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In the evolution of user interfaces, keyboards were
the primary devices in text-based user interfaces,
and then the invention of the mouse brought us the
graphical user interface. What is the counterpart of

the mouse when we are trying to explore three-dimen-
sional (3-D) virtual environments (VEs)?

In many current VE applications, keyboards, mice,
wands, and joysticks are the common controlling and nav-
igating devices. However, to some extent, such mechani-
cal devices are inconvenient and unsuitable for natural and
direct interaction, because it is difficult for these devices to
supply 3-D and high degree of freedom inputs. Although
magnetic trackers are being used as sensors for 3-D inputs
in some of these devices, they are prone to magnetic inter-
ference, and they only supply global motion information.

A more convenient and natural device is desirable to
achieve more immersive interaction. The use of hand ges-
tures has become an important part of human computer
interaction (HCI) in recent years [1], [24]. To use human
hands as a natural interface device, some glove-based de-
vices have been employed to capture human hand motion

by attaching sensors to measure the joint angles and
spatial positions of hands directly. Unfortunately, such
devices are expensive and cumbersome.

Since rich visual information provides a strong cue to
infer the inner states of an object, vision-based techniques
provide promising alternatives to capture human hand
motion. At the same time, vision systems could be very
cost efficient and noninvasive. These facts serve as the mo-
tivating forces for research in the modeling, analysis, ani-
mation, and recognition of hand gestures.

According to different application scenarios, hand ges-
tures can be classified into several categories: conversa-
tional gestures, controlling gestures, manipulative
gestures and communicative gestures. Sign language is an
important case of communicative gestures. Because sign
languages are highly structured [33], [37], they are very
suitable as a test-bed for vision algorithms [33], [37].
Controlling gestures are the focus of current research in
vision-based interfaces [6], [17], [23], [26], [35], [45].
Virtual objects can be located by analyzing pointing ges-
tures [24]. Some display-control applications demon-
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strate the potential of pointing gestures in HCI [6].
Another controlling gesture is the navigating gesture. In-
stead of using wands, the orientation of hands can be cap-
tured as a 3-D directional input to navigate in VEs [23].
The manipulative gestures can serve as a natural way to
interact with virtual objects [32]. Tele-operation and vir-
tual assembly are good examples of such applications.
Conversational gestures are subtle in human interaction,
which requires careful psychological studies. Vi-
sion-based motion capturing techniques can help those
studies [5], [22].

There have been many implemented application sys-
tems in such domains as VEs, smart surveillance, HCI,
teleconferencing, and sign language translation. Zeller et
al. [45] presented a VE for a very large scale biomolecular
modeling application. This system permits interactive
modeling of biopolymers by linking a 3-D molecular
graphics and molecular dynamics simulation program.
Hand gestures serve as the input and controlling device of
the virtual environment. Pavlovic and Berry [23] inte-
grated controlling gestures into the VE BattleField, in
which hand gestures are used not only for navigating the
VE, but also as an interactive device to select and move
the virtual objects in the BattleField. Ju et al. [17] devel-
oped an automatic system for analyzing and annotating
video sequences of technical talks. Speakers’ gestures such
as pointing or writing are automatically tracked and rec-
ognized to provide a rich annotation of the sequence that
can be used to access a condensed version of the talk.
Quek [26] presented a FingerMouse application to rec-
ognize two-dimensional (2-D) finger movements, which
are the input to the desktop. Crowley and Coutaz [6] also
developed an application called FingerPaint to use fingers
as input devices for augmented reality. Triesch and
Maslburg [35] developed a person-independent gesture
interface on a real robot that allows the user to give simple
commands such as how to grasp an object and where to
put it. Imagawa et al. [14] implemented a bidirectional
translation system between Japanese Sign Language and
Japanese in order to help the hearing impaired communi-
cate with normal speaking people through sign language.

Analyzing hand gestures is a comprehensive task in-
volving motion modeling, motion analysis, pattern rec-
ognition, machine learning, and even psycholinguistic
studies. There are already several good review papers on

human motion analysis [12] and interpretation [24].
However, a comprehensive review of various techniques
in hand modeling, analysis, and recognition is needed.
Due to the multidisciplinary nature of this research topic,
we cannot include all the works in the literature. Rather
than function as a thorough review paper, this article
serves as a short tutorial to this research topic. In this
article, we study 3-D hand models, various articulated
motion analysis methods, and gesture recognition tech-
niques employed in current research. We conclude with
some thoughts about future research directions. We also
include some of our own research results, some of which
are shown as examples.

