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Random walks are gaining much attention from the networks research community. They
are the basis of many proposals aimed to solve a variety of network-related problems such
as resource location, network construction, nodes sampling, etc. This interest on random
walks is justified by their inherent properties. They are very simple to implement as nodes
only require local information to take routing decisions. Also, random walks demand little
processing power and bandwidth. Besides, they are very resilient to changes on the net-
work topology.

Here, we quantify the effectiveness of independent random walks (i.e, random walks that
have statistical properties identical to the random sampling) as a search mechanism in one-
hop replication networks: networks where each node knows its neighbors’ identity/resources,
and so it can reply to queries on their behalf. Our model focuses on estimating the expected
average search time of the random walk by applying network queuing theory. To do this, we
must provide first the expected average search length. This is computed by means of estima-
tions of the expected average coverage at each step of the random walk for all random walks
in all random networks with a given degree distribution. This model takes into account the
revisiting effect: the fact that, as the random walk progresses, the probability of arriving to
nodes already visited increases, which impacts on how the network coverage evolves. That
is, we do not model the coverage as a memoryless process. Furthermore, we conduct a series
of simulations to evaluate, in practice, the above mentioned metrics. Our results show a very
close correlation between the analytical and the experimental results.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Random walks are a mechanism to route messages
through a network. At each hop of the random walk, the
node holding the message forwards it to some neighbor
chosen uniformly at random. Random walks have interest-
ing properties: they produce little overhead and network
nodes require only local information to route messages.
In turn, this makes random walks resilient to changes on
the network structure. Thanks to these features, random
. All rights reserved.
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walks are useful for different applications, like routing,
searching, sampling and self-stabilization in diverse dis-
tributed systems such as Peer-to-Peer (P2P) and wireless
networks [1–10].

Past works have addressed the study of random walks.
Some of this research has focused on the coverage prob-
lem, trying to find bounds for the expected number of hops
taken by a random walk to visit all vertices (nodes) in a
graph.1 GðCGÞ [11–14]. Results vary from the optimal CG of
1 The term time to refer to the number of hops of the random walk (that
is, its length) is usual in many previous works. Thus, for example, CG is often
denoted the cover time. However, in this work we will use the term time to
refer to the duration of the random walk. To avoid confusion, from now on
the term time will only denote the physical magnitude.
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Fig. 1. Illustrative example of visited and covered nodes.
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complete graphs Hðn log nÞ [11] (where n is the number of
vertices) to the worst case found in the lollipop graph
Hðn3Þ [15]. Barnes and Feige in [16] generalize this bound
to the expected number of hops to cover a fraction ðf < nÞ
of the vertices of the network, which they found is Hðf 3Þ.
Other works, for example, are devoted to find bounds on
the expected number of steps before a given node j is visited
starting from node iðHi;jÞ. For example, it is known that the
upper bound for Hi;j is Hðn3Þ [17]. Many of these results
are based on the study of the properties of the transition ma-
trix P and adjacency matrix A in spectral form [18].

The previous results are used in several works to dis-
cuss the properties of random walks in communication
networks. Gkantsidis et al. [19] apply them to argue that
random walks can simulate random sampling on P2P net-
works, a property that in their opinion justifies the ‘success
of the random walk method’ when proposed as a search
tool [3] or as a network constructing method [9]. Adamic
et al. [20] study the search process by random walks in
power-law networks applying the generating function for-
malism. This work seems deeply inspired by a previous
contribution of Newman et al. [21], who study the proper-
ties (mean component size, giant component size, etc.) of
random graphs with arbitrary degree distribution.

This paper introduces a study of random walks from a
different perspective. It does not study the formal bounds
in the amount of hops to cover the network. Instead, it tries
to estimate the efficiency of the random walk as a search
mechanism in communications networks, applying net-
work queuing theory. It takes into account the bounded
processing capacities of the nodes of the network and the
load introduced by the search messages, that are routed
using random walks. To obtain this load, we need to esti-
mate first the average search length, that is, we want to
quantify the expected number of hops a random walk re-
quires to find a given node. This expectation is taken over
all random networks with a given degree distribution and
all random walks in these networks. The average search
length is computed from the expected average coverage:
the average number of different nodes covered at each
hop of the random walk. A distinguishing feature of our
work is that, as in the case of Adamic et al. [20], it deals
with a scenario that has not been very exhaustively ex-
plored although, in our opinion, is quite interesting in the
communications field: one-hop replication networks.

1.1. One-hop replication

One-hop replication networks (also called lookahead
networks [22]) are networks where each node knows the
identity of its neighbors and so it can reply on their behalf.
Hence, to find a certain node by a random walk it suffices
to visit any of its neighbors. This feature is present for
example in social networks, where to find some person it
is usually enough to locate any of her/his friends [20]. Also,
certain proposals to improve the resource location process
on P2P systems [2,23] (some based on random walks) as-
sume that each node knows the resources held by its
neighbors, so to discover some resource (such as a file or
a service) it suffices to visit any of the neighbors of the
node(s) holding it.
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
In one-hop replication networks, when the random
walk visits some node i we say it also discovers the neigh-
bors of i. Hence, we will use two different terms to refer to
the coverage of the random walk. We denote by visited
nodes those that have been traversed by the random walk,
and by covered nodes the visited nodes and their neighbors.
See Fig. 1 for an illustrative example.

1.2. Previous work and the revisiting effect

There is some research work related with the character-
ization of random walks in one-hop replication networks.
In [24] the authors prove that in the power-law random
graph the amount of hops for a random walk to discover
the graph is sublinear (faster than coupon collection, with
which the random walk is compared in [19]). Also, Manku
et al. [22] study the impact of lookahead on P2P systems
where searches are routed through greedy mechanisms.
In another work, Adamic et al. [20] try to find analytical
expressions for CG the cover time of a random walk in
power-law networks with two-hops replication. They de-
tected divergences between the analytical predictions
and the experimental results. The reason for such discrep-
ancy, as the authors point out, is the revisiting effect, which
occurs when a node is visited more than once. In small-
world networks, where a small number of nodes are con-
nected to other nodes far more often than the rest, it is
quite common for random walks to visit often these highly
connected nodes.

1.3. Our contributions

Although there is a plethora of interesting results about
random walks, we have noticed that there are situations
where current findings are not straightforward to apply,
especially on communication networks with one-hop rep-
lication. For example, in such networks, we can be inter-
ested on studying beforehand the expected behavior of
the random walk to evaluate if it suits the system require-
ments. We characterize the random walk performance by
four values:

� The expected coverage. Given by the expected number of
visited and covered nodes of each degree k at each hop l
of the random walk.
of random walks in one-hop replication networks, Comput. Netw.
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2 Some P2P networks like Napster have a central node that network
members use to locate files. But those networks are not considered as pure
P2P systems because they use a typical server-client architecture with a
centralized topology to perform searches. They are regarded to have a
‘‘P2P” behavior only in the way files are shared. This work is rather focused
on the decentralized topologies of pure P2P networks.
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� The expected average search length. Expected length of
searches in number of hops, assuming that the source
and destination nodes of each search are chosen uni-
formly at random. Obtained from the coverage
estimations.

