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a b s t r a c t

In this paper, we study how to distribute storage capacity along a hierarchical system with cache-serv-
ers located at each node. This system is intended to deliver stored video streams in a video-on-demand
way, ensuring that, once started, a transmission will be completed without any delay or quality loss.
We use off-line smoothing for videos, dividing them into CBR video parts. Also, our request rates are dis-
tributed following a 24 h audience curve. In this system, when a request is received, the server reserves
the required bandwidth at the required time slots, trying to serve the video as soon as possible.
We perform a detailed analysis by means of simulations of the start-up time delay for some storage dis-
tributions. It shows that an adequate storage distribution can increase performance about 25% with
respect to a uniform distribution and about 47% with respect to one in which all the storage is attached
to the gateway routers that connect the final users. We also analyze bandwidth usage, comparing the
behavior of these storage distributions.
Finally, we present a method which allows dynamic and transparent video reallocations when their pop-
ularity changes.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Currently, the delivery of stored digital video is becoming com-
monplace and a significant source of network traffic. When a cus-
tomer demands a video file, one of the servers of the system will
provide a copy which can be watched by the customer. However,
according to the tight bandwidth and latency constraints of video
systems, rigorous analysis is necessary before its deployment [1].

Perhaps the most simple technique consists in using a central-
ized single-server intended to deliver all video requests to the
users. However, it is known that this approach does not scale well
as the load (i.e. the number of users and videos) grows.

In order to solve this problem when considering video delivery
over wide area networks, some authors propose the use of a num-
ber of cache-servers distributed along the communication net-
work. These cache-servers will store a subset of those videos so
as to provide users with direct access to them (see for instance
[2–4]). Such an approach has been found to be preferable to using
a centralized server.

Similarly, the same conclusion has been reached when consid-
ering networks intended not only to provide good performance
of the overall system but also to guarantee QoS and real-time video
ll rights reserved.
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delivery, e.g. hierarchical networks [5,6]. In those networks, it has
been also shown that the best placement of videos (i.e. the best
way of distributing the videos along the cache-servers) consists
in placing the most popular videos as close to the users as possible.

On the other hand one major problem about this kind of sys-
tems is the large amount of information a video stream contains.
Compression formats allow an important reduction of these data
size, but they increase the bit rate variability of these data [7,8].
Transmitting real-time VBR flows is no trivial matter, because a
different amount of bandwidth will be needed in each moment
of the transmission. Naive approaches to this problem use a pessi-
mistic evaluation, as they reserve enough bandwidth for the
stream to be transmitted supposing it is always the worst case.
Obviously, this is quite inefficient. One of the methods to improve
these transmissions is the smoothing [9,10] of streams before their
transmission. This is done by transmitting frames into the client
playback buffer in advance of each burst so that peak and rate var-
iability requirements are minimized. Rexford and Towsley show
how to compute an optimal transmission schedule for a sequence
of nodes by characterizing how the peak rate transmission rate
varies as a function of the playback delay and the buffer allocation
at the server and client nodes [11]. By also using smoothing, sev-
eral techniques have been proposed which develop a transmission
plan [10] consisting of time periods so that, in each period, the
transmission may be performed by using a constant-bit-rate
(CBR) network service. In [4], the authors present a technique that
makes use of this approach. They also develop a video delivery
technique via intelligent utilization of the links bandwidth and
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storage space available at the proxy servers (i.e., servers which are
attached to the gateway router that connects the final users). In
[12], the authors show that any (including optimal) off-line
schedulings of the periodic broadcasting methods can be improved
by on-line schedulers in video-on-demand.

In our study, we use a true video-on-demand system. This
means that quality of service is completely guaranteed. Bandwidth
requirements are reserved when a video is requested, trying to
offer the minimum possible starting delay and using multicast
transmissions if possible. This means that video playing will not
suffer any break or quality loss, and also, reservations guarantee
a fixed and known starting delay. This is translated into instant ser-
ver responses notifying users about their reservation and playing
start time of their request.

Using this system, we make a detailed analysis of the storage
distribution in a tree structured video server. Previous studies on
hierarchical systems have been obtained assuming either that all
cache-servers have the same storage capacity (uniform size distribu-
tion) or that they are attached only to the gateway router that con-
nects the final users (proxy-like size distribution). In this paper we
focus on studying how the storage distribution in the network af-
fects its performance.

