiting state. t ol nt er r upt becomes the next active process (i.e, it is
moved to the head of the scheduler queue). If immediate ist r ue then the current processis
suspended immediately; it is scheduled for reactivation at the current simulation time.
Otherwise, the current process continues to execute and can be suspended later in an
application specific way.

Because it is now possible for one process to wait for another to terminate the
t erm nat e() method must differ from that provided by Si nmul at i onPr ocess. Before
the terminating process ends it moves the waiting process to the head of the scheduler queue,
and then calls Si mul ati onProcess. term nat e(). Currently only a single process
can wait on this termination condition, but this may change in future versions.

Wai t (doubl e t) issimilar to Hol d( doubl e t), with the exception that the processis
moved into the waiting state as well as being placed on the scheduler queue. It is therefore
possible to interrupt this process before the wait period has elapsed. t r ue is returned if the
process was interrupted, otherwise f al se isreturned.

Wai t For (Simul ati onEntity controller, boolean reAct) suspends the
current process until cont r ol | er has terminated. The process is placed in the waiting
state. If reAct istrue thencontrol | er ismoved to the head of the scheduler queue to
become the next activate process, otherwise (the default behaviour) the application will have
to activate control | er. If the waiting process is interrupted then the method returns
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t rue, otherwisef al se. Thecontrol | er and the current process must be different, i.e.,
it isnot possible for a process to wait for itself.

Trigger queues are lists maintained by the simulation system of process waiting for specific
events to occur, which are outside the scope of those described above. These will be
described in the next section. Wai t For Tri gger ( Tri gger Queue queue) places the
current process on the trigger queue _queue, and passivates it. As with the previous
methods, the return value indicates whether the process was interrupted, or triggered.

In addition to trigger queues, process can wait on semaphores, alowing the creation of
monitor regions, for example. Wai t For Semaphor e( Semaphore senj) causes the
current process to attempt to exclusively acquire the semaphore. If this is not possible then
the process is suspended. Currently, a process which is waiting on a semaphore cannot be
interrupted, and is not placed into the waiting state. As such, when this method returns the
semaphore has been acquired.

5.2 Trigger queues

Processes waiting for the same application controlled event can be grouped together into a
Tri gger Queue, as described in the previous section. When this event occurs the
application can use one of the two trigger methods to activate the queue members. This
involves placing the process(es) onto the head of the scheduler queue.

public class TriggerQueue

{
public TriggerQueue ();
public void finalize ();

public synchroni zed void triggerFirst (bool ean setTrigger)
t hrows NoSuchEl enent Excepti on
public synchroni zed void triggerFirst () throws NoSuchEl enent Excepti on

public synchronized void triggerAll () throws NoSuchEl ement Excepti on
};

. triggerAll():triggersal of the memberson the queue.

. triggerFirst(bool ean set Tri gger) : triggers only the head of the queue.
If set Tri gger istrue (the default behaviour) thenthetri gger () method of
the Si mul ati onEnt ity object isalsoinvoked.

If the queue is not empty when it is garbage collected by the virtual machine then all
remaining queue members will be triggered, and placed back onto the scheduler queue.
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5.3 Semaphores

Application code can be protected from simulation processes through semaphores, which are
instances of the Semaphor e class.

public class SenaphoreCQutcone

{
static final public int DONE = O;
static final public int NOTDONE = 1;
static final public int WOULD BLOCK = 2;
b

public class Senaphore

{
publ i ¢ Senmaphore ();
publ i ¢ Senmaphore (long nunber);

publi ¢ synchronized | ong NunberWaiting ();

public synchronized int Get (SimulationEntity toWit)

throws RestartException;
public synchronized int TryGet (SinulationEntity toWit)

throws RestartException;
public synchroni zed int Release ();

}s

A semaphore can be used to restrict the number of processes which can use shared resources.
The number of shared resources available must be presented to the Semaphor e when it is
created. By default, a Semaphor e will assume that there is only a single resource, in which
case a semaphore is exclusively acquired by a smulation process. However, it is possible to
create a Sermaphor e with different resource counts.