Hand Modeling
Human hand motion is highly articulate, because the
hand consists of many connected parts leading to com-
plex kinematics. At the same time, hand motion is also
highly constrained, which makes it difficult to model.
Usually, the hand can be modeled in several aspects such
as shape, kinematical structure, dynamics, and semantics.

Modeling the Shape
Hand shape models can be classified into several groups
such as geometrical models, physical models, and statisti-
cal models. Geometrical models are suitable for 3-D ren-
dering and hand animation applications. Moreover, they
could be employed to analyze hand motion using the ap-
proach of analysis-by-synthesis [11], [19], [32]. Both
physical models and statistical models emphasize hand
deformation. The difference is that physical models aim
for an explicit representation of deformation, while statis-
tical models characterize hand deformation implicitly by
learning from a set of examples.

Spline-based geometrical surface models represent a
surface with splines to approximate arbitrarily compli-
cated geometrical surfaces. These spline-based surface
models can be made as realistic as possible, but many pa-
rameters and control points need to be specified [19]. An
alternative is to approximate the homogeneous body
parts by simpler parameterized geometric shapes such as
generalized cylinders or super-quadrics. The advantage of
this method is that it can achieve equally good surface ap-
proximation with less complexity [32], [11]. Other than
parametric models, free-form hand models are defined on
a set of 3-D points [13]. Polygon meshes that are formed
by those 3-D points approximate the hand shape, which
is computationally efficient. For computational effi-
ciency, cardboard models could be used for visual motion
capturing. Each piece in a cardboard model is a 2-D
plane, but the joint angles could be adjusted. Examples of
different hand models are shown in Fig. 1. Cyber Scan-
ner, MRI techniques, or other space digitizers may be
used to obtain the range data directly [13]. Another way
is to reconstruct the hand model from multiple images of
different views.
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� 1. Hand models. (a) Cardboard model, (b) wireframe model,
and (c) polygon-mesh model.



Physical hand shape models emphasize the deformation
of the hand shape under the action of various forces [37].
The motion of the model is governed by Newtonian dy-
namics. The internal forces are applied to hold the shape of
the model, and the external forces are used to fit the model
to the image data. Examples are the simplex mesh model
[13] and the finite element method model [36].

Statistical hand shape models [13] learn the deforma-
tion of hand shape through a set of training examples that
can be 2-D images or range images. Mean shape and
modes of variation are found using principal component
analysis (PCA). A hand shape is generated by adding a
linear combination of some significant modes of variation
to the mean shape.

Modeling the Kinematical Structure
Figure 2 shows the skeleton of a hand. Each finger con-
sists of three joints whose names are indicated in the fig-
ure. Except for the thumb, there are 2 degrees of freedom
(DOF) for metacapophalangeal (MCP) joints, and 1
DOF for proximal interphalangeal (PIP) joints and distal
interphalangeal (DIP) joints. For simplicity, the thumb
could be modeled by a 5 DOF kinematic chain, with 2
DOF for the trapeziometacarpal (TM) and MCP joint
and 1 DOF for the interphalangeal (IP) joint. Con-
sidering global hand pose, human hand motion has
roughly 27 DOF. The challenge of hand motion analysis
lies in the fact that hand motion is highly articulate.

Each finger can be modeled by a kinematic chain, in
which the palm is its base reference frame and the finger-
tip is the end-effector. When fixing the joint length, hand
kinematics can be characterized by its joint angles. The in-
verse kinematics problem is often involved to calculate
joint angles when analyzing finger motion. Generally,
gradient-based methods can be used to solve this problem
by deriving the kinematical Jacobian [29]. There are
other alternatives in the literature such as genetic algo-
rithm [40]. However, such inverse kinematics problem is
ill-posed such that a unique solution cannot be guaran-
teed, which makes the analysis formidable.

