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1. Preface

JavaSim is a Java implementation of the original C++SIM simulation toolkit, which was
developed as a direct consequence of research conducted within the scope of the Arjuna
project [8]. Therefore, it shares many of the same requirements:

• easy to learn and use: the interface to the simulation library should be easy to
understand.

• correct abstraction: existing Java programmers should not find the simulation
paradigm in conflict with the programming paradigm presented by Java. Simulation
programmers used to other environments should find the transition to JavaSim
straightforward.

• flexible and extensible: it should be relatively easy for anyone to add new
functionality to the system, such as new distribution functions.

• efficiency: the system should be efficient and produce efficient simulation runs.
Simulation packages which we have experience of tended to be extremely slow and
consume large amounts of system resources.

These requirements were realised in the following design decisions:

• the discrete-event process based simulation facilities provided by SIMULA [1][2]
and its simulation classes and libraries have a considerable experience and user
community which have found them to be successful for a wide variety of
simulations. In later versions of the system additional simulation classes were added
which provide extra functionality.1

• inheritance was to be used throughout the design to even a greater extent than is
already provided in SIMULA. This enables JavaSim to be more flexible and
extensible, allowing new functionality to be added without affecting the overall
system structure. For example, our I/O facilities, random number generators and
probability distribution functions are entirely object-oriented, relying on inheritance
to specialise their behaviour.

1.1 Availability

JavaSim has been tested with JDK 1.0.2 and 1.1.x on Solaris, linux, and Windows 95/NT 4.0.

Technical questions about JavaSim can be sent to M.C.Little@ncl.ac.uk.

                                                

1It is not necessary for the reader to know anything about the SIMULA programming language or its simulation
classes, but such knowledge would aid in the understanding of the concepts and classes presented within.
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2. Introduction

This manual is not intended as a tutorial on the concepts of simulation in general, but rather
how to write simulations in the JavaSim system. However, in order to be able to do this
certain key simulation concepts will be briefly described. The interested reader is referred to
[6] for detailed descriptions of these concepts and for further discussions on simulation
modelling.

2.1 Simulation models

To model a system is to replace it by something which is:

• simpler and/or easier to study.
• equivalent to the original in all important respects.

Therefore, before constructing the actual simulation, it is first necessary to abstract from the
real system those components and their interactions that are considered important for the
actual model. Building a simulation system model involves making certain simplifying
assumptions to aid in the actual implementation and study of the simulation (without such
simplifications the model would be as complex as the system it is meant to be simulating).
However, the accuracy of the results obtained from the simulation depend upon how valid the
initial assumptions are. For example, when considering the trajectory of a projectile through
the atmosphere, the friction due to the air molecules is usually ignored. This assumption is
valid only within certain boundaries: if the size of the projectile is on the same scale as the air
molecules and its speed is sufficiently small then friction plays a significant role in its
movement.

Thus, the first step towards building a simulation model of a system is to determine exactly
what are the important features which are to be measured, and what characteristics of the
system have an affect on them. Any boundary conditions for the simulation (e.g., size of
projectile) should be considered at the same time in order to simplify this procedure. Building
a final model can often take several phases, where results from the initial model are compared
with those obtained from the real system to determine their accuracy. Any discrepancies are
taken into account by possibly adding new components to the simulation until, within certain
error boundaries, the simulation results match those from the real system.

2.2 Terminology

The system components chosen for the simulation are termed simulation entities. Associated
with each entity in the simulation are zero or more attributes that describe the state of the
entity and which may vary during the course of the simulation. The interaction of entities and
the changes they cause in the system state are termed events.

The collection of these component attributes at any given time t defines the system state at t.
In general, the system state can take any of a variety of values, and a given simulation run
results in one realisation of a set of these values (the operation path) over the observation
period.
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2.3 Categories of simulation models

There are three categories of simulation model, described by the way in which the system
state changes as a function of time:

• Continuous time: is one whose state varies continuously with time; such systems are
usually described by sets of differential equations.

• Discrete time: the system is considered only at selected moments in time (the
observation points). These moments are typically evenly spaced. Some economics
models are examples of this, where economics data becomes available at fixed
intervals. Changes in state are noticed only at observation points. By choosing a
suitably small interval between observation points, a continuous time simulation can
be approximated by a discrete time simulation.

• Continuous time-discrete event: the time parameter is (conceptually) continuous and
the observation period is a real interval, usually starting at zero for simplicity. The
operation path is completely determined by the sequence of event times (which need
not be evenly spaced and can be of arbitrary increments) and by the discrete changes
in the system state which take place at these times (i.e., the interactions of the
events). In between consecutive event times the system state may vary continuously.
Although it is possible to model the passage of real time by suitable event timing,
this is not necessary for a discrete event system: the simulation model can advance
its own internal time directly from one discrete event to another, taking any
appropriate action to advance the state accordingly.

It is this latter category of simulation modelling that JavaSim supports. Examples of discrete-
event simulations are most queuing problems: entities (e.g., customers in a bank) arrive
according to a given distribution and change the system state instantaneously (e.g., the
number of customers in the queue). The operation paths for this system are step functions:
they jump up (or down) by one when a customer joins (or leaves) the queue.

2.4 Event scheduling

Given that a simulation consists of a series of interacting events (the operation path), a
simulator can be defined as that program devoted to the generation of operation paths. The
simulator allows the creation of events and controls their interactions according to a set of
rules, using an internal “clock” to keep track of the passage of (simulation) time.

It maintains an event list, which indicates which events are to be scheduled for execution at
specific simulation times. Events are executed according to their simulation times. There are
two approaches to the way in which a simulator can schedule events to produce an operation
path:

• event-oriented: there is a procedure associated with each type of event in the system:
it performs the action required to handle that type of event and it is invoked every
time such an event occurs. In an event-oriented approach, an operation path is
obtained by taking a global view of everything that happens in the system; the
manipulation of events is explicit.