A Semaphore can exist in one of two states:

. available: the semaphore is available to be acquired.

. unavailable: a process (or number of processes) currently has the semaphore. If
another process attempts to acquire the semaphore then it is automatically suspended
until the semaphore is available, i.e., until aresource has been freed.

To be able to manipulate semaphores, a process must be derived from the
Si mul ati onEntity class. To obtain the semaphore, the Get ( Si mul ati onEntity
t oWai t) method should be used, wheret oWai t isthe calling process. If the semaphore is
unavailable then the process referenced by t oWai t is suspended. If the semaphore is
successfully acquired, then Sermaphor eQut cone. DONE is returned, otherwise
Semaphor eQut conme. NOTDONE.

If the process wishes to attempt to acquire the semaphore but does not want to block in the
situation where the semaphore is currently unavailable, then it can use the Tr yGet method,
which takes the same parameter as Get. However, unlike Get, TryGet will return
Semaphor eCQut cone. WOULD_BLQOCK in the case where the caller would normally block
if it had called Get , i.e., the semaphore is currently in use. If the semaphore is not being used,
then TryGet will acquire it for the «caler. Errors will result in
Semaphor eQut cone. NOT_DONE being returned.

When the semaphore is no longer required Rel ease() should be called by the process
which currently has it. Successful release of the semaphore results in
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Semaphor eQut cone. DONE being returned, otherwise Senaphor e. NOTDONE is
returned.

Nunber Wi ti ng() returns the number of processes currently suspended waiting for the
semaphore.

If the semaphore is garbage collected with processes waiting for it then an error message is
displayed. No further action is attempted on behalf of these waiting processes.

54 Example



The JavaSm User’s Manuals

6. Statistical Classes

The purpose of a simulation typicaly involves the gathering of relevant statistical
information, e.g., the average length of time spent in a queue. JavaSm provides a number of
different classes for gathering such information. These classes can be found in the
arjuna.JavaSi m St ati sti cs package.

6.1 Mean

This is the basic class from which others are derived, gathering statistical information on the
samples provided to it.

public class Mean

éublic Mean ();

public void setVal ue (double value) throws II1egal Argunment Excepti on
public void reset ();

public int nunberOf Samples ();
public double mn ();

public double max ();

publ i c double sum ()

public double nmean ();

publi c bool ean saveState (String fileName) throws | CException
publ i ¢ bool ean saveState (DataQutputStreamoFile) throws | OException

public boolean restoreState (String fil eNane) throws Fil eNot FoundExcepti on
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | CException

public void print ();
b,

New values can be supplied to the instance of the Mean class using the
set Val ue( doubl e) method. The number of samples which have been give can be
obtained from nunber O Sanpl es() .

The maximum and minimum of the samples supplied can be obtained from the max() and
m n() methods, respectively.

sum() returnsthe summation of all of the samples:
n

Si
=1

mean( ) returnsthe mean vaue:
1 n
F s
i=1

An instance of Mean can be reset between samples using ther eset () method.
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If the state of a Mean object is required to be saved between simulation runs then it can be
made persistent by using either of the saveSt at e methods. The first instance saves the
state to a file, whereas the second can be used to save the state to an instance of the
j ava. i o. Dat aCut put St r eam class. There are likewise two corresponding ways in
which the state can be restored.

Thepri nt method simply printsto Syst em out the current state of the object.
6.2 Variance

This class is derived from Mean, and in addition to providing the above mentioned
functionality also provides the following:

public class Variance extends Mean

public Variance ();

public void setVal ue (double value) throws II1|egal Argunment Exception
public void reset ();

publ i c doubl e variance ();

public double stdDev ();

publ i ¢ doubl e confidence (doubl e val ue);

public void print ();

publi c bool ean saveState (String fileName) throws | CException
publ i ¢ bool ean saveState (DataQutputStreamoFile) throws | OException

public boolean restoreState (String fil eNane) throws Fil eNot FoundException
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | CException

}s

vari ance() returnsthe variance of the samples:
1 n
L3 (s-Mean(f
i=1
st dDev() returns the standard deviation of the samples, which is the square root of the

variance.