Fortunately, natural hand motion is also highly con-
strained. One type of constraints, usually referred to as
static constraints, are the limits of the range of finger mo-
tions as a result of hand anatomy, such as 0 90°≤ ≤ °θMCP .
These constraints limit hand articulation within a bound-
ary. Another type of constraints describes the correlations
among different joints and thus reduces the dimensionality
of hand articulation. For example, the motions of the DIP
joint and PIP joint are generally not independent, and they
could be described as θ θDIP PIP= ( )2 3 from the study of
biomechanics [19], [20]. Although this constraint could
be intentionally made invalid, it is a good approximation of
natural finger motion.

Unfortunately, not all of such constraints could be
quantified in closed forms. There are few studies of finger
motion constraints in the literature. A preliminary inves-
tigation could be found in [21], in which learning tech-
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� 2. Hand skeleton structure. Generally, we can assume 2 DOF for the MCP and TM joint, and 1 DOF for all the other joints. Thus, the
hand roughly has 21 DOF for its local finger motion.



niques are employed to model the hand configurations
space directly by collecting a large set of hand motion data
[21]. The computational complexity of finger motion
analysis could be reduced significantly when considering
such motion constraints.

Modeling the Dynamics
To capture complex hand motion and recognize continu-
ous hand gestures, the dynamics and semantics of hand
motion should also be modeled.

Kalman filtering and extended Kalman filtering
(EKF) techniques are widely adopted to model the dy-
namics [32]. EKF works well for some tracking tasks.
However, it is based on small motion assumption that of-
ten fails to hold in hand motion.

Simple hand gestures can be modeled by a finite state
machine [10], but it is insufficient to represent complex
hand dynamics. Rule-based approaches can be applied to
model complex hand movements [26]. However, many
heuristics are needed to construct the rules. Considering
the similarities between sign languages and spoken lan-
guages, the hidden Markov model (HMM) and its vari-
ants are also used to model the hand dynamics [33], [38].
As a generalization of HMM, dynamic Bayesian net [23]
is another promising approach to model the hand dynam-
ics. These methods are essentially learning methods that
learn the intrinsic dynamics from a set of training data.
The knowledge of dynamics and semantics is not explic-
itly expressed in these methods but implicitly stored in the
structures of the learning models.

The learning results of these methods depend on the
training data set, structures of learning models, and train-
ing methods. One of the common problems of the learn-
ing approaches is that generalization of the learning
results largely depends on the training data. However,
obtaining the training samples is not a trivial problem.
Currently, learning dynamics (i.e., behaviors and seman-
tics) of human motion has drawn much attention from
researchers in HCI, computer vision, computer graphics,
and psychology.

Capturing Hand Motion
Hand motion capturing is finding the global and local
motion of hand movements. Several different
model-based approaches will be discussed in this section.

Formulating Hand Motion
Highly articulate human hand motion consists of the
global hand motion and local finger motion, which can be
expressed as M M M= [ , ]G L , where M is the hand mo-
tion, M G is the global motion, and M L is the local mo-
tion. Global hand motion that presents large rotation and
translation can be written as M R tG = [ , ], where R and t
are rotation and translation, respectively. One important
issue is how to track reliably the global motion in image
sequences.

Local hand motion is articulate, and self-occlusion
makes the detection and tracking local hand motion chal-
lenging. Local hand motion can be parameterized with
the set of joint angles (or hand state), M L = [ ]Θ where Θ
is the joint angle set. Consequentially, hand motion can
be expressed as M R t= [ , , ]Θ .

One possible way to analyze hand motion is the ap-
pearance-based approach, which emphasizes the analysis
of hand shapes in images [24]. However, local hand mo-
tion is very hard to estimate by this means. Another possi-
ble way is the model-based approach [11], [13], [19],
[20], [29], [32], [37], [40]. With a single calibrated cam-
era, local hand motion parameters can be estimated by fit-
ting the 3-D model to the observation images. Multiple
camera settings are helpful to deal with occlusion [20],
[29], [37]. The use of a 3-D model can largely alleviate
the problem of depth ambiguity since the structure of the
hand is included in the model.