These results provide a guidance as to how to distribute storage
capacity in a system to achieve the best performance. Also, they al-
low us to predict, when there is a change in the system parameters,
how such a change will improve or degrade the overall
performance.

Additionally, we propose a reallocation method, which allows
to change the place where videos are stored. This provides a dy-
namic behavior, making this study suitable for application in real
systems. Basically, this reallocation method allows to change the
parameters of several videos, and redistributes the videos along
the structure according to the new parameters. This is done while
the system is on-line, and also in a transparent way for users.

The rest of our paper is organized as follows. In Section 2 we de-
scribe the scenario we use. In Section 3 we present our video-on-
demand delivery system. Then, in Section 4 we show our results.
Finally, our conclusions are presented in Section 5.

2. Scenario

For our study, we use a hierarchical network architecture. This
architecture is used nowadays in most cable networks and has
been demonstrated to be adequate for VoD systems [13,6]; so it
meets our needs. Our structure is a binary tree with four levels
Fig. 1. Representation of two final
of depth, that is, one central server plus three cache levels. We con-
sider this system a representative one, because we can evaluate the
storage size near the server, near the client, and in between, and
show how the storage size should be distributed.

Cache-servers at leaves have two branches with the same num-
ber of users. Links between nodes have a bandwidth of 1.5 Gbps
downstream. A moderate bandwidth is also needed upstream in
order to send user requests to the central server. Note that final
users share a bandwidth of 1.5 Gbps because they share the link
to their nearest node. Fig. 1 shows two final client branches of this
tree structure.

We use scenarios containing from 1000 to 10,000 videos. Each
video information has been constructed making variations over
the example presented in [10], resulting in (smoothed) videos of
a mean duration of about 85 min and a mean bandwidth require-
ments of about 1850 Kbps in fragments ranging from 96 to
4608 Kbps.

In our approach to the video transmission problem we studied
the performance over a 24 h period. Previous studies on video
demand rates [14,15] have determined the behavior of these rates
in this period. Our simulations work with a rate distribution
according to these studies. We also consider that a user makes a
request only if he or she is not waiting for or receiving a video
(i.e. nobody can receive more than one transmission at a time).
In Fig. 2 we can see the request rate distribution having one
request per day for each user. This is what we assumed in our
study (actual VoD trials show that the average number of user
requests per week is about 2–3).

Using this request rate, videos are requested following a popu-
larity factor, which represents the probability of a video to be
requested according to Zipf’s law [16]. This distribution has been
found to statistically fit video program popularities estimated
through observations from video store statistics [17].

3. Video allocation and reservation algorithm

In this section we first describe how to distribute videos
throughout the whole system. Since bandwidth usually becomes
a bottleneck in stream transmissions, the placement policy is a ma-
jor issue. Then, we explain our reservation algorithm.

In order to avoid the rate variability problem described in the
introduction, we use smoothed versions of video streams [10]. In
this way, each video is characterized by a collection of tuples
htime,ratei, whose first parameter denotes a time period and whose
second one is the CBR rate associated with such a time period.
branches of our tree structure.



Fig. 2. Request rate distribution in a 24 h period.
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Our distribution policy is applied off-line and it acts on the dif-
ferent video parts corresponding to the tuples of each video. Basi-
cally, it first assigns, at start up, a weight value to each video. That
weight value is based on the video popularity, according to Zipf’s
law [16] as above. Once such an assignment is done, it distributes
the video parts in the tree, sorting them out by weight value. The
higher the weight value, the nearer to users they are placed. When
storing these video parts in places other than the main server, they
are replicated in all other caches at the same level. Note that, work-
ing with smoothed video parts, each one can be stored indepen-
dently. That is, despite all parts of the same video will have (in
this case) the same weight value, they can be stored in different
cache levels when caches become full.

The good results obtained using the popularity value as the
weight parameter can be easily explained [5,6]. The main goal of
our system is to reduce the high bandwidth requirements that a
centralized system would have. By using this weight value, the
most requested videos are placed close to users, so their transmis-
sion affects only the links at leaves, and not the full tree structure.
On the other hand, the less popular videos, which will hardly be re-
quested, can be transmitted directly from the main server. Thus,
bandwidth costs produced by a few popular videos is reduced by
using storage size to replicate them close to the users.