6.3 TimeVariance

The Ti meVar i ance class makes it possible to determine how long, in terms of simulation
time, specific values were maintained. In effect, values are weighted according to the length
of time that they were held, whereas with the Var i ance class only the specific values are
taken into account.
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public class TineVariance extends Variance

public TinmeVariance ();

public void reset ();

public void setValue (double value) throws |l egal Argunment Excepti on;
public double tineAverage ();

public bool ean saveState (String fil eNane) throws | OException;
public bool ean saveState (DataCutputStreamoFile) throws | OException;

public boolean restoreState (String fileNane) throws Fil eNot FoundExcepti on,
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | OException;

}s

Whenever a value is supplied to an instance of the Ti meVari ance class the ssmulation
time at which it occurred is also noted. If a value changes, or thet i neAver age() method
is invoked, then the time it has been maintained for is calculated and the statistical data is
updated.

6.4 Histograms

Mean, Vari ance, and Ti neVar i ance provide a snapshot of values in the simulation.
However, histograms can yield better information about how a range of values change over
the course of a simulation run. This information can be viewed in a number of ways, but
typicaly it is plotted in graphical form.

A histogram typically maintains a slot for each value, or range of values, given to it. These
dots are termed buckets, and the way in which these buckets are maintained and manipulated
gives rise to a variety of different histogram implementations. The following sections detall
this variety of different histogram classes.

6.4.1 PrecisonHistogram

The Pr eci si onHi st ogr am class represents the core histogram class from which al
others are derived. This class keeps an exact tally of all values given to it, i.e., a bucket is
created for each value. Although buckets are only created when requires, over the course of a
simulation this can till utilise a large amount of resources, and so other, less precise,
histogram classes are provided.
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public class PrecisionHi stogram extends Variance
public PrecisionH stogram ();
public void finalize ();
public void setValue (double value) throws |l egal Argunment Excepti on;
public void reset ();
public | ong nunber O Buckets ();
public doubl e sizeBylndex (long index) throws StatisticsException,
Il egal Argunent Excepti on;

public doubl e sizeByNanme (double nane) throws |1 egal Argunent Excepti on;

public bool ean saveState (String fil eNane) throws | OException;
public bool ean saveState (DataCutputStreamoFile) throws | OException;

public boolean restoreState (String fileNane) throws Fil eNot FoundExcepti on,
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | OException;

public void print ();
}i

As with the Var i ance class from which it is derived, and whose methods are obviously
available, values can be supplied to the histogram through the set Val ue( doubl e)
method.

The number of buckets maintained by the histogram can be obtained from the
nunber Of Bucket s() method. Each bucket is uniquely named by the values it contains,
and can also be accessed by itsindex in the entire list of buckets.

There are therefore two ways of getting the number of entries in a bucket:

. by the index number of the bucket: si zeByl ndex(| ong i ndex) .
. by the unique name of the bucket: si zeByNane( doubl e nane) .

If the bucket does not exiss then each of these methods throws
I'I'l egal Argunment Excepti on.

It is possible to output the contents of the histogram to standard output using the
pri nt () method.

6.4.2 Histogram

The problem with the Pr eci si onHi st ogr amclass is that it can use up a lot of system
resources, especially over the course of along smulation. Hi st ogr amattempts to alleviate
this by presenting a histogram which is less accurate, but consumes less resources. Instead of
maintaining a bucket for each individual value, it keeps a fixed number of buckets. Initialy
each bucket will store separate values as in the Pr eci si onHi st ogr am but when the
number of required buckets would exceed the specified maximum number it merges pairs of
buckets, thus reducing their total. The policy used when merging buckets it set on a per
instance basis when created. Current policies are:

. ACCUMULATE: create a new bucket with the same name as the largest of the two
buckets, and it has the sum of the two old bucket entries as its entry number.
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. MEAN: create a new bucket with the name as the mean of the two old buckets, and it
has the sum of the two old bucket entries as its entry number.