Hand Localization
Hand localization is locating hand regions in image se-
quences. Skin color offers an effective and efficient way to
fulfill this goal. The core of color tracking is color-based
segmentation. According to the representation of color
distribution in certain color spaces, current techniques of
color tracking can be classified into two general ap-
proaches: nonparametric [16], [18], [43] and parametric
[28], [39]. Figure 3 gives an example of segmenta-
tion-based hand localization, in which the input image is
segmented by color, and hand blob is localized by group-
ing skin-color pixels.

One of the nonparametric approaches is based on color
histograms [16], [18]. Because color space is quantized by
the structure of the histogram, this technique shares the
same problem with nonparametric density estimation, in
which the level of quantization will affect the estimation.
How to select a good quantization level of the color histo-
gram is not trivial. Although nonuniform quantization
would perform better than uniform quantization, it is
much more complicated. Another nonparametric ap-
proach is proposed in [43] based on the self-organizing
map, an unsupervised clustering algorithm to approximate
color distribution. Generally, these nonparametric ap-
proaches work effectively when the quantization level is set
properly and there are sufficient data.

Parametric approaches model the color density in
parametric forms such as Gaussian distribution or Gaussi-
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constrained, which makes it
difficult to model.



an mixture models [28], [39]. Expectation-maximization
(EM) offers a way to fit probabilistic models to the obser-
vation data. The difficulty of model order selection could
be handled by heuristics [28] or cross validation.

To lead to a robust and efficient localization, besides
the color cue, hand shape and motion could also be em-
ployed for localization. One important research problem
is the integration or fusion of multiple cues [2], [33].

Selecting Image Features
To estimate the parameters of the model, some image fea-
tures should be extracted and tracked to serve as the ob-
servation of the estimators. Hand image features can be
geometric features such as points, lines, contours, and sil-
houettes [19]. Fingertip is one of the frequently used fea-
tures, because the positions of fingertips are almost
sufficient to recognize some gestures due to the highly
constrained hand motion [20]. Color markers are often
used to help track the 3-D positions of fingertips [20],
[11]. Some researchers estimate the positions and orien-
tations of fingertips by fitting a 3-D cylinder to the im-
ages [11]. Line fitting is also a frequently used technique
to detect the fingertips [29].

Capturing Hand Motion in Full DOF
To capture articulate hand motion in full DOF, both
global hand motion and local finger motion should be de-
termined from video sequences. It is a challenging prob-
lem to analyze and capture hand motion, because the
hand is highly articulate. Different methods have been
taken to approach this problem. One possible method is
the appearance-based approaches, in which 2-D deform-
able hand shape templates are used to track a moving
hand in 2-D. However, this method is insufficient to re-
cover full articulations, because it is difficult to infer fin-
ger joint angles based on appearances only.

Another possible way is the 3-D model-based ap-
proach, which takes the advantages of a priori knowledge
built in the 3-D models. This approach aligns a 3-D
model to images or even range data by estimating the pa-
rameters of the model. In 3-D model-based methods, im-
age features could be looked as the image evidence or
image observation of a 3-D model that is projected to the
image plane. A 3-D model with different parameters will
produce different image evidence. Model-based methods
recover the joint angles by minimizing the discrepancy
between the image feature observations and projected
3-D model hypotheses [11], [13], [19], [20], [29], [32],
[40], which is a challenging optimization problem. Two
important tasks in the model-based approach are deter-
mining the match and searching the hand joint angles
space. Some examples are shown in Fig. 4, in which the
parameters of a cardboard hand model are adjusted to
match three input images. Generally, due to the huge
search space of hand articulation, the optimization in-
volved is difficult and computationally intensive.

Many methods tend to estimate the global and local
hand motion simultaneously. In [29], the hand was mod-
eled as an articulate stick figure, and point and line image
features were used for the registration. Hand motion cap-
turing was formulated as a constrained nonlinear pro-
gramming problem. The drawback of this approach is
that the optimization is often trapped in local minima.
Another idea is to model the surface of the hand [11],
[19], [32], and then hand configurations can be esti-
mated using the analysis-by-synthesis approach, in which
candidate 3-D models are projected to the image plane
and the best match is found with respect to some similar-
ity measurements. If the surface model is very fine, an ac-
curate estimation can be obtained. However, those hand
models are user dependent. Rough models can only give
approximate estimations [32].