• process-oriented: an operation path is obtained by the interacting of a number of
processes running in parallel. The management of events is implicit in the
management of the processes. The simulation system provides primitives for placing
processes at particular points on the event list, removing and re-scheduling them.
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The process-oriented approach best fits with the object-oriented paradigm which we want to
present to the programmer of JavaSim. As in SIMULA, simulation processes then become
active objects which interact with each other through message passing and the simulation
primitives. Refinements of these objects can then be obtained by inheriting from them and
redefining the appropriate methods.
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3. Basic simulation classes

This chapter describes the core elements of the JavaSim simulation system. It is not intended
as a tutorial on Java, and basic knowledge of the language is assumed. Note, all of the classes
described in this section can be found in the arjuna.JavaSim.Simulation package.

3.1 The simulation scheduler

Chapter 2 described the event list and how simulation entities (processes) are executed
according to their position on the event list (i.e., with increasing simulation time). In JavaSim,
as in SIMULA, simulation processes are managed by a scheduler and are placed on a
scheduler queue (the event list). Processes are executed in pseudo-parallel, i.e., only one
process executes at any instance of real time, but many processes may execute concurrently at
any instance of simulation time. The simulation clock is only advanced when all processes
have been executed for the current instance of simulation time.

Inactive processes are placed on to the scheduler queue, and when the current active process
yields control to the scheduler (either because it has finished or been placed back onto the
scheduler queue), the scheduler removes the process at the head of the queue and re-activates
it.2 When the scheduler queue is empty, i.e., there are no further processes left to execute, the
scheduler terminates the simulation.

t1 t2 t2 t3

t0

Active Process

Scheduler

Scheduler Queue

Figure 1: Scheduler-Process Interaction

As Figure 1 shows, the scheduler co-ordinates the entire simulation run, effectively
monitoring the active and passive processes to enable it to determine when, and which,
process to activate next. A simulation application cannot affect the scheduler directly, but can
do so only indirectly through modifications of the scheduler queue.

Note: the scheduler queue can be structured in a variety of ways, including a linear list or a
tree. The implementation of the queue can depend upon the type of simulation being
conducted. For example, a simulation which involves many (concurrent) processes would
suffer from using a linear ordered queue which would typically have insertion and removal
routines with overheads proportional to the number of entries in the queue. However, a linear

                                                

2In SIMULA the currently active process is not removed from the head of the queue.
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list may work best for a low number of simulation processes. JavaSim comes with a suite of
scheduler queue implementations which can be chosen when the system is built.

3.1.1 Scheduler class interface

The scheduler is an instance of the Scheduler class. It is the responsibility of the
application programmer to ensure that only a single instance of this class is created.

public class Scheduler
{
    public static double CurrentTime ();

    public static synchronized void reset ();
    public static synchronized boolean simulationReset ();

    public static synchronized void startSimulation ();
};

The scheduler maintains the simulation clock, and the current value of this clock is obtained
by invoking the CurrentTime() method.

To enable multiple simulation runs to occur within a single application, it is possible to reset
the scheduler and simulation clock by calling the reset() method. This causes the
scheduler to remove all processes (simulation objects) currently registered on the scheduler
queue and to invoke a class specific method on each of them which resets their states
(detailed in the next section). Once this is finished the simulation is ready for an additional
run. A suspended process is informed that it has been “reset” by having the method it called
to originally suspend itself (i.e., place itself on the scheduler queue) raise the
RestartSimulation exception, which the object should catch. It must then perform any
work necessary to put itself back in a state ready for restarting the simulation, and should then
suspend itself again before the simulation can be restarted (typically by calling Cancel.)

3.2 Simulation processes

As was described in the previous chapter, JavaSim supports the process-oriented approach to
simulation, where each simulation entity can be considered a separate process. Therefore in
JavaSim the entities within a simulation are represented by process objects. These are Java
objects which have an independent thread of control associated with them at creation time,
allowing them to convey the notion of activity necessary for participating in the simulation.

In keeping with the object-oriented paradigm, and to make development of process objects
simpler, classes inherit the process functionality from the appropriate base class (Process).
This class defines all of the necessary operations for the simulation system to control the
simulation entities within it, and for them to interact with it and each other.

At any point in simulation time, a process can be in one (and only one) of the following
states:

• active: the process has been removed from the head of the scheduler queue and its
actions are being executed.

• suspended: the process is on the scheduler queue, scheduled to become active at a
specified simulation time.

• passive: the process is not on the scheduler queue. Unless another process brings it
back on to the queue it will not execute any further actions.
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• terminated: the process is not on the scheduler queue and has no further actions to
execute. Once a process has been terminated it cannot be made to execute further in
the same simulation run.

A process which is either active or suspended is said to be scheduled.

3.2.1 SimulationProcess class interface

The SimulationProcess class definition is shown below. Before considering how to
build an example class derived from SimulationProcess we shall discuss the methods
which it provides.

Because the constructors are protected, it is not possible to create an instance of the
SimulationProcess class, i.e., classes must be derived from this. Processes are threaded
objects, and typically each thread package schedules execution of threads according to a
priority. By default, all processes in JavaSim are created with the same priority, but this can
be altered by calling the setPriority method of java.lang.Thread. Note, however,
that priorities have no effect on a simulation run.

public class SimulationProcess extends Thread
{
public final double Time ();
public synchronized SimulationProcess next_ev ()
                        throws SimulationException, NoSuchElementException;
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public final double evtime ();

public void ActivateBefore (SimulationProcess p)
                              throws SimulationException, RestartException;
public void ActivateAfter (SimulationProcess p) throws SimulationException,
                                                       RestartException;
public void ActivateAt (double AtTime, boolean prior)
                                   throws SimulationException,
                                          RestartException;
public void ActivateAt (double AtTime) throws SimulationException,
                                              RestartException;
public void ActivateDelay (double Delay, boolean prior)
                                   throws SimulationException,
                                          RestartException;
public void ActivateDelay (double Delay) throws SimulationException,
                                                RestartException;
public void Activate () throws SimulationException, RestartException;

public void ReActivateBefore (SimulationProcess p)
                              throws SimulationException, RestartException;
public void ReActivateAfter  (SimulationProcess p)
                              throws SimulationException, RestartException;
public void ReActivateAt (double AtTime, boolean prior)
                                   throws SimulationException,
                                          RestartException;
public void ReActivateAt (double AtTime) throws SimulationException,
                                                RestartException;
public void ReActivateDelay (double Delay, boolean prior)
                                   throws SimulationException,
                                          RestartException;
public void ReActivateDelay (double Delay) throws SimulationException,
                                                  RestartException;
public void ReActivate () throws SimulationException, RestartException;

public void Cancel () throws RestartException;
public void terminate ();
public synchronized boolean idle ();

public boolean passivated ();
public boolean terminated ();

public static SimulationProcess current () throws SimulationException;
public static double CurrentTime ();

public static void mainSuspend ();
public static void mainResume () throws SimulationException;

protected SimulationProcess ();

protected void set_evtime (double time) throws SimulationException;
protected void Hold (double t) throws SimulationException,
                                      RestartException;
protected void Passivate () throws RestartException;

protected void Suspend () throws RestartException;
protected void Resume ();
};