For the above proposed system it is necessary to use a reserva-
tion algorithm. Such an algorithm manages video requests, guaran-
teeing that, once a video is accepted (maybe after some start-up
time delay), it will be delivered without interruption to the final
user(s).

Our reservation algorithm is constructed around a bandwidth
reservation table which represents the bandwidth that will be used
by each link at each time unit. In our case these time units (time-
slots) have a duration of 1 min.1 Additionally, each request has a
process time of 60 s. This means that when a request is received,
the system processes it during 60 s and its transmission could start
the next time-slot after this processing time.

The management of each request is the following one. When a
video request is received, we first map out the route which each
video part will follow. Then, we test (for each video part) whether
it is already planned for transmission at the same time by the same
links. If so, that request is added to the multicast transmission of
this video part without any additional bandwidth requirements.
Otherwise, we check whether there is enough bandwidth in each
1 Considering the request rate presented above, a system with 5000 users/branch
has no more than around 100 video requests each minute during the high audience
peak, so the computational cost of such a time-slot is relatively low.
link of the route during the slots of the transmission. If so, band-
width is reserved. Otherwise, the system repeats this process try-
ing to place the transmission plan one further time-slot.
Obviously, in such a case the video starting time is also delayed
one time-slot. Thus, when there is not available bandwidth, trans-
missions of new requests are delayed until there is enough band-
width. Fig. 3 shows the code of this algorithm.

There are several features in this algorithm which must be
taken in consideration. First of all, when placing a new request,
the system looks for a time to serve it and makes the transmission
plan. This means that the system can respond immediately indicat-
ing when the requested transmission will start. With this informa-
tion, and knowing that the starting delay is not too large, we
assume that there will not be transmission rejections.2 Addition-
ally, by making full reservations for each request, there is no need
of any renegotiation.

In reference to the multicast transmissions, note that we
assume all nodes in the tree belong to the same system and can
be managed by any convenient software. Thus, multicast transmis-
sions can be reduced to the user links, because node-to-node they
could be implemented by means of unicast transmissions. In this
way, only the last level of cache would need to be aware of which
users are requesting each video. Nevertheless, we talk about mul-
ticast when a transmission serves several users, despite of the
implementation of this transmission.

It must be pointed out that, in general, it may be necessary to
synchronize the different video parts that make up a video during
the playback. That is because they may be placed at different serv-
ers along the system. In our case the problems which could be
caused by this are very limited. Note that all our transmissions
are reserved in advance and there are no external ones so there
cannot be congestion problems. Moreover, we use a time-slot of
60 s, which is fairy high compared with high speed transmission
times. Additionally, users would probably have a minimum play-
back buffer in order to avoid sporadic glitches. Thus, using a time
synchronization protocol in nodes (such as NTP [18]) would prob-
ably provide enough precision. Nevertheless, stream synchroniza-
tion could be done in a number of ways by using protocols such
as RTP [19] and RTSP [20]. In this paper we will not dig into details
about how to do it.

4. Results

In this section we analyze storage size distribution in our tree
structure. For doing this, we use the starting delay as the main met-
ric, that is, the time between a request and the beginning of its
video transmission. As we understand, the cost of a dedicated net-
work of these characteristics is basically to deploy it (or contract a
fixed amount of bandwidth), and also to acquire the videos and the
storage size. We consider these aspects as a fixed cost, so that
transmissions are made using these ‘‘already paid” resources. Fol-
lowing this point of view, if the video-on-demand company has in-
vested in those resources, the cost of using or not using them is the
same, and its goal is to offer the best possible response to its cli-
ents. That is why we test several scenarios (which vary the fixed
system costs) and also focus on starting delays for evaluating the
system performance.

Our experiments are the following. We firstly analyze how the
system performance varies depending on the number of users
and videos in two basic size distributions, which will give a preli-
minary view of the importance of caching in VoD systems. Then,
we fix several scenarios (fixing both the number of users and vid-
2 In a real system, the procedure in a video rejection would simply be removing
unused reservations.



Fig. 3. Algorithm for the bandwidth reservation.

Fig. 4. System performance of a system with 1000 videos.

Fig. 5. System performance of a system with 5000 videos.