To ease the optimization, a decomposition method
can be adopted to analyze articulate hand motion by de-
coupling hand motion to its global motion and local fin-
ger motion. Global motion is parameterized as the pose
of the palm, and local motion is parameterized as the set
of joint angles. A two-step iterative algorithm could be
used to find an accurate estimation [40]. Given an initial
estimation, hand pose is estimated using least median of
squares with joint angles fixed. Then the joint angles are
recovered by a genetic algorithm with the global hand
pose fixed. Those two steps are alternately iterated until
the solution converges [40].
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� 3. Hand localization. (a) Input image, (b) segmentation result,
and (c) hand blob located by analyzing the segmented image
pixels.

(a) (b) (c)

� 4. Capturing articulate hand motion using a cardboard hand
model. Hand pose and finger joint angles could be recovered
by fitting the model to the images. The fitting minimizes the
discrepancy between image feature observations and pro-
jected models.



Gesture Recognition
Meaningful gestures could be represented by both tem-
poral hand movements and static hand postures. Hand
postures express certain concepts through hand configu-
rations, while temporal hand gestures represent certain
actions by hand movements. Sometimes, hand postures
act as special transition states in temporal gestures and
supply a cue to segment and recognize temporal hand
gestures. Although hand gestures are complicated to
model because the meanings of hand gestures depend on
people and cultures, a set of specific hand gesture vocabu-
lary can always be predefined in many applications, such
as VE applications, so that the ambiguity can be limited.

Hand Posture Recognition
Different from sign languages, the gesture vocabulary in
VE applications is structured and disambiguated. Some
simple controlling, commanding, and manipulative ges-
tures are defined to fulfill natural interaction such as
pointing, navigating, moving, rotating, stopping, start-
ing, and selecting. These gesture commands can be sim-
ple in the sense of motion; however, many different hand
postures are used to differentiate and switch among the
commanding modes. For example, only if we know a ges-
ture is a pointing gesture would it make sense to estimate
its pointing direction. View-independent hand posture
recognition is a natural requirement in many VE applica-
tions. In most cases, because users do not know where the
cameras are, the naturalness and immersiveness will be
ruined if users are obliged to issue commands to an un-
known direction.

One approach is the 3-D model-based approach, in
which the hand configuration is estimated by taking ad-
vantage of 3-D hand models [11], [13], [19], [20], [29],
[32], [40]. Because hand configurations are independent
of view directions, these methods could directly achieve
view-independent recognition. Different models use dif-
ferent image features to construct feature-model corre-
spondences. Joint angles can be estimated by minimizing

a projected surface model and some image evidences such
as silhouettes in the light of analysis-by-synthesis [11],
[19], [20]. However, this approach needs good surface
models and the process of projection and comparison is
expensive. Alternatively, point and line features are em-
ployed in kinematical hand models to recover joint angles
[29], [32], [40]. Hand postures could be estimated accu-
rately if the correspondences between the 3-D model and
the observed image features are well established. Physical
models and statistical models [13] were also employed to
estimate hand configurations. However, the ill-posed
problem of estimating hand configuration is not trivial.
Many current methods require reliable feature detection,
which is plagued by self-occlusion. Another drawback is
that it is not trivial to achieve user independence, because
3-D models should be calibrated for each user.

Because the estimation of hand joint angles is difficult,
an alternative approach is the appearance-based approach
[7], [31], [35], [42], which aims to characterize the map-
ping from the image feature space to the possible hand
configuration space directly from a set of training data.
This approach often involves learning techniques.
Because image data are generally high dimensional, and
manually labeling a large data set will be very time con-
suming and tedious, there are two major difficulties for
this approach: automatic feature selection and training
data collection. The research of the first problem has been
investigated widely, and there have been many discus-
sions about feature extraction [35] and selection [7].
However, little has been addressed on how to collect the
training data automatically. In [42], a hybrid learning ap-
proach was proposed to employ a large set of unlabeled
images in training. Images for different hand postures are
shown in Fig. 5.