There are five ways to activate a currently passive process, which results in it being brought
to the correct position in the scheduler queue corresponding to its associated simulation time.
If this is the head of the queue then it will become the active process.
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• Activate(): this activates the process at the current simulation time.
• ActivateBefore(SimulationProcess proc): this positions the process

in the scheduler queue before proc, and gives it the same simulation time. If proc
is not present then a SimulationException will be thrown.

• ActivateAfter(SimulationProcess proc): this positions the process in
the scheduler queue after proc, and gives it the same simulation time. If proc is
not present then a SimulationException will be thrown.

• ActivateAt(double AtTime, boolean prior): the process is inserted
into the scheduler queue at the position corresponding to the simulation time
specified by AtTime. The default for this time is the current simulation time. The
prior parameter is used to determine whether this process should be inserted
before or after any processes with the same simulation time which may already be
present in the queue. The default is false.

• ActivateDelay(double AtTime, boolean prior): the process is
activated after a specified delay (AtTime). The process is inserted into the queue
with the new simulation time, and the prior parameter is used to determine its
ordering with respect to other processes in the queue with the same time. The default
is false.

There are correspondingly five ReActivate methods, which work on either passive or
scheduled processes. These will not be described in detail as they have similar signatures to
their Activate counterparts and work in the same way.

Hold(double period) schedules the currently active process for re-activation after the
simulated delay of period time. If this is invoked by the object (e.g., through a publicly
available method) when it is not the current active process then it does nothing.

evtime() returns the time at which the process is scheduled for activation.

next_ev() returns a reference to the next process to be scheduled for execution. If the
queue is empty then null is returned.

The static method current() returns a reference to the currently active process.

The current simulation time can be obtained by using either the CurrentTime() or
Time() methods. The former method is static and as such can be invoked without an
instance of the SimulationProcess class.

Cancel() removes the process from the scheduler queue or suspends it if it is the currently
active process. In either case, the process is set to the passive state. Passivate() functions
similarly but only works on the currently active process, i.e., if it is invoked by the object
(e.g., through a publicly available method) when it is not the current active process then it
does nothing.

terminate() removes the process from the scheduler queue or it is suspended if it is
currently active. The process is then set to the terminated state, and can take no further part in
this simulation run.

idle() returns false if the process is either active or scheduled to become active.
Otherwise true is returned.
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passivated() and terminated() indicate whether the process is in the passive or
terminated state, respectively.

Because SimulationProcess extends the java.lang.Thread class it is necessary
for the simulation class to provide an implementation of the run method which will do the
actual work for the process. If this method ever returns then the thread is destroyed. However,
in order for JavaSim to detect the termination of the thread, the terminate() method must
be used instead.

3.2.2 Example

To illustrate how a simulation process could be implemented from the Process class we
shall consider the example of a queue of customers arriving at a bank. For this example, this
involves three classes:

• Customer: instances of this class represent the customers in the queue.
• Queue: the instance of this class (queue) is the queue into which customers are

places.
• Arrivals: this is the process which creates new customers for insertion in queue.

The implementations of the Customer and Queue classes are not important to this
example. The implementation of the Arrivals class could be:

class Arrivals : public Process
{
public:
    Arrivals () {};
    ~Arrivals () {};

    void Body ();
};

void Arrivals::Body ()
{
    for (;;)
    {
        Customer* c = new Customer();
        queue.insert(c);
        Hold(20.0);
    }
}

3.3 Starting, ending and controlling a simulation

When a SimulationProcess object is created in JavaSim it starts in the passive state,
and must be activated before it can take part in the simulation. This is typically performed by
the first process object to which control is transferred after the simulation is initially started.
When writing JavaSim applications it is typical for the main thread to create a single
controller process which is responsible for co-ordinating the entire simulation run. This
creates and activates all of the simulation entities and the scheduler, and provides methods for
suspending the main thread, thus allowing the controller object to execute, and exiting the
application. An example controller interface is shown below, and the implementations for its
methods will be described in the following sections:
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public class Controller extends SimulationProcess
{
public Controller ();

public void run ();

public void await ();
public void exit ();
};

Because Controller is a simulation process itself, it derives from Simulationrocess
and defines a run() method, which will do the actual controlling of the simulation. It also
provides the following methods:

• await(): this method is called within the main application thread and suspends it,
effectively transferring control the Controller process.

• exit(): this method is called to exit the simulation.

3.3.1 Suspending the main thread

When a threaded application is started it is important to realise that before any application
threads are created, the Java virtual machine has already created one to run the application.
This thread must be suspended before any simulation threads can run.

The await() method of Controller is responsible for suspending this thread:

public void await ()
{
    Resume();
    SimulationProcess.mainSuspend();
}

It must first resume the thread associated with the Controller instance (since
Controller is a SimulationProcess it starts in the passive state). This thread does
not execute until the main thread is suspended by the call to the static mainSuspend
method.

The code for main would then become:

public static void main (String[] args)
{
    Controller c = new Controller();
    c.await();
}

3.3.2 Exiting the application

In order to exit a simulation application, the application can call System.exit. However,
if it is only necessary to resume the main thread, then this can be accomplished by using the
static mainResume method of the SimulationProcess class. Once the main thread has
been resumed, it will continue to execute from the point it was suspended. In the example
above, this would be from within the await method. The thread which calls mainResume
can then suspend or terminate itself, depending upon the application requirements.
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public void exit ()
{
    if (resumeMainRequired)
    {
        SimulationProcess.mainResume();
        Suspend();
    }
    else
        System.exit(0);
}

3.3.3 Controlling the simulation

The controller’s body creates and activates the other simulation entities and the scheduler, and
controls the overall simulation (e.g., resetting the system between consecutive runs).

public void run ()
{
    sc = new Scheduler();

    // create and activate any other simulation entities

    sc->Resume();  // we must create a scheduler for the simulation to run

    // execute the simulation

    // print results

    sc->Suspend();  // suspend scheduler

    // suspend simulation entities

    Thread_Type::mainResume();
}

The final call to mainResume prevents run() from exiting, which we must do to ensure
the application is portable between thread implementations.