. MAX: create a new bucket with the name as the largest of the two buckets, and it has
the same number of entries.

. M N: create a new bucket with the name as the smallest of the two old buckets, and

it has the same number of entries.

public class Hi stogram extends PrecisionH stogram

public H stogram (|l ong maxl ndex, int mergeChoice);
public H stogram (| ong nmaxl ndex);

public void setVal ue (double value) throws II1egal Argunent Excepti on;

publi ¢ bool ean saveState (String fileNanme) throws | OException;
publ i ¢ bool ean saveState (DataQutputStreamoFile) throws | OException;

public boolean restoreState (String fileNane) throws Fil eNot FoundExcepti on,
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | OException;

public void print ();
b

When an instance of Hi st ogr amis created, the maximum number of allowed buckets must
be specified. The merging algorithm can also be provided, with the default being the MEAN

policy.
6.4.3 SimpleHistogram

As with the Hi st ogr amclass above, Si npl eHi st ogr amkeeps the number of assigned
buckets to a minimum. However, it does this by pre-creating the buckets when it is created,
i.e., the number of required buckets must be provided at the start. A width is the assigned for
each bucket, and whenever avalue if given to the histogram class it is placed into the bucket
whose width it falls within.

public class SinpleH stogram extends PrecisionHi stogram

public SinpleH stogram (double m n, double max, |ong nbuckets);
public SinpleH stogram (double nmin, double rmax, double w);

public void setValue (double value) throws |l egal Argunment Excepti on;
public void reset ();

public doubl e sizeByNane (double nane) throws |1 egal Argunent Excepti on;
public double Wdth ();

public void print ();

public bool ean saveState (String fileNane) throws | OException;
public bool ean saveState (DataCutputStreamoFile) throws | OException;

public boolean restoreState (String fileNane) throws Fil eNot FoundExcepti on,
| OExcepti on;
public boolean restoreState (DatalnputStreamiFile) throws | OException;

}s

When the class is instantiated, the range of values it will receive must be provided. Then,
either the width of each bucket or the actual number of buckets can be given. If the width is
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provided, then the histogram automatically calculates the number of buckets, otherwise it
calculates the width for each bucket by equally dividing the range between each bucket.

The values of abucket can be obtained from thesi zeByNanme method.
The width of each bucket is provided by the W dt h method.
6.4.4 Quantile

The Quant i | e class provides a means of obtaining the p-quantile of a distribution of values,
I.e., the value below which p-percent of the distribution lies.

public class Quantile extends PrecisionH stogram

{
public Quantile ();
public Quantile (double q) throws |1l egal Argunment Excepti on

public doubl e getValue ();
public double range ();

public void print ();
b,

The p-quantile probability range must be specified when the object is instantiated, and can be
obtained viathe r ange method.

The actual quantile valueis provided by get Val ue method.
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7. JavaSim classes

For convenience, in this section we shall include the JavaSim classes which programmers will
use when constructing simulations.

7.1 Scheduler

package arjuna. JavaSi m Si mul ation

public class Schedul er

{
public static double CurrentTinme ();

public static synchronized void reset ();
public static synchroni zed bool ean simnul ati onReset ();

public static synchronized void startSinulation ();
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7.2 SimulationProcess

package arjuna. JavaSi m Si mul ati on;

public class SinulationProcess extends Thread
{
public final double Tinme ();
public synchronized Sinmul ati onProcess next_ev ()throws SinulationException,
NoSuchEl enent Excepti on;
public final double evtinme ();
public void ActivateBefore (SimulationProcess p)throws SinulationException,
Rest art Excepti on;
public void ActivateAfter (SinmulationProcess p) throws SinulationException,
Rest art Excepti on;

public void ActivateAt (double AtTinme, boolean prior)

throws Simul ati onException, RestartException;
public void ActivateAt (double AtTine) throws SinulationException,