Temporal Gesture Recognition
Some temporal gestures are specific or simple and could
be captured by low-level dynamic models. However,
many high-level activities have to be represented by more
complex gesture semantics, so modeling the low-level dy-
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� 5. Recognizing different hand postures.



namics is insufficient. The HMM technique and its varia-
tions are often employed in modeling, learning, and
recognition of temporal signals. Because many temporal
gestures involve motion trajectories and hand postures,
they are more complex than speech signals. Finding a
suitable approach to model hand gestures is still an open
research problem. Practical large-vocabulary gesture rec-
ognition systems by HMM are yet to be developed. A
similar problem is the recognition of human motion.

Recognizing Low-Level Motion
Modeling the low-level dynamics of human motion is im-
portant not only for human tracking but also for human
motion recognition. It serves as a quantitative representa-
tion of simple movements so that those simple move-
ments can be recognized in a reduced space by the
trajectories of motion parameters.

Some low-level motions can be represented by simple
dynamic processes, in which a Kalman filter is often em-
ployed to estimate, interpolate, and predict the motion
parameters. As the extension of the Kalman filtering tech-
nique in the case of non-Guassian noises, the CONDENSA-
TION algorithm could also be used to recognize temporal
trajectories [30]. However, those low-level dynamics
models are not sufficient to represent more complicated
human motions.

Some human activities could be represented as a com-
plex, multistate model in [25], in which several alterna-
tive models were employed to represent human
dynamics, one for each class of response. Model switch-
ing is based on the observation of the state of the dynam-
ics. This approach produces a generalized maximum
likelihood estimate of the current and future values of the
state variables. Recognition is achieved by determining
which model best fits the observation.

Recognizing High-Level Motion
Many applications need to recognize more complex ges-
tures that include semantic meaning in the movements.
Modeling the low-level dynamics alone is not sufficient in
such tasks.

An approach to this problem is rule-based modeling
[26], [8], in which the high-level motion can be explic-
itly represented by a set of rules, and the recognition is
achieved by rule-based induction. One of the difficul-
ties lies in the fact that constructing the rule system
needs quite a lot of heuristics. Such rules could also be
represented using the finite state machine technique
[11], [15]. Temporal events are represented by a state
transition diagram, in which each state indicates possi-
ble gesture states at the next moment. By using a rest
state, all unintentional actions can be ignored. Al-
though such methods are simple, they lack the ability to
model the large variation in the temporal gestures,
since the same gesture may have different temporal
characteristics.

To model the large variation in the gestures, the HMM
technique seems a promising approach. A more detailed
review will be given in the next section. As a generalization
of HMM, another promising approach to modeling the se-
mantics of temporal gestures is the dynamic Bayesian net-
work [23], which provides a more flexible structure of a
graphical model to represent temporal signals.

Gesture Recognition by HMM
The HMM is a type of statistical model widely used in
speech recognition. Due to the similarity between speech
recognition and temporal gesture recognition, HMM is
also employed to recognize human motion in recent
years, and is used to model the state transition among a
set of dynamic models [4], [25]. HMM has the capacity
for modeling not only the low-level dynamics but also
some high-level motion [34].

There are also many variations of HMM. In [44], ges-
tures were modeled by a multidimensional HMM, which
contains more than one observation symbol at each time.
This approach is able to model multipath gestures and pro-
vide a means to integrate multiple modalities to increase
the recognition rate. Because the output probability of fea-
ture vectors of each state in HMM is unique, HMM can
handle only piecewise stationary processes that are not ade-
quate in gesture modeling. The partially observable
Markov decision process [9] was introduced for temporal
matching. Standard HMM was extended to include a
global parametric variation in the output probabilities of
the HMM to handle parameterized movements such as
musical conducting and driving by EM algorithm [38].

When the Markov condition is violated, conventional
HMMs fails. HMMs are ill suited to systems that have
compositional states. The coupled HMM technique [3]
was presented for coupling and training HMMs to model
interactions between processes that may have different
state structures and degrees of influence on each other.
Coupled HMMs are well suited for applications requiring
sensor fusion across modalities.

Future Research Directions
Although much progress has been made in recent
years, there are still many issues related to gesture
analysis and recognition that need to be adequately
addressed in the future.
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based approach, which
emphasizes the analysis of hand
shapes in images.