Fig. 6. System performance of a system with 10,000 videos.
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eos) and perform a series of simulations varying the size distribu-
tion. This will show which size distributions are better in each case,
and also how better they are in relation to other ones. Next, we
perform a bandwidth analysis of the system comparing several
scenarios and size distributions, which will show why some are
better than others. Finally, we present a mechanism for automati-
cally managing the contents of our system while it is on-line.

4.1. Comparison of several known distributions

For our work, we will use a centralized system as a reference
model. As it has been pointed in Section 1, both a proxy-like and
an uniform size distributions improve the performance of a cen-
tralized system. Furthermore, it has also been pointed out that
an uniform size distribution offers better results than a proxy-like
one.

Figures in this section show the system performance when
varying the number of users.3 The following results have been
grouped based on the number of videos in the repository. There
are 1000 videos in Fig. 4, 5000 in Fig. 5 and 10,000 in Fig. 6. These
three figures contain results in a centralized system, in a proxy-like
size distribution (all storage size allocated in the caches close to
users) and in a uniform size distribution (all caches have the same
size). The total storage size in the cache system is 1400 GB, so in
the uniform size distribution caches have 100 GB each one, and in
3 The x axis is measured in users/branch instead of users because in this way it also
provides information about how many users are sharing each final link. This tree has
16 final branches, so the total number of users can be obtained by multiplying by 16.
the proxy-like size distribution, caches close to users have 175 GB
and 0 size the other ones.

In the first place it can be seen how the centralized systems
performs much worse than the others. Uniform and proxy-like
distributions perform in a similar way, being the uniform one bet-
ter the proxy-like. The minimum delay is 1.5 min in all figures,
which corresponds to the 60 s processing time plus half a time slot.



Fig. 7. Level size distribution for 5000 users/branch and 1000 videos.

Fig. 8. Level size distribution for 5000 users/branch and 5000 videos.

Fig. 9. Level size distribution for 5000 users/branch and 10,000 videos.
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Although it is not clearly visible in these figures, plots present
an inflexion point. It is located around 6000 users/branch in the
proxy-like distributions, and around 7000 in the uniform one.
We call these points saturation points, and they indicate the situa-
tion where the main server links reach an utilization of 100% inde-
pendently of the time of day, i.e. these links are being used at full
capacity always. A system with a load (n. users and videos) over
these points should be considered as overloaded. However, this
overload is translated into a faster increment of the starting delays,
but not into rejecting requests. Moreover, the multicast capability
limits the amount of transmission requests, because the number of
videos awaiting for being transmitted will never be higher than the
number of videos in the repository. This means that overloaded
systems can still be usable, although it would not be recommend-
able. It can be seen in the next section how overloaded systems
present delays far higher than usable systems. In the bandwidth
analysis section we also discuss this situation.

4.2. Size distribution in caches

In this section we have performed a study which reflects the sys-
tem behavior having a total size in caches of 1400 GB. We use config-
urations with 1000, 5000 and 10,000 different videos and with 5000
and 10,000 users in each branch (which corresponds to 80,000 and
160,000 total users, respectively). With these six configurations we
cover a wide range of possibilities, from systems which can store
most of their videos in caches and have low user load to systems with
high user load and a large video repository Figs. 7–12.

Figures presented in the next sections must be understood as
follows. Considering that we have a tree structure with three cache
levels, level 3 indicates the (two) caches close to the main server,
level 2 is the intermediate one, and level 1 is composed by the ca-
ches close to users. Thus, one size distribution can be specified
by the percentage of size in level 3 and the percentage in level 2.
The remaining percentage corresponds to level 1 (note that the
sum of these three percentages is always 100%). The uniform dis-
tribution point and the best case point are also marked in all fig-
ures. The proxy-like distribution is not indicated, but it
corresponds to the coordinates (0,0), that is, 0% at level 3 and 0%
at level 2. Also note that the number of nodes in each level grow
exponentially in a tree, so levels with the same size percentage
do not have the same size in their caches.