� The expected average search duration. Expected time to
solve searches. Obtained from the average search length,
given the processing capacity of each node and the load
on the network due to queries.

� The maximum load that can be injected to the network
without overloading it.

In this work we provide a set of expressions that model
the behavior of the random walk and give estimations for
the three previous parameters. This analysis is based on a
set of premises: a fast convergence to the stationary distri-
bution; the independence of neighbors degrees; and finally
the identical behavior of random walks with respect to
independent sampling. Thus, we assume that random
walks behave as independent walks, (i.e., we model random
walks as a process similar to the random sampling of
nodes, where the probability of choosing a certain node
is proportional to its degree). The model introduced here
holds rigorously under independent walks since, as we dis-
cuss and support by simulations in Section 2.1, this ap-
proach provides a good characterization of random walks
in many relevant networks.

Our claim is that these expressions can be used as a
mathematical tool to predict how random walks will per-
form on networks of arbitrary degree distribution. Then,
we do not only address the coverage problem (i.e. to esti-
mate the amount of nodes covered after each hop of the
random walk), but we also apply queuing theory to model
the response time of the system depending on the load. As
we show, this approach allows to compute in advance
important magnitudes, such the expected search duration
or the maximum load that can be managed by the network
before getting overloaded. Additionally, we find our model
useful to study how certain features of the network impact
on the performance of searches. For example we find that
the best average search time is achieved only if the
nodes with higher degrees have also greater processing
capacities.

The expressions related with the estimation of covered
nodes at each hop are the most complex part of the model.
They must deal both with the one-hop replication feature
and the revisiting effect. However, we should remark that
the model can be trivially adapted to networks where the
one-hop replication property does not hold, and the search
finishes only when the node we are searching for is found
(see the last paragraph in Section 2.4).

Likewise, it is easy to modify the model to a variation of
the random walk where each node avoids sending back the
message to the node it received it from at the previous hop.
We denote this routing mechanism avoiding random walks,
and we deem it interesting for two reasons. First, intui-
tively, it should improve the random walk coverage (we
have confirmed this experimentally). Second, it can be
implemented in real systems using only local information,
just as the pure random walk (the sending node only needs
to know from which neighbor the message came from).
Please cite this article in press as: L. Rodero-Merino et al., Performance
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A feature of our proposal is that it does not require the
complete adjacency matrix A, that in some situations could
be unknown. Instead, thanks to the randomness assump-
tion we apply it only needs the degree distribution of the
network to compute the metrics we are interested in. On
the other hand, this work is focused on networks with good
connectivity and where the nodes degrees are independent
(see Section 2.1).

Another property of this model is that it takes into ac-
count the revisiting effect by modeling the coverage of
the random walk at each hop l depending on the coverage
at the previous hop l� 1. That is, the evolution of the cov-
erage is not assumed to be a memoryless process, a simpli-
fication that can lead to errors as seen in [20].

The rest of the paper is organized as follows. Section 2
introduces our analysis of the coverage and average search
length of random walks, along with some experimental
evaluation. Section 3 is centered on obtaining the average
search time of random walks. Finally, in Section 4, we state
our conclusions and propose some potential future work.

2. Analysis of random walks

In this section, we analyze the behavior of random
walks in arbitrary networks.

2.1. Model and assumptions

We will represent networks by means of undirected
graphs G ¼ ðV ; EÞ, where vertices V represent the nodes
and edges E # V � V are the links between nodes. There
are no links connecting a vertex to itself, or multiple edges
between the same two vertices. This does not simplify our
model, but makes it closer to real scenarios like typical P2P
networks. We denote by jV j ¼ n the number of nodes in the
graph and by nk the number of nodes that have degree k
(i.e., the number of nodes that have k neighbors,

P
kknk ¼

2jEj). For all vertices its degree k is lower than the size of
the network n, as in typical real world networks (such as
social and pure P2P networks) each node is connected to
only a subset of the other vertices in the system.2 We also
denote by pk the probability that some node in the network,
chosen uniformly at random, has degree k (i.e., pk ¼ nk=n).
The average degree of a network is given by �k ¼

P
kk pk.

For a given network, the distribution formed by the proba-
bilities pk (for all k) is known as the degree distribution of
such a network.

A random walk over G can be defined as a Markov Chain
[15] process MG where the transition matrix P ¼ ½Pij� is
defined as:

Pij ¼
1

dðiÞ if ði; jÞ 2 E;

0 otherwise:

(
ð1Þ
of random walks in one-hop replication networks, Comput. Netw.
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where Pij is the probability of moving from node i to node j,
and dðiÞ is the degree of node i. P allows to study the prob-
ability of visiting each node at each hop l. This probability
is expressed in the state probability vector, ql ¼ ðql

1; q
l
2; . . . ;

ql
nÞ, where ql

i represents the probability that the random
walk visits node i at hop l. This probability evolves as
ql ¼ ql�1P.

Assuming that G is connected and finite, then MG is irre-
ducible: any node can be reached from any other node, and
the average path length between two any nodes is finite.
Assuming also that G is non-bipartite, then we can state
that MG is aperiodic and so we are able to apply the Funda-
mental Theorem of Markov Chains [15]. This theorem states
that in such graph MG is ergodic and exists a unique state
probability distribution p, denoted the stationary distribu-
tion, such that pP ¼ p; p ¼ ðp1;p2; . . . ;pnÞ, where pi is:

pi ¼
dðiÞ
2jEj : ð2Þ

Intuitively, p represents the steady state of MG. That is, pi

represents the probability that the node i is visited at any
hop of the random walk once the stationary distribution
has been reached. This probability is proportional to the
degree of i; dðiÞ.

2.1.1. Mixing rate and conductance
We are interested on how fast the random walk con-

verges to p, a magnitude that is called the mixing rate [18].
The convergence rate is related with the eigenvalues of

the transition matrix P. A vector ~x is an eigenvector of P
with eigenvalue k iff~xP ¼ k~x (so for example p is an eigen-
vector of P with eigenvalue 1). It is well known [18] that P
has n real eigenvalues k0 ¼ 1 > k1 P � � �P kn�1 P �1 (and
in fact, if G is non-bipartite then kn�1 > �1). It is
also known [25] that the convergence rate to p is gov-
erned by the second largest eigenvalue modulus of P,
maxfk1; jkn�1jg. In most real world networks we can safely
assume that k1 > jkn�1j [18,25,19]. The following holds for
a random walk starting at node i [18]:

PðlÞi ðjÞ � pj

��� ��� 6
ffiffiffiffiffiffiffiffi
dðjÞ
dðiÞ

s
kl

1; ð3Þ

where PðlÞi is the distribution of the state of the random
walk at hop l, when i is the initial state. Thus, we can ex-
pect a fast mixing for high values of the spectral gap 1� k1.