Robust Hand Localization
Although the idea of localizing the hand by tracking skin
color is straightforward, in practice, there are some chal-
lenging problems of color tracking. Many color tracking
techniques assume controlled lighting. However, due to
the dynamic scenes and changing lighting conditions,
the color distribution over time is nonstationary. If a
color classifier is trained under a specific condition, it
may not work well in other scenarios. Besides the large
variation in skin colors, in some VE applications, be-
cause the graphics rendered in the display keep chang-
ing, the reflected lights would probably change the skin
color as well. This color consistency problem is not triv-
ial in tracking skin color.

Recently, some researchers have begun to look into
the nonstationary color distribution problem in color
tracking. Several color model updating methods have
been proposed to solve this problem [28], [41], [43].
However, handling the nonstationary color is still an
open research problem. In the meantime, to achieve a ro-
bust hand localization system, multiple cues should be in-
tegrated. Better approaches for integration should be
studied in the future research.

Modeling the Constraints
Although the hand is highly articulate, the natural finger
motion is also highly constrained. These constraints
largely reduce the possible hand configuration space.
Consequently, the search space would be significantly
reduced in hand posture estimation, and the articulate
motion capturing would be more efficient. Unfortu-
nately, most of such constraints are impossible to be rep-
resented explicitly, partly due to the large variation in
finger motion.

However, to achieve robust and efficient estimation of
hand configuration and realistic hand animation, such
constraints have to be modeled. Instead of explicit model-
ing, learning techniques could be taken to characterize
the hand configuration space. A more profound investi-
gation should be conducted.

Motion Editing for Animation
Realistic articulate hand animation should be consid-
ered in the future. The human animation produced by
many current animation systems looks very unrealistic
and still looks like robots, due to the fact that the cur-
rent motion model is too simplified and largely de-
pendent on kinematics. To achieve realistic animation,
the natural motion constraints should be integrated
with animation systems. Another research direction is
to achieve personalized animation, in which different
styles of motion can be produced with low costs.
Schemes of avoiding the violation of body constraints
and collision detection should be built into animation
systems.

Recognizing Temporal Patterns
Although HMM is used widely in speech recognition,
and many researchers are applying HMM to temporal
gesture recognition, current examples of gesture recog-
nition by HMM are still with very limited vocabularies.
Compared to HMM in speech recognition, data collec-
tion for HMM training in temporal gesture recogni-
tion is very difficult, which is part of the reason that
large vocabularies are prevented. A crucial issue of
training data collection is motion capturing. Due to its
lower cost and noninvasive nature, the vision-based
motion capturing would be one of the ideal approaches
to collect motion training data. However, there are
many challenging and unsolved problems in vi-
sion-based motion capturing techniques. Another is-
sue is gesture co-articulation, which makes the
extraction and segmentation of gesture commands
even harder in continuous hand movements.

In a word, a good representation of temporal gestures
needs to be found in future research. It could be a very dif-
ferent representation from speech signals. Motion inter-
pretation is a quite ill-posed problem, in which cognitive
science and psychological studies may be combined. In
the near future, it may be very possible to develop
task-specific gesture systems, but we are still far from a
general purpose temporal gesture recognition and under-
standing system.

Other Open Questions
To achieve an immersive interaction, multimodality by
integrating hand gesture and speech should also be ad-
dressed adequately in the future. Recent research shows
that there is a complementary among different modalities
such as hand gesture and speech [27]. More profound re-
search should be conducted.

Current research focuses on single hand gestures for
simplicity. However, two-handed gestures should also be
studied in the future, since they are more expressive and
allow more natural interaction.

Conclusions
In this article, we reported the past development on the
research of human hand modeling, analysis, and recogni-
tion in the context of HCI. Several aspects of the hand can
be modeled such as shape, kinematical structure, and dy-
namics. Different hand models are used in different appli-
cations. Three-dimensional hand models offer a rich
description to fully capture hand motion. Static hand pos-
ture recognition and temporal gesture recognition are the
two main parts of gesture recognition. However, we are
far from building a general-purpose gesture recognition
system.

Overall, at the current state of the art, vision-based ges-
ture tracking and recognition are still in their infancy. In
order to develop a natural and reliable hand gesture inter-
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face, substantial research efforts in computer vision, graph-
ics, machine learning, and psychology should be made.
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