3.4 Resetting a simulation

Resetting a simulation involves resetting all of the objects involved in it which will be
required for subsequent runs. When the reset method is invoked on the Scheduler, this causes
the current simulation run to be terminated, and all simulation objects which are currently
suspended on the scheduler queue will be woken and the RestartException will be
thrown to each. Any objects which are required to participate within a new simulation run
must catch this exception, reset themselves to a state consistent with the start of another
simulation, and then become suspended, to await the restart of the simulation.
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3.4.1 Example

If we take the Arrivals example above and add a reset method then the code could be:

public class Arrivals extends SimulationProcess
{
public void run ()
{
    for (;;)
    {
        try
        {
            for (;;)
            {
                Customer c = new Customer();
                queue.insert(c);

                Hold(20.0);
            }
        }
        catch (RestartException e)
        {
        }
    }
}
};
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4. Distribution Functions

Many of the aspects of the real world which a simulation attempts to model have properties
which correspond to various distribution functions, e.g., inter-arrival rates of customers at a
bank queue. Therefore, simulation studies require sources of random numbers. Ideally these
sources should produce an endless stream of such numbers, but to do so either requires
specialised hardware or the ability to store an infinite (large) table of such numbers generated
in advance.

Without such aids, which are either impractical or not generally available, the alternative is to
use numerical algorithms. No deterministic algorithm can produce a sequence of numbers that
would have all of the properties of a truly random sequence [3]. However, for all practical
purposes it is only necessary that the numbers produced appear random, i.e., pass certain
statistical tests for randomness. Although these generators produce pseudo-random numbers,
we continue to call the random number generators.

The starting point for generating arbitrary distribution functions is to produce a standard
uniform distribution. As we shall see, all other distributions can be produced based upon this.
(Interested readers are referred to [6] for a more complete treatment of this topic). All of the
distribution functions in JavaSim rely upon inheritance to specialise the behaviour obtained
from the uniform distribution class. These classes can be found in the
arjuna.JavaSim.Distributions package.

4.1 RandomStream

The actual uniform distribution class is called RandomStream. This returns a series of
random numbers uniformly distributed between 0 and 1. We experimented with several
random number generators before settling on a shuffle of a multiplicative generator with a
linear congruential generator, which provides a reasonably uniform stream of pseudo-random
numbers.

public abstract class RandomStream
{
public abstract double getNumber () throws IOException,
ArithmeticException;

public final double Error ();

protected RandomStream ();
protected RandomStream (long MGSeed, long LCGSeed);

protected final double Uniform ();
};

The multiplicative generator uses the following algorithm3:

Y[i+1] = Y[i] * 55 mod 226

, where the period is 224, and the initial seed must be odd.

                                                

3Thanks to Professor I. Mitrani for his help in developing this.
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The Uniform() method uses the linear congruential generator (seed is LCGSeed, with the
default value of 1878892440L) based on the algorithm in [4], and the results of this are
shuffled with the multiplicative generator (see is MGSeed, with a default value of 772531L)
as suggested by Maclaren and Marsaglia [3], to obtain a sufficiently uniform random
distribution, which is then returned.

The Error() method returns a chi-square error measure on the uniform distribution
function.

By abstract method getNumber must be provided by derived classes, and is used to obtain a
uniform means of accessing random numbers.

The RandomStream class returns a large sequence of random numbers, whose period is
2^24. However, unless the seeds are modified when each random distribution class is created,
the starting position in this sequence will always be the same, i.e., the same sequence of
numbers will be obtained. To prevent this, each class derived from RandomStream has an
additional parameter for one of its constructors which indicates the offset in this sequence
from which to begin sampling.

4.2 UniformStream

The UniformStream class inherits from RandomStream and returns random numbers
uniformly distributed over a range specified when the instance is created.

public class UniformStream extends RandomStream
{
public UniformStream (double lo, double hi);
public UniformStream (double lo, double hi, int StreamSelect);
public UniformStream (double lo, double hi, int StreamSelect,
                      long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

The range covers the interval specified by lo and hi. StreamSelect indicates the offset
in the random number sequence to begin sampling, and MGSeed and LCGSeed can be used
to modify the seed values used by the RandomStream class.

4.3 ExponentialStream

The ExponentialStream class returns an exponentially distributed stream of random
numbers with mean value specified by mean.

public class ExponentialStream extends RandomStream
{
public ExponentialStream (double mean);
public ExponentialStream (double mean, int StreamSelect);
public ExponentialStream (double mean, int StreamSelect,

  long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};



The JavaSim User’s Manuals

StreamSelect indicates the offset in the random number sequence to begin sampling, and
MGSeed and LCGSeed can be used to modify the seed values used by the RandomStream
class.

4.4 ErlangStream

ErlangStream returns an erlang distribution with mean mean and standard deviation sd.

public class ErlangStream extends RandomStream
{
public ErlangStream (double mean, double sd);
public ErlangStream (double mean, double sd, int StreamSelect);
public ErlangStream (double mean, double sd, int StreamSelect,
           long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

StreamSelect indicates the offset in the random number sequence to begin sampling, and
MGSeed and LCGSeed can be used to modify the seed values used by the RandomStream
class.

4.5 HyperExponentialStream

The HyperExponential class returns a hyper-exponential distribution of random
numbers, with mean mean and standard deviation sd.

public class HyperExponentialStream extends RandomStream
{
public HyperExponentialStream (double mean, double sd);
public HyperExponentialStream (double mean, double sd, int StreamSelect);
public HyperExponentialStream (double mean, double sd, int StreamSelect,

       long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

StreamSelect indicates the offset in the random number sequence to begin sampling, and
MGSeed and LCGSeed can be used to modify the seed values used by the RandomStream
class.