Now, the k1 value is strongly related with the conduc-
tance of the network, UG. Informally, the conductance mea-
sures how well ‘connected’ the graph is. It is defined as
follows. For S # V , the cutset of S; CðSÞ, is the set of edges
with one endpoint in S and the other endpoint in S. The
volume of S; volðSÞ, is defined as the sum of degrees of
the nodes in S, i.e., volðSÞ ¼

P
i2SdðiÞ. Then the conductance

of G is computed as:

UG ¼ min
S�V

volðSÞ6volðVÞ=2

jCðSÞj
volðSÞ : ð4Þ

The relationship between the conductance and the conver-
gence is given by the following expression (Cheeger’s
inequality) [18]:
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
U2
G

2
6 1� k1 6 2UG: ð5Þ

So a good conductance leads to high mixing rates, that is, the
random walk state will converge quickly to the stationary
distribution p. The intuition behind this fact is that in graphs
with good conductance the random walk will be able to
move to any region of the graph easily, whichever the origin
node, and so it will evolve quickly to the equilibrium. We
reason that high connectivity is to be expected in many real
world networks (specially communication networks) and
network models [26–28]. We should note that, on the other
hand, the good conductance property discards some topol-
ogies such as cycles. This fast convergence is necessary to
assume the validity of Eq. (2) from the initial steps of the
random walk, which in turn is required by our model. In
Fig. 2 we show how Eq. (2) holds for Erdos–Renyi and
small-world networks built by random mechanisms, which
are the main focus of our experimental validation of the pro-
posed model (see Section 2.5). So, our first assumption is:

Assumption 1. There is a fast convergence of the random
walk to the stationary distribution p, where Eq. (2) holds.

Another issue to be taken into account is the possible
dependencies between the degrees of neighbors. For
example, networks built by preferential mechanisms such
as those defined by Barabási [31] present such dependen-
cies. As we will see in Section 2.5, this can lead to certain
deviations in mean-based analysis of the random walk (as
our own). Our model applies the following premise:

Assumption 2. The degrees of neighbors are independent.
That is, given any two connected nodes i and jðði; jÞ 2 EÞ
and any two degree values k1 and k2, then P½dðiÞ ¼ k1j
dðjÞ ¼ k2� ¼ P½dðiÞ ¼ k1� ¼ pk1

.
There is another premise needed for our model. Our

analysis estimates the average number of nodes visited
and covered by the random walk at a certain hop from the
values estimated at the previous hop. The new estimation
is valid if there is no dependency between consecutive
steps of the random walk, that is, the following must hold:

Assumption 3. The random walk has statistical properties
identical to the random sampling (i.e. independent walk)
of nodes where the probability of choosing a certain node
is proportional to ki despite the apparent dependencies
between consecutive hops.

The work by Gkantsidis et al. [19] shows the similarities
between independent sampling and random walks, that we
assume for our mean based analysis. As the authors state, in
networks with good connectivity and expansion properties
(which are strongly related to k1) the random walk has a
behavior close to independent sampling, being the proba-
bility of choosing some node proportional to its degree.

Now, given Eq. (2) we state that the probability that the
node visited by the random walk has degree k at each hop
of the random walk, PðkÞ, is also proportional to k and can
be computed as:

PðkÞ ¼
X
i2V

dðiÞ¼k

dðiÞ
2jEj ¼ nk

kP
j

jnj
¼ kpk

�k
: ð6Þ
of random walks in one-hop replication networks, Comput. Netw.
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Fig. 2. In these figures, we show the probability of a search message arriving at a particular node as a function of its degree. For each degree k, the
probability of visiting a certain node i of degree dðiÞ ¼ k is computed as dðiÞ

2jEj. Each dot in the figure represents the measured probability of reaching a certain
node i at any hop of a random walk, its position in the x-axis given by its degree dðiÞ. This probability is computed by Visits to node i

Total hops . We have used both Erdos–
Renyi and small-world (power-law) networks formed by 50,000 nodes, with different average node degrees (10, 20 and 30), and built by random
mechanisms (see Section 2.5). In each network, 10,000 random walks were run, each 10,000 hops long (so Total hops ¼ 100� 106). Each random walk was
started from a node chosen uniformly at random from the set of nodes in the graph. The same experiments have been performed with networks formed by
25,000 and 100,000 nodes, and we found similar results. As it can be readily seen, the probability of a search message arriving at a particular node is
proportional to the degree of the node, as defined in Eq. (2).
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We will apply Eq. (6) intensively for our analysis of the
coverage. Of course, as emphasized before, its correctness
depends on the distance of the random walk to the station-
ary distribution, or how fast it converges to it. We would
like to remark that the property expressed by Eq. (6) is in
fact assumed in previous works about random walks
(e.g., [21,20]) and backed by [19].

This property holds in networks built by random mech-
anisms, like the ones used to built the ER and small-world
networks we target in our experiments. We have studied
the validity of Eq. (6) by comparing the results obtained
running several random walks on different random net-
works (again, Erdos–Renyi and small-world networks built
using random mechanisms) and the values given by PðkÞ
definition.

First, we confirm that the degree independence
assumption is valid, by simulations that aim to measure
if the probability of reaching a node of degree k when fol-
lowing a random walk is affected by the degree k0 of the
node the random walk was in the previous hop ðPðk=k0ÞÞ.
Our results, shown in Fig. 3, lead to the conclusion that
8k; k0Pðk=k0Þ is constant (this constant value is the PðkÞ
predicted by the model), that is, k0 does not have an impact
on k. Observe that these values are the average over a large
number of walks. In a particular walk and network, the
probability of reaching a node of a given degree will de-
pend on the node at which the walk is. However, as men-
tioned before, we are interested in expected values
averaged over all random networks and random walks.
Now, in Fig. 4 we confirm the validity of Eq. (6) by showing
that almost immediately after hop 0 (start node), the prob-
ability of reaching a node of degree k is PðkÞ. Please note
that this does not imply that the stationary distribution
has been reached at hop 1, instead these results are due
to the randomness of the networks used.

In the following, we study how many different nodes
are visited by a random walk as a function of its length
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
(i.e., of the number of steps taken) and of the degree distri-
bution of the chosen network. Subsequently, we extend
this result to also consider the neighbors of the visited
node. These metrics allow us to quantify how much of a
network is being ‘‘known” throughout a random walk pro-
gress. Then, we turn our attention to provide an estimation
of the average search length of a random walk. In the last
subsection, we validate our analytical results by means of
simulations. We assume that only the degree distribution
pk and the size n ¼ jV j of the network are known.