In the first place it can be seen that all figures have a similar pat-
tern. Increasing the number of videos tends to pull up the (0,0)
coordinates, which represents the proxy-like distribution. This
means that when the number of videos in the repository grow, dis-
tributions close to proxy-like perform worse. Moreover, note that
in the figures with 5000 and 10,000 videos, the best case configu-
ration is located almost on the diagonal of the plot. This means that
the best results in systems with a large number of videos are ob-
tained when the size in level 1 (caches close to users) is very low.
This is a very interesting detail because, having a total cache size
of 1400 GB, in these cases level 1 has only about 7% of the total
cache size, which corresponds to 12.5 GB in each cache close to
users. In contrast, when there are only 1000 videos, all of them
can be stored in caches and therefore the size distribution is not
so important, resulting in flatter surfaces.

About storage size in level 3 (caches close to the main server), we
can see that all figures show an important U-shape curve. This means
that bad results are achieved both when there is no storage size next
to the main server (because bottleneck remains in the main server
links) and when all the storage space is assigned to these two caches
(because popular videos are served from these caches and require
bandwidth in most of the links in the tree to reach users).

Size in level 2 (intermediate level) has a more simple pattern. It
presents a quite straight line: the more storage size located at this
level, the lower delays are obtained.

Therefore, these results should be scalable as follows. In the
first place, caches close to the main server are the most interest-
ing ones, due to they produce the basic pattern that delays will
follow. Moreover, the storage size allocated in these caches de-
pends basically on the number of videos in the repository. Once
these caches are fixed, most of the remaining size should be allo-
cated on intermediate caches. Finally, a very small amount of
storage size is required in caches close to users, which will con-
tain the hot videos.



Fig. 10. Level size distribution for 10,000 users/branch and 1000 videos.

Fig. 11. Level size distribution for 10,000 users/branch and 5000 videos.

Fig. 12. Level size distribution for 10,000 users/branch and 10,000 videos.

Fig. 13. Bandwidth usage with uniform cache size distribution for 5000 videos and
5000 users/branch.

Fig. 14. Bandwidth usage with best case cache size distribution for 5000 videos and
5000 users/branch.
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Note also that both Figs. 11 and 12 are located over the satura-
tion point, so they show overloaded systems. That is why their
starting delays are so high.

4.3. Bandwidth usage analysis

As it has been pointed previously (see Fig. 2), the request rate
varies through the day. Consequently, it seems quite reasonable
to expect a different system behavior during a 24 h period. We
have also shown in the previous section that different cache size
distributions affect the final system performance. In this section,
we analyze the system behavior through the day, focusing on the
comparison between systems with uniform size distribution and
with the best case distribution. This comparison shows the
improvements in the bandwidth usage when we have an efficient
size distribution.

For such a task, we take two systems with a total storage capac-
ity in caches of 1400 GB and 5000 different videos, one with 5000
users in each final branch (i.e. 80,000 total users) and other one
with 10,000 users in each final branch (160,000 total users). These
two cases correspond to Figs. 8 and 11, respectively. Remember
that this second system is an overloaded one, so it should not be
desirable, but it allows us to show how a system would evolve
when adding too much load to it.

Figures we show in this section represent the percentage of
bandwidth usage in each level of the tree. We refer to the links
which share each user branch (the ones between users and caches
next to users) as level 1 links. Level 2 and level 3 are the two inter-
mediate link levels, and links at level 4 are the two ones which
communicate the main server with the two caches under it.

The first system is shown in Figs. 13 and 14. Fig. 13 represents a
system where all caches have the same size, in this case 100 GB,
and Fig. 14 is the same system with the best case cache size
distribution.



Fig. 15. Bandwidth usage with uniform cache size distribution for 5000 videos and
10,000 users/branch.

Fig. 16. Bandwidth usage with best case cache size distribution for 5000 videos and
10,000 users/branch.
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One of the first differences we can see is the change in links uti-
lization when the system is in a low load period. Whereas in Fig. 13
level 4 has a high utilization Fig. 14 reduces links utilization at level
4 by using more the links at level 2 and level 3. This fact makes more
uniform level loads and therefore the system in Fig. 14 can afford
more load. In Fig. 13, level 2 and level 3 never reach utilizations
above 55% and 75%, respectively. This indicates that in this system
we are wasting much bandwidth. On the other hand, when the sys-
tem has a high load with the best case cache size distribution, both
these levels reach a very high usage.