4.6 NormalStream

NormalStream returns a normal distribution of random numbers, with mean mean and
standard deviation sd. operator() uses the polar method due to Box, Muller, and
Marsaglia [3].

public class NormalStream extends RandomStream
{
public NormalStream (double mean, double sd);
public NormalStream (double mean, double sd, int StreamSelect);
public NormalStream (double mean, double sd, int StreamSelect,

         long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};
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StreamSelect indicates the offset in the random number sequence to begin sampling, and
MGSeed and LCGSeed can be used to modify the seed values used by the RandomStream
class.

4.7 Draw

The Draw class is the exception to the inheritance rule, instead using RandomStream
through delegation (for historical reasons). This returns true with the probability prob, and
false otherwise.

public class Draw
{
public Draw (double p);
public Draw (double p, int StreamSelect);
public Draw (double p, int StreamSelect, long MGSeed, long LCGSeed);

public boolean getBoolean () throws IOException;
};

StreamSelect indicates the offset in the random number sequence to begin sampling, and
MGSeed and LCGSeed can be used to modify the seed values used by the RandomStream
class.

4.8 Example
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5. Advanced Simulation Classes

Simulations formed by the interaction of objects derived from SimulationProcess can
be considered causal (synchronous) in nature: events occur at specific times and form a well
defined order. However, it is sometimes necessary to simulate asynchronous real world
events, e.g., processor interrupts. To do this requires finer-grained control of the scheduling
of simulation processes than it provided by the scheduler; the scheduler simply activates
according to simulation time, whereas asynchronous events may have different activation
rules, e.g., activate when another process is terminated.

The SimulationEntity class and others to be described in the following sections gives
this required level of control to the user, extending the types of simulation which are possible
with JavaSim. Asynchronous simulation processes are derived from SimulationEntity,
but the implementation enables these asynchronous process to execute in the same simulation
as SimulationProcess objects. However, because these processes are suspended and
resumed outside of the control of the scheduler, it is possible for deadlock situations to occur.
Therefore, some care must be taken when using these classes.

In addition to the active, suspended, passive and terminated states which a simulation process
can be in, asynchronous objects can also be in the following states:

• waiting: the process is suspended waiting for a specific event to occur (e.g., a
process to be terminated). The waiting process is not placed on the scheduler queue.

• interrupted: the process, which was in the waiting state, has been interrupted from
this before the condition it was awaiting occurred.

The conditions on which a process can wait, and can thus be interrupted from, are:

• time: a process can attempt to wait for a specified period of simulation time.
• process termination: a process can wait for the termination of another

SimultionEntity process before continuing execution.
• semaphore: critical regions of a simulation can be protected by semaphores, where

only a single Entity process can acquire the semaphore; other processes are
suspended until the semaphore is released.

• user specific: it is possible for other asynchronous conditions to occur which are not
covered above.

The classes to be described in this chapter can be found in the
arjuna.JavaSim.Simulation package.
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5.1 Asynchronous entities

public class SimulationEntity extends SimulationProcess
{
public void Interrupt (SimulationEntity toInterrupt, boolean immediate)
                              throws SimulationException, RestartException;
public final void trigger ();
public void terminate ();

protected SimulationEntity ();

protected void Wait (double waitTime) throws SimulationException,
                                    RestartException, InterruptedException;

protected void WaitFor (SimulationEntity controller, boolean reAct)
                                 throws SimulationException,
                                    RestartException, InterruptedException;
protected void WaitFor (SimulationEntity controller)
                                 throws SimulationException,
                                    RestartException, InterruptedException;

protected void WaitForTrigger (TriggerQueue _queue)
                                 throws SimulationException,
                                    RestartException, InterruptedException;

protected void WaitForSemaphore (Semaphore _sem) throws RestartException;
};

Because SimulationEntity is derived from SimulationProcess, all of the usual
simulation methods are available, and can be used in conjunction with those provided by the
derived class.

Interrupt(SimulationEntity toInterrupt, boolean immediate)
interrupts the asynchronous process toInterrupt, which must not be terminated and
must be in the waiting state. toInterrupt becomes the next active process (i.e., it is
moved to the head of the scheduler queue). If immediate is true then the current process is
suspended immediately; it is scheduled for reactivation at the current simulation time.
Otherwise, the current process continues to execute and can be suspended later in an
application specific way.

Because it is now possible for one process to wait for another to terminate the
terminate() method must differ from that provided by SimulationProcess. Before
the terminating process ends it moves the waiting process to the head of the scheduler queue,
and then calls SimulationProcess.terminate(). Currently only a single process
can wait on this termination condition, but this may change in future versions.

Wait(double t) is similar to Hold(double t), with the exception that the process is
moved into the waiting state as well as being placed on the scheduler queue. It is therefore
possible to interrupt this process before the wait period has elapsed. true is returned if the
process was interrupted, otherwise false is returned.

WaitFor(SimulationEntity controller, boolean reAct) suspends the
current process until controller has terminated. The process is placed in the waiting
state. If reAct is true then controller is moved to the head of the scheduler queue to
become the next activate process, otherwise (the default behaviour) the application will have
to activate controller. If the waiting process is interrupted then the method returns
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true, otherwise false. The controller and the current process must be different, i.e.,
it is not possible for a process to wait for itself.

Trigger queues are lists maintained by the simulation system of process waiting for specific
events to occur, which are outside the scope of those described above. These will be
described in the next section. WaitForTrigger(TriggerQueue queue) places the
current process on the trigger queue _queue, and passivates it. As with the previous
methods, the return value indicates whether the process was interrupted, or triggered.

In addition to trigger queues, process can wait on semaphores, allowing the creation of
monitor regions, for example. WaitForSemaphore(Semaphore sem) causes the
current process to attempt to exclusively acquire the semaphore. If this is not possible then
the process is suspended. Currently, a process which is waiting on a semaphore cannot be
interrupted, and is not placed into the waiting state. As such, when this method returns the
semaphore has been acquired.