Finally we should remark that, actually, our model
holds for independent walks. The purpose of this section
was to shown how in certain networks random walks
show properties identical to independent walks, which
makes our analysis suitable to the study of random walks
under the assumptions listed above. On the other hand,
we have run some simulations (results are commented in
Section 2.5) that show how in networks where random
walks cannot be assumed to behave as independent walks,
there is a mismatch between the values predicted by our
model and the results obtained by simulations.

2.2. Number of visited nodes

This metric represents the average number of different
nodes that are visited by a random walk until hop l (inclu-
sive), denoted by Vl. Note that nodes may each be visited
more than once, but revisits are not counted.

To obtain Vl, we first calculate the average number of
different nodes of degree k that are visited by a random
walk until hop l (inclusive), denoted by Vl

k. We make a case
analysis:

� When l ¼ 0 (i.e., in the source node): Since the source
node of the random walk is chosen uniformly at random,
then the probability of starting a random walk at a node
of degree k is pk. Therefore,
of random walks in one-hop replication networks, Comput. Netw.
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Fig. 3. These figures compare the probability PðkÞ of reaching a node of degree k as defined by the model PðkÞ ¼ kpk

k

� �
, with the measured probability of

reaching a node of degree k given that the rw comes from a node of degree k0; Pðk=k0Þ. This probability is computed by dividing the amount of visits to nodes
of degree k coming from nodes of degree k0 by the total amount of visits to nodes of degree k. Both for ER and small-world networks the experimental results
are averaged over three different networks with the same average degree and size ðn ¼ 105Þ. In each network 10,000 random walks, 10,000 hops long, were
run.
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Fig. 4. These figures compare the probability PðkÞ of reaching a node of degree k as defined by the model PðkÞ ¼ kpk
�k

� �
, against the measured probability that

the node visited at hop l has degree k, Pðk=lÞ. Both for ER and small-world networks the experimental results are averaged over three different networks
with the same average degree and size ðn ¼ 50� 104Þ. In each network 106 random walks were run, each one 100 hops long. The measured probability
Pðk=lÞ was computed as Pðk=lÞ ¼ Visits to nodes of degree k at hop l

106 .
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V0
k ¼ 1 � pk þ 0 � ð1� pkÞ ¼ pk: ð7Þ

� When l ¼ 1 (i.e., at the first hop): Here we apply that the
probability of visiting some node of degree k at any hop
is given by PðkÞ (Eq. (6)). This is based on the assumption
that the random walk behaves similarly to independent
sampling despite dependencies between consecutive
hops (based on [19], see Section 2.1). We deem this
premise to be reasonable even at the first stages of
the random walk, due to the high mixing rates found
in the type of networks on which we focus our work
(again, see Section 2.1). Recall that the experimental
evaluation both of this assumption (Fig. 2) and of our
model (shown in Section 2.5), seem to verify this. Thus,
we have that
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
V1
k ¼ V0

k þ PðkÞ ¼ pk þ
kpk

�k
: ð8Þ

� When l > 1: we must take into account the probability
of the random walk arriving at an already visited node.
To compute such a probability, we define the following
two values:
– Pv ðk; lÞ: This represents the probability that, if the

random walk arrives at a node of degree k at hop l,
that node has been visited before. It can be obtained
as follows:
of rand
Pvðk; lÞ ¼
Vl�2

k

nk
: ð9Þ
Note that we put Vl�2
k instead of Vl�1

k because the node vis-
ited at hop l� 1 can not be visited at hop l (no vertex is
connected to itself).
om walks in one-hop replication networks, Comput. Netw.
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Pl
(2
– Pb: This is the probability that at any given hop the
random walk is moving back to the node where it
came from3. Since any visited node has degree k with
probability PðkÞ, then the random walk will go back
through the same link from which it came with prob-
ability 1=k. Therefore, we have:
X

Her
not w
ere i

ease
009
Pb ¼
k

PðkÞ1
k
¼ 1

�k
: ð10Þ
Using these probabilities, Vl
k can be written as

Vl
k ¼ Vl�1

k þ PðkÞð1� PbÞð1� Pvðk; lÞÞ

¼ Vl�1
k þ k pk

�k
1� 1

�k

� �
1� Vl�2

k

nk

 !
: ð11Þ

Finally, taking the results obtained in Eqs. (7), (8) and (11),
we have that the total number of different nodes visited
until hop l is

Vl ¼
X

k

Vl
k: ð12Þ
a
a(b) a(c)
2.3. Number of covered nodes

This metric provides an estimation of the average num-
ber of different nodes covered by a random walk until hop l
(inclusive), denoted by Cl. A node is covered by a random
walk if such a node, or any of its neighbors, has been vis-
ited by the random walk.

To obtain Cl, we first calculate the number of different
nodes of degree k covered at hop l, denoted by Cl

k.

� When l ¼ 0:
ed

cb

e(c)d(b)

c(e)b(d)

c(b)b(c)

b(a) c(a)

Fig. 5. The figure shows a simple graph formed by 5 nodes (named a; b; c,
d and e) where there is a random walk that follows the path d� b� c � e.
At each node, we represent the different ‘‘endpoints” that are hooked on
that node by means of small circles. For instance, the endpoints aðbÞ and
C0
k ¼ pkð1þ kPðkÞÞ þ

X
j–k

pjjPðkÞ ¼ V0
k þ PðkÞ�k: ð13Þ

The first term takes into account the possibility that the
source node has degree k. The second term refers to the
number of neighboring nodes (of the source node) of
degree k. If the source node has degree j (which hap-
pens with probability pj) then, on average, j PðkÞ nodes
of degree k will be covered, since each one of the j
neighboring nodes of the source node will have degree
k with probability PðkÞ.

� When l > 0: Given a link ðv ;wÞ 2 E, we say that it has
two endpoints, which are the two ends of the link. We
denote the endpoint of the link at node v by vðwÞ, and
similarly the endpoint of the link at node w by wðvÞ.
We say that vðwÞ hooks onto node v. We also say that
vðwÞ has been checked by a random walk if such a ran-
dom walk has visited node w. These concepts are graph-
ically explained in Fig. 5.

Now, let us denote by El the number of endpoints
checked for the first time at hop l, and by Puðk; lÞ the prob-
e we can easily adapt the model to the avoiding random walk. If we
ant to consider the case of a random walk moving back to the node

t came from, it is enough to assign Pb ¼ 0.

cite this article in press as: L. Rodero-Merino et al., Performance
), doi:10.1016/j.comnet.2009.10.006
ability that these endpoints hook onto still uncovered
nodes of degree k. Then, Cl

k (where l > 0) can be written
as follows:

Cl
k ¼ Cl�1

k þ Puðk; lÞEl: ð14Þ

l
– To obtain E , we consider the number of different end-

points checked after hop l to be
P

jjV
l
j. So, the number

of endpoints checked for the first time at hop l isP
jðV

l
j � Vl�1

j Þj. However, one of the endpoints hooks onto
the node the random walk comes from (i.e., it cannot
increase the amount of nodes that are covered). Thus:
El ¼
X

j

ðVl
j � Vl�1

j Þðj� 1Þ: ð15Þ
– To obtain Puðk; lÞ, on one hand we consider the overall

number of endpoints hooking onto uncovered nodes of
degree k just before hop l is kðnk � Cl�1

k Þ. On the other
hand, the overall number of endpoints is

P
jjnj, and

the overall number of checked endpoints until hop
l� 1 (inclusive) is

P
jjV

l�1
j . That is, the number of end-

points not checked just before hop l is
P

jjnj �
P

jjV
l�1
j .