As we said above, these simulations are made following the
request rate of Fig. 2. During the high audience peak a high number
there are a lot of requests and all them are served. Thus, both
because of the duration of the requested videos and the delay
introduced by the lack of available bandwidth, links usage is very
high during some time after the high audience peak. This period
can be seen during the first hours in all our bandwidth figures.
However, in Fig. 14 this period is considerably shorter than in
Fig. 13. This can be considered as a consequence of the previously
pointed effects, resulting in a system with a size distribution which
widely improves the uniform cache size distribution.

Figs. 15 and 16 represent a system with a very high user load.
The first fact we can observe is that bandwidth used in level 4 is
always at 100%. Level 4 is the one which connect the main server
with the caches. In this case it is all 24 h saturated, which indicates
that the main server is receiving more transmission requests than
it can transmit.

In bottleneck situations, the saturated resource prevents other
resources from being used as much as they could. Thus, one of
the goals in these systems is to be able of using these other
resources as well. This would be uniforming the use of resources
in a non-saturated system, and it is what the best case distribution
does. We can see that bandwidth usage in level 2 and level 3 is far
more utilized in Fig. 16 than in Fig. 15. By the same reason, and like
in Fig. 13, level 2 bandwidth capacity is not being used as much as
possible in Fig. 15 because it is always below 85%.

One last point to comment is the bandwidth usage in level 1. In
our system, level 1 corresponds to the links shared between users,
and attached to the leaf caches. Thus, we can view links at this
level as the path between the caches system and the users. With
this point of view, it is easy to see that usage of links at this level
is in some way independent to the server system, and just indi-
cates the amount of bandwidth users are using for receiving vid-
eos. Of course this is not that simple, because the cache size
distribution affects the delays in serving the requested videos, so
bandwidth usage at level 1 is also affected. However, it is reason-
able to assume that level 1 usage is independent of the cache size
distribution. This is important because it limits the bandwidth re-
quired in this level. For example, we can see that both in Figs. 13
and 14, bandwidth at this level is always below 70%, so in order
to reduce costs, we could use links with a capacity about a 30%
lower in ılevel 1 without affecting the system performance.

However, comparing Figs. 15 and 16 we can see that level 1
usage is not the same, it is a bit lower in Fig. 16 than in Fig. 15. This
is because with a bad size distribution, there are many popular vid-
eos stored in caches close to users, so they are served using only
links at level 1. This causes a congestion in that level. On the other
hand, with a good size distribution, videos are located in higher
caches, so their transmission can be done with a higher multicast
degree. This, therefore, decreases the bandwidth usage in level 1
increasing it in higher levels.

4.4. Delay distribution along a day

In previous sections we have seen how different size distribu-
tions affect our on-demand system, which distributions perform
better and why perform this way. Here we present all this from a
point of view near the users, where we can see how the system
performs during a day. As above, we present two figures with
5000 users/branch and 10,000 users/branch of a system with
5000 videos. In Fig. 17 it can be seen how delays are the minimum
possible when bandwidth is enough, and how they increase in the
high audience period. These high delays decrease when the request
rate descends and previous transmissions are being completed.
However, in systems where the request rate is high (Fig. 18) delays
cannot reach the minimum possible delay in this period because
the request for transmissions exceeds the available bandwidth.
This is why bandwidth usage at high levels is always around
100% and consequently delays are higher.

4.5. Reallocation of video streams

Whereas results in the previous sections are static, real applica-
tions usually require some mechanisms to manage the contents of
the system. This is, basically, adding and removing videos, and
changing the popularity of the existing ones. These changes should
lead to automatically reallocate videos according to the new
conditions.

In this section, we introduce a new management mechanism
both for adding/removing new videos, and for changing the popu-



Fig. 17. Starting delay along a day with 5000 videos and 5000 users/branch.

Fig. 18. Starting delay along a day with 5000 videos and 10,000 users/branch.

Fig. 19. Bandwidth usage with reallocations with best case cache size distribution
for 5000 videos and 5000 users/branch.

Fig. 20. Bandwidth usage with reallocations with best case cache size distribution
for 5000 videos and 10,000 users/branch.
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larity of the existing ones. Such a mechanism used a quite simple
reallocation policy that, contrary to the previous distribution pol-
icy (which is intended to be used only at the very first time), can
work on-line and in a transparent way to users. The first step is
to find which video parts will need to be moved and where. Then,
the reallocation process removes all video parts located at ‘‘incor-
rect” places, and transmits them downstream from the main server
to the corresponding cache nodes.