5.2 Trigger queues

Processes waiting for the same application controlled event can be grouped together into a
TriggerQueue, as described in the previous section. When this event occurs the
application can use one of the two trigger methods to activate the queue members. This
involves placing the process(es) onto the head of the scheduler queue.

public class TriggerQueue
{
public TriggerQueue ();
public void finalize ();

public synchronized void triggerFirst (boolean setTrigger)
                                             throws NoSuchElementException;
public synchronized void triggerFirst () throws NoSuchElementException;

public synchronized void triggerAll () throws NoSuchElementException;
};

• triggerAll(): triggers all of the members on the queue.
• triggerFirst(boolean setTrigger): triggers only the head of the queue.

If setTrigger is true (the default behaviour) then the trigger() method of
the SimulationEntity object is also invoked.

If the queue is not empty when it is garbage collected by the virtual machine then all
remaining queue members will be triggered, and placed back onto the scheduler queue.
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5.3 Semaphores

Application code can be protected from simulation processes through semaphores, which are
instances of the Semaphore class.

public class SemaphoreOutcome
{
    static final public int DONE = 0;
    static final public int NOTDONE = 1;
    static final public int WOULD_BLOCK = 2;
};

public class Semaphore
{
public Semaphore ();
public Semaphore (long number);

public synchronized long NumberWaiting ();

public synchronized int Get (SimulationEntity toWait)
                                                   throws RestartException;
public synchronized int TryGet (SimulationEntity toWait)
                                                   throws RestartException;
public synchronized int Release ();
};

A semaphore can be used to restrict the number of processes which can use shared resources.
The number of shared resources available must be presented to the Semaphore when it is
created. By default, a Semaphore will assume that there is only a single resource, in which
case a semaphore is exclusively acquired by a simulation process. However, it is possible to
create a Semaphore with different resource counts.

A Semaphore can exist in one of two states:

• available: the semaphore is available to be acquired.
• unavailable: a process (or number of processes) currently has the semaphore. If

another process attempts to acquire the semaphore then it is automatically suspended
until the semaphore is available, i.e., until a resource has been freed.

To be able to manipulate semaphores, a process must be derived from the
SimulationEntity class. To obtain the semaphore, the Get(SimulationEntity
toWait) method should be used, where toWait is the calling process. If the semaphore is
unavailable then the process referenced by toWait is suspended. If the semaphore is
successfully acquired, then SemaphoreOutcome.DONE is returned, otherwise
SemaphoreOutcome.NOTDONE.

If the process wishes to attempt to acquire the semaphore but does not want to block in the
situation where the semaphore is currently unavailable, then it can use the TryGet method,
which takes the same parameter as Get. However, unlike Get, TryGet will return
SemaphoreOutcome.WOULD_BLOCK in the case where the caller would normally block
if it had called Get, i.e., the semaphore is currently in use. If the semaphore is not being used,
then TryGet will acquire it for the caller. Errors will result in
SemaphoreOutcome.NOT_DONE being returned.

When the semaphore is no longer required Release() should be called by the process
which currently has it. Successful release of the semaphore results in
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SemaphoreOutcome.DONE being returned, otherwise Semaphore.NOTDONE is
returned.

NumberWaiting() returns the number of processes currently suspended waiting for the
semaphore.

If the semaphore is garbage collected with processes waiting for it then an error message is
displayed. No further action is attempted on behalf of these waiting processes.

5.4 Example
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6. Statistical Classes

The purpose of a simulation typically involves the gathering of relevant statistical
information, e.g., the average length of time spent in a queue. JavaSim provides a number of
different classes for gathering such information. These classes can be found in the
arjuna.JavaSim.Statistics package.

6.1 Mean

This is the basic class from which others are derived, gathering statistical information on the
samples provided to it.

public class Mean
{
public Mean ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public int numberOfSamples ();
public double min ();
public double max ();
public double sum ();
public double mean ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};

New values can be supplied to the instance of the Mean class using the
setValue(double) method. The number of samples which have been give can be
obtained from numberOfSamples().

The maximum and minimum of the samples supplied can be obtained from the max() and
min() methods, respectively.

sum() returns the summation of all of the samples:

Σ Si

i=1

n

mean() returns the mean value:

Σ Si

i=1

n
1_
n

An instance of Mean can be reset between samples using the reset() method.
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If the state of a Mean object is required to be saved between simulation runs then it can be
made persistent by using either of the saveState methods. The first instance saves the
state to a file, whereas the second can be used to save the state to an instance of the
java.io.DataOutputStream class. There are likewise two corresponding ways in
which the state can be restored.

The print method simply prints to System.out the current state of the object.

6.2 Variance

This class is derived from Mean, and in addition to providing the above mentioned
functionality also provides the following:

public class Variance extends Mean
{
public Variance ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public double variance ();
public double stdDev ();
public double confidence (double value);

public void print ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};

variance() returns the variance of the samples:

Σ
i=1

n
1_
n (Si-Mean())

2

stdDev() returns the standard deviation of the samples, which is the square root of the
variance.

6.3 TimeVariance

The TimeVariance class makes it possible to determine how long, in terms of simulation
time, specific values were maintained. In effect, values are weighted according to the length
of time that they were held, whereas with the Variance class only the specific values are
taken into account.
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public class TimeVariance extends Variance
{
public TimeVariance ();

public void reset ();

public void setValue (double value) throws IllegalArgumentException;

public double timeAverage ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};

Whenever a value is supplied to an instance of the TimeVariance class the simulation
time at which it occurred is also noted. If a value changes, or the timeAverage() method
is invoked, then the time it has been maintained for is calculated and the statistical data is
updated.

6.4 Histograms

Mean, Variance, and TimeVariance provide a snapshot of values in the simulation.
However, histograms can yield better information about how a range of values change over
the course of a simulation run. This information can be viewed in a number of ways, but
typically it is plotted in graphical form.

A histogram typically maintains a slot for each value, or range of values, given to it. These
slots are termed buckets, and the way in which these buckets are maintained and manipulated
gives rise to a variety of different histogram implementations. The following sections detail
this variety of different histogram classes.

6.4.1 PrecisionHistogram

The PrecisionHistogram class represents the core histogram class from which all
others are derived. This class keeps an exact tally of all values given to it, i.e., a bucket is
created for each value. Although buckets are only created when requires, over the course of a
simulation this can still utilise a large amount of resources, and so other, less precise,
histogram classes are provided.
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public class PrecisionHistogram extends Variance
{
public PrecisionHistogram ();

public void finalize ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public long numberOfBuckets ();

public double sizeByIndex (long index) throws StatisticsException,
                                              IllegalArgumentException;
public double sizeByName (double name) throws IllegalArgumentException;

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};

As with the Variance class from which it is derived, and whose methods are obviously
available, values can be supplied to the histogram through the setValue(double)
method.