Therefore, we can write:
Puðk; lÞ ¼
kðnk � Cl�1

k ÞP
j

jnj �
P

j
jV l�1

j

: ð16Þ
aðcÞ are said to be hooked onto node a. In the graph, when the random
walk starts (at node d), then endpoint bðdÞ is said to be checked. Similarly,
when it visits node b, then endpoints dðbÞ; aðbÞ and cðbÞ are said to be
checked. The same mechanism applies when the random walk visits
nodes c and e.

of random walks in one-hop replication networks, Comput. Netw.
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Substituting Eqs. (15) and (16) into Eq. (14), we have that

Cl
k ¼ Cl�1

k þ kðnk � Cl�1
k ÞP

j
jnj �

P
j

jV l�1
j

0
BB@

1
CCA�X

j

V l
j � Vl�1

j

� �
ðj� 1Þ:

ð17Þ

Finally, taking into account Eqs. (13) and (17), we have that
the total number of nodes covered after hop l is

Cl ¼
X

k

Cl
k: ð18Þ
2.4. Average search length

Using the previous metric, we are now able to provide
an estimation of the average search length of random
walks, denoted by �l. Formally, �l is given by the following
expression:

�l ¼
X1
l¼0

lPf ðlÞ; ð19Þ

where Pf ðlÞ is the probability that the search finishes at hop
l (i.e., the probability that the search is successful at hop l,
having failed during the previous l� 1 hops). Let us define
the probability of success at hop l, denoted by PsðlÞ, as the
probability of finding, at that hop, the node we are search-
ing for. PsðlÞ can be obtained as the relation between the
number of new nodes that will be covered at hop l, and
the number of nodes that are still uncovered at hop l. That
is,

PsðlÞ ¼
Cl � Cl�1

n� Cl�1 : ð20Þ

Now, Pf ðlÞ can be obtained as follows:

Pf ðlÞ ¼ PsðlÞ
Yl�1

i¼0

1� PsðiÞð Þ ¼ Cl � Cl�1

n
: ð21Þ

Therefore, �l can be written as

�l ¼ 1
n

X1
l¼0

lðCl � Cl�1Þ: ð22Þ
2.5. Experimental evaluation

We have run a set of experiments to evaluate the accu-
racy of the expressions presented in the previous subsec-
tions. The results obtained are presented in this section.

For our work, we consider two kinds of network: small-
world networks (constructed as in [21]) and Erdos–Renyi
networks (constructed as in [30]).

� Small-world networks [21,31]. In [32] it is shown that
many real world networks present an interesting
feature: each node can be reached from any other node
in few hops. These networks are typically denoted
small-world networks. The Internet, the Web, the
Science collaboration graph, etc. are examples of real
world networks that are consistent with this property.
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
This kind of networks are also specially interesting for
our work because here the revisiting effect commented
in Section 1 is strongly present due to the uneven degree
distribution. We build small-world networks using the
mechanism described in [21], which leads to networks
whose degree distribution follows a power-law distribu-
tion pk � k�a (power-law networks).

� Erdos–Renyi (ER) random networks [30]. For two any
nodes i; j 2 V there is a constant probability c that they
are connected ðði; jÞ 2 E). The resulting degree distribu-

tion is a binomial distribution pk �
n
k

� �
ckð1� cÞn�k.

See Fig. 6 for an illustrative example of both kinds of
networks.
2.5.1. Number of visited and covered nodes
Our first goal is to study the evolution of the network

coverage by random walks in real networks.
The experiments were run on networks of two sizes,

n ¼ 5� 104 and n ¼ 105 nodes. Networks were built using
three different average degrees: �k ¼ 10; �k ¼ 20 and �k ¼ 30.
In each network we ran 104 random walks of length
n ¼ jV j. The source node of each random walk was chosen
uniformly at random. From the experiments, we obtained
the average number of visited and covered nodes for each
degree k at each hop l. Finally, for each network, we ex-
tracted its degree distribution nk and apply the expressions
described in the previous section to get a prediction of
those values, given by Vl

k and Cl
k. Results are shown in Figs.

7–10. For the sake of clarity, the experimental results are
shown every 2000 hops in all figures. Model predictions,
on the other hand, are drawn as lines.

Fig. 7a shows the evolution of the number of visited
nodes in ER and small-world networks of size n ¼ 5� 104

nodes, with two different average degrees �k ¼ 10 and
�k ¼ 30. We see that, although the length of the random
walks is enough to potentially include all the nodes, only a
fraction of them are visited. This happens because of the
revisiting effect, and it is more evident when the number
of hops increases, since the probability of revisiting grows
with the number of hops. The revisiting effect is stronger
in small-world networks than in random networks. The rea-
son is the uneven distribution of the nodes degrees: there
are some nodes with a very high degree that will be visited
once and again by the random walk. Thus, the chances of
finding new nodes at each hop are lowered faster in small-
world networks than in ER networks. Also, we observe in
Fig. 7a that in networks of smaller �k the revisiting effect is
stronger. Finally, Fig. 7b shows the impact of the network
size n on the amount of visited nodes. As expected, a greater
n implies a lesser number of revisits for the same number of
hops. In all cases, the prediction Vl of the total amount of dif-
ferent nodes visited is very close to the experimental results.

In Fig. 8 we study the accuracy of the predictions of the
amount of visited nodes of a particular degree k at each
hop l;Vl

k. We draw the results and predictions of degrees
k ¼ �kþ 5 and k ¼ �k� 5, for �k ¼ 10; �k ¼ 20 and �k ¼ 30.
Again, it can be seen that the model predictions fit very
well with the experimental results, despite the revisits
and the different behavior observed for different degrees.
of random walks in one-hop replication networks, Comput. Netw.
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(a) Erdos-Renyi network. (b) Small-world network.

Fig. 6. In the Erdos–Renyi network most nodes have approximately the same number of links. In contrast, the small-world network is heterogeneous: the
majority of the nodes have approximately the same number of links but a few nodes have a large number of them.
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Fig. 7. Visited nodes Vl .