Rest art Excepti on;

public void ActivateDel ay (doubl e Del ay, bool ean prior)

throws Simul ati onException, RestartException;
public void ActivateDelay (double Delay) throws SinulationException,

Rest art Excepti on;

public void Activate () throws Sinmul ati onException, RestartException;
public void ReActivateBefore (SinulationProcess p)

throws Simul ati onException, RestartException;
public void ReActivateAfter (SinulationProcess p)

throws Simul ati onException, RestartException;
public void ReActivateAt (double AtTime, boolean prior)

throws Simul ati onException, RestartException;
public void ReActivateAt (double AtTime) throws SinulationException,

Rest art Excepti on;

public void ReActivateDel ay (doubl e Del ay, bool ean prior)

throws Simul ati onException, RestartException;
public void ReActivateDel ay (double Delay) throws SinulationException,

Rest art Excepti on;

public void ReActivate () throws Sinmul ati onException, RestartException;
public void Cancel () throws RestartException;
public void ternminate ();
public synchroni zed boolean idle ();
public bool ean passivated ();
public boolean ternm nated ();
public static SimulationProcess current () throws SinulationException;
public static double CurrentTinme ();
public static void mai nSuspend ();
public static void mai nResunme () throws Sinulati onException;

protected SimulationProcess ();

protected void set_evtine (double tine) throws SinulationException;
protected void Hold (double t)throws SinulationException, RestartException;
protected void Passivate () throws RestartException;

}s




The JavaSm User’s Manuals

7.3 SimulationException

package arjuna. JavaSi m Si mul ati on;

public class SinulationException extends Exception
{

public SimulationException ();

public SimulationException (String s);
1

7.4 RestartException

package arjuna. JavaSi m Si mul ati on;
public class RestartException extends Exception

public RestartException ();
public RestartException (String s);

}s

7.5 RandomStream

package arjuna. JavaSi m Di stri buti ons;
public abstract class Randonttream

public abstract double get Nunmber () throws | OException,
Arithmeti cException;

public final double Error ();

prot ected Randonftream ();
prot ected Randonfstream (|l ong MSSeed, | ong LCGSeed);

protected final double Uniform();

}s

7.6 UniformStream

package arjuna. JavaSi m Di stri buti ons;
public class Unifornttream ext ends RandonStream

public UnifornsStream (double | o, double hi);

public UniforntStream (double | o, double hi, int StreanSelect);

public UnifornStream (double | o, double hi, int Streantel ect,
| ong MsSeed, | ong LCGSeed);

public doubl e get Number () throws | OException, ArithneticException;
1
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7.7 Exponential Stream

package arjuna. JavaSi m Di stri buti ons;
public class Exponenti al Stream ext ends Randonftream

{
public Exponential Stream (double m;

public Exponential Stream (double m int StreanSel ect);
public Exponential Stream (double m int Streantel ect,
| ong M=Seed, | ong LCGSeed);
public doubl e get Number () throws | OException, ArithneticException;
1

7.8 ErlangStream

package arjuna. JavaSi m Di stri buti ons;

public class ErlangStream extends Randonftream
{
public ErlangStream (doubl e nean, double sd);
public ErlangStream (doubl e nean, double sd, int Streantelect);
public ErlangStream (doubl e nean, double sd, int Streantel ect,
| ong MsSeed, |ong LCGSeed);
public doubl e get Number () throws | OException, ArithneticException;
1