The number of buckets maintained by the histogram can be obtained from the
numberOfBuckets() method. Each bucket is uniquely named by the values it contains,
and can also be accessed by its index in the entire list of buckets.

There are therefore two ways of getting the number of entries in a bucket:

• by the index number of the bucket: sizeByIndex(long index).
• by the unique name of the bucket: sizeByName(double name).

If the bucket does not exist then each of these methods throws
IllegalArgumentException.

It is possible to output the contents of the histogram to standard output using the
print()method.

6.4.2 Histogram

The problem with the PrecisionHistogram class is that it can use up a lot of system
resources, especially over the course of a long simulation. Histogram attempts to alleviate
this by presenting a histogram which is less accurate, but consumes less resources. Instead of
maintaining a bucket for each individual value, it keeps a fixed number of buckets. Initially
each bucket will store separate values as in the PrecisionHistogram, but when the
number of required buckets would exceed the specified maximum number it merges pairs of
buckets, thus reducing their total. The policy used when merging buckets it set on a per
instance basis when created. Current policies are:

• ACCUMULATE: create a new bucket with the same name as the largest of the two
buckets, and it has the sum of the two old bucket entries as its entry number.
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• MEAN: create a new bucket with the name as the mean of the two old buckets, and it
has the sum of the two old bucket entries as its entry number.

• MAX: create a new bucket with the name as the largest of the two buckets, and it has
the same number of entries.

• MIN: create a new bucket with the name as the smallest of the two old buckets, and
it has the same number of entries.

public class Histogram extends PrecisionHistogram
{
public Histogram (long maxIndex, int mergeChoice);
public Histogram (long maxIndex);

public void setValue (double value) throws IllegalArgumentException;

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};

When an instance of Histogram is created, the maximum number of allowed buckets must
be specified. The merging algorithm can also be provided, with the default being the MEAN
policy.

6.4.3 SimpleHistogram

As with the Histogram class above, SimpleHistogram keeps the number of assigned
buckets to a minimum. However, it does this by pre-creating the buckets when it is created,
i.e., the number of required buckets must be provided at the start. A width is the assigned for
each bucket, and whenever a value if given to the histogram class it is placed into the bucket
whose width it falls within.

public class SimpleHistogram extends PrecisionHistogram
{
public SimpleHistogram (double min, double max, long nbuckets);
public SimpleHistogram (double min, double max, double w);

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public double sizeByName (double name) throws IllegalArgumentException;

public double Width ();

public void print ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};

When the class is instantiated, the range of values it will receive must be provided. Then,
either the width of each bucket or the actual number of buckets can be given. If the width is
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provided, then the histogram automatically calculates the number of buckets, otherwise it
calculates the width for each bucket by equally dividing the range between each bucket.

The values of a bucket can be obtained from the sizeByName method.

The width of each bucket is provided by the Width method.

6.4.4 Quantile

The Quantile class provides a means of obtaining the p-quantile of a distribution of values,
i.e., the value below which p-percent of the distribution lies.

public class Quantile extends PrecisionHistogram
{
public Quantile ();
public Quantile (double q) throws IllegalArgumentException;

public double getValue ();
public double range ();

public void print ();
};

The p-quantile probability range must be specified when the object is instantiated, and can be
obtained via the range method.

The actual quantile value is provided by getValue method.
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7. JavaSim classes

For convenience, in this section we shall include the JavaSim classes which programmers will
use when constructing simulations.

7.1 Scheduler

package arjuna.JavaSim.Simulation;

public class Scheduler
{
    public static double CurrentTime ();

    public static synchronized void reset ();
    public static synchronized boolean simulationReset ();

    public static synchronized void startSimulation ();
};
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7.2 SimulationProcess

package arjuna.JavaSim.Simulation;

public class SimulationProcess extends Thread
{
public final double Time ();
public synchronized SimulationProcess next_ev ()throws SimulationException,
                                                    NoSuchElementException;

public final double evtime ();

public void ActivateBefore (SimulationProcess p)throws SimulationException,
                                                        RestartException;
public void ActivateAfter (SimulationProcess p) throws SimulationException,
                                                       RestartException;
public void ActivateAt (double AtTime, boolean prior)
                              throws SimulationException, RestartException;
public void ActivateAt (double AtTime) throws SimulationException,
                                              RestartException;
public void ActivateDelay (double Delay, boolean prior)
                              throws SimulationException, RestartException;
public void ActivateDelay (double Delay) throws SimulationException,
                                                RestartException;
public void Activate () throws SimulationException, RestartException;

public void ReActivateBefore (SimulationProcess p)
                              throws SimulationException, RestartException;
public void ReActivateAfter  (SimulationProcess p)
                              throws SimulationException, RestartException;
public void ReActivateAt (double AtTime, boolean prior)
                              throws SimulationException, RestartException;
public void ReActivateAt (double AtTime) throws SimulationException,
                                                RestartException;
public void ReActivateDelay (double Delay, boolean prior)
                              throws SimulationException, RestartException;
public void ReActivateDelay (double Delay) throws SimulationException,
                                                  RestartException;
public void ReActivate () throws SimulationException, RestartException;

public void Cancel () throws RestartException;
public void terminate ();
public synchronized boolean idle ();

public boolean passivated ();
public boolean terminated ();

public static SimulationProcess current () throws SimulationException;
public static double CurrentTime ();

public static void mainSuspend ();
public static void mainResume () throws SimulationException;

protected SimulationProcess ();

protected void set_evtime (double time) throws SimulationException;
protected void Hold (double t)throws SimulationException, RestartException;
protected void Passivate () throws RestartException;
};
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7.3 SimulationException

package arjuna.JavaSim.Simulation;

public class SimulationException extends Exception
{
public SimulationException ();
public SimulationException (String s);
};

7.4 RestartException

package arjuna.JavaSim.Simulation;

public class RestartException extends Exception
{
public RestartException ();
public RestartException (String s);
};