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

Number of Hops

k -=10, Visited Nodes with k=5
k
 -

=10, V l

5 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

Number of Hops

k -=10, Visited Nodes with k=15
k -=10, V l

15

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0  20000  40000  60000  80000

N
um

be
r 

of
 N

od
es k

 -
=20, Visited Nodes with k=25

k -=20, V l

25

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

k -=30, Visited Nodes with k=25
k
 -

=30, V l

25

 0
 500

 1000
 1500
 2000
 2500
 3000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es k -=30, Visited Nodes with k=35

k -=30, V l

35

(a) Erdos-Renyi; n 105; k 10, 20, 30.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

Number of Hops

k -=10, Visited Nodes with k=5
k -=10, V l

5

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

Number of Hops

k -=10, Visited Nodes with k=15
k -=10, V l

15

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es k -=20, Visited Nodes with k=15

k -=20, V l

15

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

k -=20, Visited Nodes with k=25
k
 -

=20, V l

25

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0  20000  40000  60000  80000  100000

N
um

be
r 

of
 N

od
es

k
 -

=30, Visited Nodes with k=35
k -=30, V l

35

(b) Small-world; n 105; k 10, 20, 30.

Fig. 8. Visited nodes Vl
k , for k ¼ kþ 5 and k ¼ k� 5.

L. Rodero-Merino et al. / Computer Networks xxx (2009) xxx–xxx 9

ARTICLE IN PRESS
Fig. 9 gives the results of the experiments run to study
the coverage of the random walk. Fig. 9a shows how the
coverage grows faster in small-world networks than in
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
ER networks for networks of the same average degree �k.
This contrasts with the amount of visited nodes, that be-
have in the opposite way (see previous paragraphs). The
of random walks in one-hop replication networks, Comput. Netw.
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Fig. 10. Covered nodes Cl
k , for k ¼ kþ 5 and k ¼ k� 5.
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reason is the presence of well-connected nodes, that are
quickly visited during the first hops of the random walk
and increase considerably the coverage because of the high
amount of neighbors they have. For example, after 4000
hops, the random walk has covered about half of the
small-world network with �k ¼ 10, while in the ER network
of the same �k the random walk only has covered close to
30% of the nodes. Moreover, we can see that the network
average degree has also an important impact on the cover-
age. In both kind of networks the coverage grows faster
when the average degree is higher. Besides, we observe
that the difference of the coverage for both networks de-
creases more quickly for a higher �k. Fig. 9a confirms the
importance of the average degree, comparing the results
for networks of different size and �k. In addition, Fig. 9b
compares the results of the coverage for ER networks of
different sizes and average degrees. As it could be ex-
pected, the networks of smaller size require less hops to
be covered. We observe also that the average degree has
an important influence on the coverage difference. The
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
greater the average degree, the faster the coverage of both
networks converges. In all cases, the Cl values given by the
model predict very well how the coverage behaves and
evolves.

Fig. 10 allows to check the precision of the coverage
predictions for different k values, Cl

k. As before, the values
provided are very close to the experimental results,
although the behavior of the coverage changes strongly
depending on the kind of network and average degree.

Finally, we check the model accuracy for random walks
that avoid the previous node, the avoiding random walk. As
stated in Section 2.2, the avoiding random walk can be eas-
ily implemented by our model just by setting Pb ¼ 0 (see
Eq. (10)). Results are shown in Fig. 11. There we compare
the coverage of pure and avoiding random walks in ER
and small-world networks of size n ¼ 105 nodes and aver-
age degree k ¼ 10. Fig. 11a confirms that, as expected, the
avoiding random walk is able to visit a greater number of
different nodes, as the revisiting effect is, to a certain de-
gree, lessened. However, Fig. 11b shows that this has little
of random walks in one-hop replication networks, Comput. Netw.
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impact on the network coverage. We find that there is only
a small increase on the amount of covered nodes when
using avoiding random walks, for both kind of networks.
Nonetheless, in all cases the Vl and Cl values given by the
model are very close to real results.

2.5.2. Average search length
For the experiments regarding the average search

length we used networks whose sizes ranged from 104 to
2� 105 nodes. In each experiment we ran 104 searches,
averaging the obtained results. At each search, two nodes
(one corresponding to the source and the other to the des-
tination) were chosen uniformly at random. Starting from
the source, a random walk traversed the network until
the destination node was found (i.e., a neighbor of the des-
tination is visited).

The first thing to note is that the average search length
grows linearly with the network size in both ER and small-
world networks. Besides, the average degree �k has an
important effect on the results. The bigger the �k, the short-
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
est the searches are. The reason is that a higher �k implies
that at each hop more nodes of the network are discovered.
Also, it can be observed in Fig. 12 that the average search
length is greater in ER networks than in small-world net-
works. This can be explained if we take into account that
random walks, on average, cover more nodes in small-
world networks than in ER networks (see Fig. 9).

As in the previous experiments, Fig. 12 also shows that
our experimental results regarding the average search
length correspond very close to the analytical results that
were obtained.

At this point, we would like to note that, given the
assumptions we made in our analytical model, it seems
that the very good match achieved with the experimental
results could only occur if these assumptions are correct.
As a matter of fact, we have verified, in practice (see Figs.
2 and 3), that the type of networks we consider in this
paper, indeed, fulfill our assumptions.

On the other hand, it is clear that if we take into account
networks that do not fulfill some of our assumptions,
of random walks in one-hop replication networks, Comput. Netw.
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then a certain mismatch should be expected. For instance,
networks built by preferential mechanisms are known not
to preserve the independence of degrees of neighbors
[29]. Therefore, we should not aim for a very close corre-
spondence between analytical and experimental results.
We have performed the same experiments we ran for
random and small-world networks regarding the average
search length, but this time with networks built using
the preferential attachment mechanism proposed by
Barabási [31]. Now, we have observed that, as expected,
in preferential networks our experimental results do not
correspond very close to the analytical results (see
Fig. 13a). Instead, the model seems to be consistently
pessimistic. Also, the error continuously grows with the
network size.

Finally, we have tested the model against Toroidal net-
works of different average degrees �k ¼ 10 (5 dimensions)
and �k ¼ 16 (8 dimensions). Our intention is to analyze net-
works which are not random at all. Results, which are
shown in Fig. 13b, show a very clear mismatch among
the results predicted by the model and the actual perfor-
mance of the random walk.
3. Duration of searches by random walks

In this section, we present the second part of our model.
Here we provide useful expressions that allow to predict
the performance of random walks as a search tool, which
is the main goal of this work. These expressions rely on
the same estimation of the average search length (like
the one described in the previous section), that is com-
bined with Queuing Theory [33]. As a result, given the pro-
cessing capacities and degrees of nodes, we are able to
compute two key values:

� The load limit: the searches rate limit that the network
can handle before saturation.

� The average search time: the average time it takes to
complete a search, given the global load.
Please cite this article in press as: L. Rodero-Merino et al., Performance
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Also, we show how these expressions can be used to
analyze which features a network should have so random
walks have a better performance (i.e., searches are solved
in less time). In particular, we focus on studying the rela-
tionship between degree and capacity distributions, show-
ing that the minimum search time is obtained when nodes
of higher capacities are also those of higher degrees.