However, the reallocation of video parts when the on-demand
system is active can result in inconsistent services if the source
data are being moved. Inconsistencies could be produced either
when a requested video part has been removed and it is not
yet allocated in its destination, or when a video part is removed
while it is being transmitted to users. We solve that problem by
marking the video parts which will be reallocated as unavailable
(in their caches) during the reallocation time, being served by
the main server during this time.

The main feature of this reallocation method is the speed; we
can reallocate all affected video parts at the same time. Addition-
ally, this method uses the same kind of downstream transmissions
than the ones used to serve users, so no additional (upstream)
requirements are needed. The obvious disadvantage is that all vi-
deo parts are transmitted from the main server, which means a
use of bandwidth directly proportional to the number of levels in
the tree. However, such a reallocation can be done when the sys-
tem load is low, so that we can afford ‘‘wasting” some bandwidth
if that allows us to have a fast reallocation.

In order to show how our system behaves when we make use of
our reallocation mechanism, we analyze the effect of adding a new
video with maximum popularity to the system. This is the worst
case, due to it will have to be located close to users and it will cause
video movements in all levels. One detail in our study is that we
maintain constant the number of available videos. This means that
when we add a new video, another one (the less popular one,
stored in the main server) is removed. This behavior allows a better
analysis and representation of the obtained results, due to the
number of videos in the system remains constant.

Figs. 19 and 20 show the bandwidth usage of a system with
downstream reallocations at 12:00. Both these systems have
5000 videos and the best case storage size distribution. Fig. 19
has 5000 users/branch, and Fig. 20 has 10,000 users/branch. These
parameters correspond to Figs. 14 and 16. It can be seen in both
figures how reallocations represent a change in the bandwidth
usage. In Fig. 19, the reallocation transmission uses some (unused)
bandwidth, with no other effect on the system. In the system
shown in Fig. 20, there is no unused bandwidth in the links at-
tached to the main server, so the system behavior is different. In
this case, reallocation transmissions will use a part of the band-
width which would serve videos to users.
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Thus, the system will be saturated earlier at reallocation time,
and other requests will have to be reserved afterward. This can
produce a light wasting of bandwidth the instants before realloca-
tions. This effect can be seen in Fig. 20, where bandwidth usage
decreases around 4% during the 2 min before the reallocations. A
very light increment in starting delays at that time could also
be expected. However, it is not numerically apreciable in our
simulations.
5. Conclusions

In this paper we have carried out an analysis of the problem of
storage size distribution. With this study we have obtained distri-
butions which widely surpass the distributions proposed in previ-
ous works. Our best case distribution has a performance about 25%
better than the uniform distributions. It also has improvements
about 47% in comparison with proxy-like distributions. Moreover,
our experiments show how the system performance changes when
the size distribution is varied. We demonstrate that caches close to
the main server are the ones which most significantly define the
system performance. They produce a trade-off between not
improving the main server bottleneck (when the caches close to
this server are too small) and becoming a new bottleneck (when
these caches are too large and receive most of the transmission re-
quests). On the other hand, caches closest to users are the less
important. Best case distributions have configurations with very
low storage capacity in these caches. This cache level has about
7% of the total cache capacity, which corresponds to 12.5 GB in
each cache close to users compared to a total cache size of
1400 GB. Finally, the behavior of size in intermediate caches is al-
most linear. The more storage size they have, the better performs
the system.

We also demonstrate that bandwidth studies are important for
understanding and improving the system. We have shown how it
accurately reflects its state. This shows explicitly where the bottle-
necks are and also which resources are being wasted.

Additionally, our reallocation policy provides a dynamic and
automatic management of the videos stored in the tree in a way
transparent to users. Also, used at low load periods, its bandwidth
requirements do not represent a significant drawback.

Whereas the most critical resource is bandwidth (specially in
those links attached to the main server) we have seen that the
use of this resource depends very much on the storage size distri-
bution, and obviously also on the place where each video is allo-
cated. Thus, our study enlarges the efficiency of this kind of
systems, allowing a considerable reduction of their response times.

Additionally, we have not used any improved transmission
method in our studies. This means that our results represent a
worst case. Using techniques such as stream merging [21,22] in
combination with our storage allocation studies, bandwidth usage
can be reduced in a very significant way.
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