7.5 RandomStream

package arjuna.JavaSim.Distributions;

public abstract class RandomStream
{
public abstract double getNumber () throws IOException,
ArithmeticException;

public final double Error ();

protected RandomStream ();
protected RandomStream (long MGSeed, long LCGSeed);

protected final double Uniform ();
};

7.6 UniformStream

package arjuna.JavaSim.Distributions;

public class UniformStream extends RandomStream
{
public UniformStream (double lo, double hi);
public UniformStream (double lo, double hi, int StreamSelect);
public UniformStream (double lo, double hi, int StreamSelect,
                      long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};
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7.7 ExponentialStream

package arjuna.JavaSim.Distributions;

public class ExponentialStream extends RandomStream
{
public ExponentialStream (double m);
public ExponentialStream (double m, int StreamSelect);
public ExponentialStream (double m, int StreamSelect,

  long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

7.8 ErlangStream

package arjuna.JavaSim.Distributions;

public class ErlangStream extends RandomStream
{
public ErlangStream (double mean, double sd);
public ErlangStream (double mean, double sd, int StreamSelect);
public ErlangStream (double mean, double sd, int StreamSelect,
           long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

7.9 HyperExponentialStream

package arjuna.JavaSim.Distributions;

public class HyperExponentialStream extends RandomStream
{
public HyperExponentialStream (double mean, double sd);
public HyperExponentialStream (double mean, double sd, int StreamSelect);
public HyperExponentialStream (double mean, double sd, int StreamSelect,

       long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};

7.10 NormalStream

package arjuna.JavaSim.Distributions;

public class NormalStream extends RandomStream
{
public NormalStream (double mean, double sd);
public NormalStream (double mean, double sd, int StreamSelect);
public NormalStream (double mean, double sd, int StreamSelect,

         long MGSeed, long LCGSeed);

public double getNumber () throws IOException, ArithmeticException;
};
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7.11 Draw

package arjuna.JavaSim.Distributions;

public class Draw
{
public Draw (double p);
public Draw (double p, int StreamSelect);
public Draw (double p, int StreamSelect, long MGSeed, long LCGSeed);

public boolean getBoolean () throws IOException;
};

7.12 SimulationEntity

package arjuna.JavaSim.Simulation;

public class SimulationEntity extends SimulationProcess
{
public void Interrupt (SimulationEntity toInterrupt, boolean immediate)
                                   throws SimulationException,
RestartException;
public final void trigger ();
public void terminate ();

protected SimulationEntity ();

protected void Wait (double waitTime) throws SimulationException,
                                    RestartException, InterruptedException;

protected void WaitFor (SimulationEntity controller, boolean reAct)
             throws SimulationException, RestartException,
InterruptedException;
protected void WaitFor (SimulationEntity controller)
        throws SimulationException, RestartException, InterruptedException;

protected void WaitForTrigger (TriggerQueue _queue)
        throws SimulationException, RestartException, InterruptedException;

protected void WaitForSemaphore (Semaphore _sem) throws RestartException;
};

7.13 TriggerQueue

package arjuna.JavaSim.Simulation;

public class TriggerQueue
{
public TriggerQueue ();
public void finalize ();

public synchronized void triggerFirst (boolean setTrigger)
                                             throws NoSuchElementException;
public synchronized void triggerFirst () throws NoSuchElementException;

public synchronized void triggerAll () throws NoSuchElementException;
};
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7.14 Semaphore

package arjuna.JavaSim.Simulation;

public class SemaphoreOutcome
{
    static final public int DONE = 0;
    static final public int NOTDONE = 1;
    static final public int WOULD_BLOCK = 2;
};

public class Semaphore
{
public Semaphore ();
public Semaphore (long number);

public synchronized long NumberWaiting ();

public synchronized int Get (SimulationEntity toWait)
                                                   throws RestartException;
public synchronized int TryGet (SimulationEntity toWait)
                                                   throws RestartException;
public synchronized int Release ();
};

7.15 Mean

package arjuna.JavaSim.Statistics;

public class Mean
{
public Mean ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public int numberOfSamples ();
public double min ();
public double max ();
public double sum ();
public double mean ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};
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7.16 Variance

package arjuna.JavaSim.Statistics;

public class Variance extends Mean
{
public Variance ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public double variance ();
public double stdDev ();
public double confidence (double value);

public void print ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};

7.17 TimeVariance

package arjuna.JavaSim.Statistics;

public class TimeVariance extends Variance
{
public TimeVariance ();

public void reset ();

public void setValue (double value) throws IllegalArgumentException;

public double timeAverage ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};
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7.18 PrecisionHistogram

package arjuna.JavaSim.Statistics;

public class PrecisionHistogram extends Variance
{
public PrecisionHistogram ();

public void finalize ();

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public long numberOfBuckets ();

public double sizeByIndex (long index) throws StatisticsException,
                                              IllegalArgumentException;
public double sizeByName (double name) throws IllegalArgumentException;

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};

7.19 Histogram

package arjuna.JavaSim.Statistics;

public class Histogram extends PrecisionHistogram
{
public Histogram (long maxIndex, int mergeChoice);
public Histogram (long maxIndex);

public void setValue (double value) throws IllegalArgumentException;

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;

public void print ();
};
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7.20 SimpleHistogram

package arjuna.JavaSim.Statistics;

public class SimpleHistogram extends PrecisionHistogram
{
public SimpleHistogram (double min, double max, long nbuckets);
public SimpleHistogram (double min, double max, double w);

public void setValue (double value) throws IllegalArgumentException;

public void reset ();

public double sizeByName (double name) throws IllegalArgumentException;

public double Width ();

public void print ();

public boolean saveState (String fileName) throws IOException;
public boolean saveState (DataOutputStream oFile) throws IOException;

public boolean restoreState (String fileName) throws FileNotFoundException,
                                                     IOException;
public boolean restoreState (DataInputStream iFile) throws IOException;
};

7.21 Quantile

package arjuna.JavaSim.Statistics;

public class Quantile extends PrecisionHistogram
{
public Quantile ();
public Quantile (double q) throws IllegalArgumentException;

public double getValue ();
public double range ();

public void print ();
};

7.22 StatisticsException

package arjuna.JavaSim.Statistics;

public class StatisticsException extends Exception
{
public StatisticsException ();
public StatisticsException (String s);
};
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