In our analysis, networks are assumed to be Jackson net-
works [33]: the arrival of new searches into the network
follows a Poisson distribution and the service at each node
is a Poisson process.

3.1. Searches length and load on nodes

Our first step is to set the relationship between the
average searches length and the system load. Each search
is processed, on average, 1þ�l times (once at the source
node, and once at each step of the random walk). Using
this, we can express the total load on all the nodes of the
system, k, as

k ¼ ð1þ�lÞc; ð23Þ

where c is the load injected in the system by new searches,
that we assume to be known. Note that k is composed of
the new generated searches ðcÞ, plus the searches that
move from one node to another, denoted by c0. Hence,

�l ¼ c0 þ c
c
� 1 ¼ c0

c
: ð24Þ

To compute the load on each particular node j; kj, let us take
into account that the probability that a random walk visits a
node is proportional to the node’s degree (see Section 2).
This implies that, for each node j 2 V , the load on node j
due to search messages, denoted c0j, is proportional to its de-
gree kj. As a result, we have that there is a value s such that
c0j ¼ skj, for all j. Hence, c0 ¼

P
jc0j ¼ sd, where d is the sum of

all degrees in the network (i.e., d ¼
P

knkk). Therefore,

s ¼
�lc
d
: ð25Þ
of random walks in one-hop replication networks, Comput. Netw.
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Assuming that all nodes generate approximately the same
number of new searches ðc=nÞ, we can compute the aver-
age load at node j as

kj ¼ skj þ
c
n
¼ c

�lkj

d
þ 1

n

 !
: ð26Þ

where the first term represents the load due to search mes-
sages, and the second term to the searches generated at
node j. Note that any other search generation rate model
can be implemented just by changing the term c=n.

3.2. Average search duration

In order to obtain the average search duration, Tr , we
use Little’s Law [33], which states that

r ¼ c� Tr; ð27Þ

where r is the average number of resident searches in the
network (i.e., searches that are waiting or being served),
and c is the average number of searches generated per unit
of time (i.e., the arrival rate of searches). Observe that c is
assumed to be known. Hence, the challenge to compute Tr

is to obtain r. Let rj be the number of resident searches in
node j. Then, r ¼

P
jrj.

To obtain rj, we apply Little’s Law again, this time indi-
vidually to each node j:

rj ¼ kj � Tj
r ; ð28Þ

where Tj
r is the average search time at node j and kj is the

average load at node j, which includes both searches gener-
ated at node j and searches due to messages from other
nodes. Next we use that, by Jackson’s Theorem [34] (recall
we assume the network to be a Jackson network), each
node j can be analyzed as a single M/M/1 queue with Pois-
son arrival rate kj and exponentially distributed service
time with mean Tj

s (which can be computed from the node
capacity, that we assume to be known). Then:

Tj
r ¼

Tj
s

1� qj
; ð29Þ

where qj is the utilization rate and Tj
s is the average service

time at node j. As qj ¼ kjT
j
s, we can write

Tj
r ¼

Tj
s

1� kjT
j
s

: ð30Þ

Once we have kj and Tj
r , we can combine them to obtain

Tr ¼
r
c
¼

P
j

rj

c
¼ 1

c
X

j

kjT
j
r ¼

1
c
X

j

kjT
j
s

1� kjT
j
s

¼
X

j

Tj
s

�lkj

d þ 1
n

� �
1� Tj

sc
�lkj

d þ 1
n

� � ¼X
j

nd

Tj
sðkj

�lnþ dÞ
� c

 !�1

: ð31Þ

That is, we have provided an expression that computes the
average search time using the topology, the average service
times of nodes, and the search arrival rate.

3.3. Load limit

Implicitly, in our previous results it has been assumed
that no node is overloaded (i.e., kj < 1=Tj

s for all j). Other-
Please cite this article in press as: L. Rodero-Merino et al., Performance
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wise, the network would never reach a stable state. Thus,
a key value for any network is its load limit: the minimum
search arrival rate ðcÞ that would overload the network, de-
noted by co. Clearly, co ¼minjfcj

og being cj
o the minimum

search arrival rate that would overload node j.
From Eq. (26), we have that

kj ¼ kj

�lc
d
þ c

n
: ð32Þ

Also, since no node must be overloaded, it must be satisfied
that

kj <
1

Tj
s

: ð33Þ

Combining Eq. (32) with Eq. (33) we have that, for each j,
the following must hold:

c <
dn

Tj
sðkj

�lnþ dÞ
: ð34Þ

Therefore, the load limit for node j is

cj
o ¼

dn

Tj
sðkj

�lnþ dÞ
; ð35Þ

and

co ¼min
j

dn

Tj
sðkjlnþ dÞ

( )
: ð36Þ
3.4. Experimental evaluation

3.4.1. Average search duration
In this subsection, we present the results of a set of

experiments addressed to evaluate, in practice, the accu-
racy of our model for the average search time. As in the
previous experiments (Section 2.5), we conducted exten-
sive simulations over ER and small-world networks. All
networks are made up of 104 nodes.

In each experiment, nodes generate new searches fol-
lowing a Poisson process with rate c=n, where c is the glo-
bal load on the network. When a node starts a search for a
resource, it first checks whether it already knows that re-
source (i.e., if the node itself or any of its neighbors hold
the resource). If so, the search ends successfully. Other-
wise, a search message for the requested resource is cre-
ated and sent to some neighbor node chosen uniformly
at random. When a node receives a search message, it also
verifies whether it knows the resource. If so, the search is
finished. Otherwise, the search is again forwarded to an-
other neighbor chosen uniformly at random. The experi-
mental results are obtained by averaging the results that
were obtained.

We used six different global loads ðcÞ : 0:15� co;0:3�
co;0:45� co;0:6� co;0:75� co and 0:9� co, where co is
the minimum arrival rate that would overload the network
(see Section 3.3). The distribution of the nodes search
processing capacities ci is derived from the measured
bandwidth distributions of Gnutella [35] (see Table 1).
Capacities are assigned so that nodes with a higher degree
are given a higher capacity. All nodes are assumed to have
the same number of resources w ¼ 10;000. Each resource
of random walks in one-hop replication networks, Comput. Netw.
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Table 1
Capacity distributions.

Percentage of nodes (%) Processing capacity

20 1
45 10
30 100
4.9 1000
0.1 10,000
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is held by one node, and all resources have the same prob-
ability of being chosen for search. The processing time at
each node i follows an exponential distribution with an
average service time computed as Ti

s ¼ wki=ci. This average
is computed dividing the amount of resources checked for
each search (the total amount of resources known,
wðkþ 1Þ, minus the resources of the node the search mes-
sage came from, w) by the node’s capacity.

For each load, we measured the average search times
experimentally for each network. Results are shown in
Fig. 14. It can be seen that, as expected, the average search
time always increases with the load, undergoing a higher
growth when it approaches the maximum arrival rate.
Furthermore, our experimental results show a very close
correspondence with the analytical results that were
obtained.