7.9 HyperExponential Stream

package arjuna. JavaSi m Di stri buti ons;

public class Hyper Exponenti al Stream ext ends Randonftream

publ i ¢ Hyper Exponenti al St ream (doubl e mean, doubl e sd);

publ i ¢ Hyper Exponenti al Stream (doubl e nmean, double sd, int Streanfel ect);

publ i ¢ Hyper Exponenti al Stream (doubl e mean, double sd, int Streanftel ect,
| ong M=Seed, | ong LCGSeed);

public doubl e get Nunmber
1

() throws | OException, ArithmeticException;

7.10 Normal Stream

package arjuna. JavaSi m Di stri buti ons;

public class Normal Stream ext ends Randonftream
{
public Nornal Stream (doubl e nean, double sd);
public Nornal Stream (doubl e nean, double sd, int Streantel ect);
public Nornal Stream (doubl e nean, double sd, int Streantel ect,
| ong MsSeed, | ong LCGSeed);
public doubl e get Nunmber () throws | OException, ArithneticException;

}s
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7.11 Draw

package arjuna. JavaSi m Di stri buti ons;

public class Draw

{

public Draw (double p);

public Draw (double p, int Streantel ect);

public Draw (double p, int Streantel ect, |ong McSeed, |ong LCGSeed);

public bool ean getBool ean () throws | OExcepti on;

}s

7.12 SimulationEntity

package arjuna. JavaSi m Si mul ati on;
public class SinulationEntity extends SimulationProcess

public void Interrupt (SimulationEntity tolnterrupt, bool ean i medi ate)
throws Sinul ati onExcepti on,

Rest art Excepti on;

public final void trigger ();

public void ternminate ();

protected SimulationEntity ();

protected void Wait (double waitTine) throws SinulationException,
Rest art Excepti on, |nterruptedException;

protected void WaitFor (SinulationEntity controller, boolean reAct)
throws Sinul ati onException, RestartException,
I nterrupt edExcepti on;
protected void WaitFor (SinulationEntity controller)
throws Sinul ati onException, RestartException, |InterruptedException;

protected void WaitForTrigger (TriggerQeue _queue)
throws Sinul ati onException, RestartException, |InterruptedException;

protected void Wit For Semaphore (Semaphore _sem) throws RestartException;

}s

7.13 Trigger Queue

package arjuna. JavaSi m Si mul ati on;
public class TriggerQeue

{
public TriggerQeue ();
public void finalize ();

public synchronized void triggerFirst (bool ean setTrigger)
t hr ows NoSuchEl ement Excepti on;
public synchronized void triggerFirst () throws NoSuchEl enent Excepti on;

public synchronized void triggerAl () throws NoSuchEl enent Excepti on;
1
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7.14 Semaphore

package arjuna. JavaSi m Si mul ati on;

public class SemaphoreCQut conme

{
static final public int DONE = O;
static final public int NOTDONE = 1;
static final public int WOULD BLOCK = 2;
I
public class Semaphore
{
public Semaphore ();
public Semaphore (| ong numnber);
public synchronized | ong NunmberWaiting ();
public synchronized int Get (SinulationEntity toWit)
throws Restart Exception;
public synchronized int TryGet (SinulationEntity toWit)
throws Restart Exception;
public synchronized int Release ();
1
7.15 Mean

package arjuna.JavaSim Statistics;

public class Mean

E:)ublic Mean ();

publ i
publ i
publ i
publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
1

c

OO0 0O0

voi d setVal ue (doubl e value) throws ||l egal Argument Excepti on;
void reset ();

i nt nunmber O Sanpl es ();
double nmin ();
doubl e max ();
doubl e sum ();
doubl e nean ();

bool ean saveState (String fileName) throws | OException;
bool ean saveState (DataCQutputStream oFile) throws | OException;

bool ean restoreState (String fil eNanme) throws Fil eNot FoundExcepti on,
| OExcepti on;
bool ean restoreState (DatalnputStreamiFile) throws | OException;

void print ();
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7.16 Variance

package arjuna. JavaSim Statistics;

public class Variance extends Mean

public Variance ();

public void setValue (double value) throws Il egal Argunment Excepti on
public void reset ();

public doubl e variance ();

public double stdDev ();

public doubl e confidence (double val ue);

public void print ();

public bool ean saveState (String fileNane) throws | OException
public bool ean saveState (DataCutputStreamoFile) throws | OException

public boolean restoreState (String fileNane) throws FileNot FoundException
| OExcepti on;
public bool ean restoreState (DatalnputStreamiFile) throws | OException