3.4.2. Load limit
We have computed the co values for random and small-

world networks with different average degrees. For each
kind of network and average degree five networks were
built with the capacity distribution presented in Table 1.
Our goal was to observe the variation of the co for net-
works of the same type and �k, and also to study the differ-
ence among the co values depending on the network kind
and average degree.

Results, which are shown in Fig. 15, differ for random
and small-world networks. The first thing to note is that
small-world networks can handle a greater load than ran-
dom networks.
Please cite this article in press as: L. Rodero-Merino et al., Performance
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Small-world networks present variations of the co val-
ues even for networks of the same average degree. Despite
this variation, it is clear that the load limit tends to grow
with the �k. The reason is that a greater �k implies a smaller
global load for the same rate of queries injected to the sys-
tem. Recall that the total load is given by ð1þ�lÞc (Eq. (23))
and that higher average degrees lead to lesser average
searches lengths �l (Fig. 12b). Hence, it is possible to per-
form more queries before overloading the network.

Erdos–Renyi networks however behave in a very differ-
ent manner. They present very little variations of the co val-
ues. And, more surprising, there is a small decrease of the
load limit when the �k grows. This contrasts with the behav-
ior of small-world networks. As it is shown in Fig. 12a, larger
average degrees imply smaller average searches lengths
and so a smaller global load. However, the co that can be
handled by the network does not change accordingly to this.
The reason seems to be that in ER networks the load is more
evenly distributed among nodes. This implies that low
capacity nodes have to handle an important amount of
searches. Besides, a greater average degree impacts on the
average services times Ts of these nodes, as they know,
and so they have to process, more resources per search.
Hence, these nodes keep being the bottleneck of the net-
work despite the smaller average search length, preventing
the system to be able to handle a greater load.

However, it is important to recall that these results are
also due to the capacity distribution used, and how it was
distributed among the nodes. In small-world networks, if
we assign low capacities to high degree nodes we can ex-
pect them to become bottlenecks of the network that force
small co values. In ER networks, adding more high capacity
nodes could change the co tendency so it would grow with
the average degree. Exploring all these phenomena is be-
yond the scope of this paper.

3.5. Optimal relationship between degree and capacity
distributions

In this section we show that, when there is a full corre-
lation between the capacity of a node (i.e., the number of
of random walks in one-hop replication networks, Comput. Netw.
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searches a node can process per time unit) and its degree,
this leads to a minimal value of the average search time Tr .

Let us first state the relation we assume between the
capacity cj and the average service time Tj

s of a node j.
We assume that the first is a parameter that does not de-
pend on the degree or the number of resources known by
the node, and only depends on the processor and network
connection speeds. We assume that the second is a strictly
increasing function of the node’s degree f ðkjÞ. We assume
that a node’s service time is directly proportional to its de-
gree and inversely proportional to its capacity as follows:

Tj
s ¼

f ðkjÞ
cj

: ð37Þ

Let us now consider a pair of nodes i; j 2 V , such that kj > ki

(so f ðkjÞ > f ðkiÞ), and two possible positive capacities c1

and c2, such that c1 > c2. We show that, if no other degree
or capacity assignment changes, having cj ¼ c1 and ci ¼ c2

gives a smaller average search time, Tr , than the average
search time T 0r with reverse assignment c0j ¼ c2 and
c0i ¼ c1. Using Eq. (37), we obtain the following possible
average service times:

Tj
s;1 ¼

f ðkjÞ
c1

; Ti
s;1 ¼

f ðkiÞ
c2

; Tj
s;2 ¼

f ðkjÞ
c2

; Ti
s;2 ¼

f ðkiÞ
c1

;

ð38Þ

in which Ts;1 are the service times obtained with the first
capacity assignment and Ts;2 are the service times obtained
with the second. From the above equations, we have

Tj
s;1Ti

s;1 ¼
f ðkiÞf ðkjÞ

c1c2
¼ Tj

s;2Ti
s;2; ð39Þ

and

Ti
s;1 � Ti

s;2 ¼ f ðkiÞ
c1 � c2

c1c2
< f ðkjÞ

c1 � c2

c1c2
¼ Tj

s;2 � Tj
s;1: ð40Þ

Let ki and kj be the loads on i and j. Since ki < kj, then
ki < kj. Hence, from this and Eq. (40), we find that

kiT
i
s;1 þ kjT

j
s;1 < kiT

i
s;2 þ kjT

j
s;2: ð41Þ

To compute the values Tr and T 0r , we use Eq. (31)

Tr ¼
1
c

ri þ rj þ
X

h–i;h–j

rh

 !
; ð42Þ

T 0r ¼
1
c

r0i þ r0j þ
X

h–i;h–j

rh

 !
; ð43Þ

where ri and rj are obtained with the first capacity assign-
ment and r0i and r0j with the second. Observe that rh remains
the same for any node h that is neither i nor j, because its
degree, load, and capacity are just the same for both cases.
Hence, if ri þ rj < r0i þ r0j then Tr < T 0r .

From Eqs. (28) and (30), we obtain that

ri þ rj ¼
kiT

i
s;1

1� kiT
i
s;1

þ
kjT

j
s;1

1� kjT
j
s;1

¼
�2kikjT

i
s;1Tj

s;1 þ kiT
i
s;1 þ kjT

j
s;1

1þ kikjT
i
s;1Tj

s;1 � ðkiT
i
s;1 þ kjT

j
s;1Þ

ð44Þ
Please cite this article in press as: L. Rodero-Merino et al., Performance
(2009), doi:10.1016/j.comnet.2009.10.006
and

r0i þ r0j ¼
kiT

i
s;2

1� kiT
i
s;2

þ
kjT

j
s;2

1� kjT
j
s;2

¼
�2kikjT

i
s;2Tj

s;2 þ kiT
i
s;2 þ kjT

j
s;2

1þ kikjT
i
s;2Tj

s;2 � ðkiT
i
s;2 þ kjT

j
s;2Þ

: ð45Þ

Finally, applying Eqs. (39) and (41), we conclude that

ri þ rj < r0i þ r0j ð46Þ
and hence

Tr < T 0r : ð47Þ
This proves that, for a given degree distribution, the best
performance will be obtained by assigning the largest
capacities to the nodes with the largest degrees. Note that
we have found a condition that is necessary in order to at-
tain the minimum possible Tr , once the degree distribution
has been set. However, different degree distributions can
obtain very different Tr values.

4. Conclusions

In this paper, we have presented an analytical model
that allows us to predict the behavior of random walks.
Furthermore, we have also performed some experiments
that confirm the correctness of our expressions.

Some work can be carried out to complement our re-
sults. For instance, several random walks can be used at
the same time, a situation that could be used to further im-
prove the efficiency of the search mechanism. These ran-
dom walks could run independently or, in order to cover
separated regions on the graphs, coordinate among them
in some way.
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