}s

7.17 TimeVariance

package arjuna. JavaSim Statistics;

public class TineVariance extends Variance

public TinmeVariance ();

public void reset ();

public void setValue (double value) throws ||l egal Argunment Excepti on
public doubl e tinmeAverage ();

public bool ean saveState (String fileNane) throws | OException
public bool ean saveState (DataCutputStreamoFile) throws | OException

public boolean restoreState (String fileNane) throws FileNot FoundException
| OExcepti on;
public bool ean restoreState (DatalnputStreamiFile) throws | OException

}s
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7.18 PrecisionHistogram

package arjuna. JavaSim Statistics;

public class PrecisionHi stogram extends Variance

public PrecisionH stogram ();

publ i
publ i
publ i
publ i
publ i
publ i

publ i
publ i

publ i
publ i

publ i
1

c

c

void finalize ();
voi d setVal ue (doubl e value) throws || egal Argument Excepti on;
void reset ();
| ong nunber Of Buckets ();
doubl e sizeByl ndex (long index) throws StatisticsException,
Il egal Argunent Excepti on;

doubl e si zeByNane (double name) throws II1egal Argument Excepti on;

bool ean saveState (String fileNanme) throws | OException;
bool ean saveState (DataCQutputStream oFile) throws | OException;

bool ean restoreState (String fil eNanme) throws Fil eNot FoundExcepti on,
| OExcepti on;
bool ean restoreState (DatalnputStreamiFile) throws | OException;

void print ();

7.19 Histogram

package arjuna.JavaSim Stati stics;

publ i

L
publ i
publ i

publ i

publ i
publ i

publ i
publ i

publ i
1

c

C
C

c

cl ass Hi stogram extends PrecisionHi stogram

Hi st ogram (|1 ong maxl ndex, int mergeChoice);
Hi st ogram (| ong maxl| ndex);

voi d setVal ue (double value) throws II1egal Argunent Excepti on;

bool ean saveState (String fil eNane) throws | OExcepti on;
bool ean saveState (DataQutputStreamoFile) throws | OException;

bool ean restoreState (String fil eNane) throws Fil eNot FoundExcepti on,
| OExcepti on;
bool ean restoreState (Datal nputStreamiFile) throws | OException;

void print ();
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7.20 SimpleHistogram

package arjuna. JavaSim Statistics;
public class SinpleH stogram extends Precisi onH stogram

public SinpleH stogram (double m n, double max, |ong nbuckets);
public SinpleH stogram (double nmin, double rmax, double w);

public void setValue (double value) throws ||l egal Argunment Excepti on
public void reset ();

public doubl e sizeByNane (double nanme) throws |l egal Argunment Exception
public double Wdth ();

public void print ();

public bool ean saveState (String fileNane) throws | OException
public bool ean saveState (DataCutputStreamoFile) throws | OException

public boolean restoreState (String fileNane) throws FileNot FoundException
| OExcepti on;
public bool ean restoreState (DatalnputStreamiFile) throws | OException

}s

7.21 Quantile

package arjuna. JavaSim Statistics;
public class Quantile extends PrecisionHi stogram

{
public Quantile ();
public Quantile (double g) throws |1l egal Argunment Excepti on

public doubl e getValue ();
public double range ();

public void print ();
}i

7.22 StatisticsException

package arjuna.JavaSim Statistics;

public class StatisticsException extends Exception
{

public StatisticsException ();

public StatisticsException (String s);
1
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