Available at

www.ElsevierComputerScience.com Information
POWERED BY SCIENCE @DIRECT“ ProceSSlng
Letters

ELSEVIER Information Processing Letters 90 (2004) 53-58

www.elsevier.com/locatefipl

Relationships between memory models

Vicent Cholvi®*, Josep Bernabéu

@ Departamento de Lenguajes y Sistemas Informéticos, Universitat Jaume |, Castell6n, Spain
b |nstituto Tecnol 6gico de Informética, Universitat Politécnica de Valéncia, Valéncia, Spain

Received 3 August 2003; received in revised form 14 January 2004
Communicated by J.L. Fiadeiro

Abstract

There have been many proposals of shared memory systems, each one providing different types of memory coherence for
interprocess communication. However, they have usually been defined using different formalisms. This makes it difficult to
compare among them the different proposals put forward. In this paper we present a formal framework for specifying memory
models with different coherency properties. We specify most of the known shared memory models using our framework,
showing some of the relationships that hold among them.

00 2004 Elsevier B.V. All rights reserved.

Keywords: Formal methods; Memory models; Consistency models; Distributed systems; Concurrency

1. Introduction ent for concurrent accesses to shared variables. There
have been numerous proposals and implementations

Shared memory (reading and writing of shared of shared memory systems providing different seman-

variables) is a mechanism used for inter-process com- fics [1-7].

munication in concurrent programs which has several ':(Seems c:ear that “strong” memory mo?}els [1.2]
important benefits. In the first place, it hides from Make It simpler to write programs, since the return

the programmer the particular communication tech- value of each read operation is more predictable. On
nigue employed. Therefore, application developers do the_ (_)ther h_and, weaker memory models can be more
not need to be involved in the management of mes- efﬁmently implemented, since they a"°V.V more pos-

sages. In addition, it allows complex shared structures sible return values for each read operation [3-7], re-

T : sulting in a lower coherence overhead. However, the
to be passed by reference, providing a simple and well- ". .
. simple programming style that programmers are ac-
known paradigm.

. . . m nn rifi for th ke of per-
However, while the semantics of reads and writes customed to cannot be sacrificed for the sake of pe

. tal | the situation is diff formance (that would eliminate the familiar program-
In Séquential programs are clear, the siiuation 1S ditter- ming paradigm that is one of the main advantages of

shared memory). Therefore, this poses a tradeoff be-
* Corresponding author, tween simplicity and performgnce.
E-mail addresses: veholvi@uji.es (V. Cholvi), On the other hand, the different memory models
josep@iti.upv.es (J. Bernabéu). have usually been defined using different formalisms.

0020-0190/$ — see front mattér 2004 Elsevier B.V. All rights reserved.
d0i:10.1016/j.ipl.2004.01.007

54 V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53-58

This makes it difficult to determine how those memory that a given computation may have several finished
models are related and if a given memory model can computations).
be safely used for any task for which another memory ~ Now we provide the definitions of some relation-
model is satisfactory. In this paper we present a ships for the operations of a computation, which we
formal framework for specifying memory models with use later on to characterize the computations forming
different coherency properties. We specify most of the part of a memory model (formally defined in the next
known shared memory models using our framework, section).
showing some of the relationships that hold among To simplify the notation, we assume that values
them. are uniquely written in any variable. This assumption
The rest of the paper is organized as follows. In does not introduce new restrictions as it can be forced
Section 2 we introduce the basic formalism and in by associating a time-stamp with writes (there are
Section 3 we present definitions for many of the logicalimplementation of clocks that provide bounded
most significant memory models. In Section 4 we Values [8]). Also, we assume that the initial values of
show some of the relationships that hold among those the variables are set by using write operations.

memory models. Finally, in Section 5 we present our
Conc|uding remarks. Definition 1 (Relat|0n3h|p5) Let op and Obbe two

operations in a computatian We define theatomic,
programandcausal relationships as follows:
2. Preliminaries . .
e Atomic: op <% Op if end(op) happens before
star{op) in a.

In our formalism, we consider only operations for . ; :
. =r only op . e Program: op <% op if they are operations from
accessing shared resources (i.e., reads and writes). he same process and @i, op

A write operation issued by procesto store the value e Causal: op <2, op if some of the following
u in the variablex is denoted aw; (x)u. Similarly, a holds:

read operation reporting to procesthatu is stored (1) op<&sop,

in the variablex is denoted as; (x)u. Sometimes, to (2) op= w;(x)u and op = r;(x)u (i.e., the read
describe an operation op, we use a pair of actions, value is the written one),

star{op) and endop), which respectively denote the (3) Fop’: 0p<Z&y, 0P <%, OF-

start and end of that operation. We also take into
account unfinished operations, which are described by Al of them are partial relationships and, as it can
using only the starting action. be readily seen, op®,op implies both op<Z,,

A computation consists of a sequence of read and op and op<% o Op. However, whereas both the
write operations. In this work, only those computa- atomic and program relationships are orders, the
tions that follow the model of sequential processes causal relationship, since it is cyclic, is a preorder.
executing blocking operations are taken into account, Basically, the atomic order [2] captures the “real-
that is, a process computing an operation is forced to time” ordering of non-overlapping operations. The
block until the operation completes. Therefore, com- program order [5] relaxes the atomic order in such
putations will be formed by finished operations with a way that operations follow the atomic order, but
the possible exception of the last one for each process,only those from the same process. Finally, the causal
which can be unfinished. In order to reason with a pro- preorder [3] is defined in order to capture “causality”
gram computation with unfinished operations, we can in the sense of [9].

“finish” it by either removing each unfinished opera-

tion or replacing it by a finished operation (that cap-

tures the notion that some unfinished operations had 3. Formalization of memory models

“visible” effect, while the others did not). We say a

computation fulfills a given property if at least one of In this section, we show how to formalize some
its finished computations fulfills that property (note of the most widely known memory models proposed

V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53-58

in the literature. We do not consider memory models
such agelease [10], entry [11], etc. since they make
use of synchronization operations.

First, we provide a definition of memory model
completely general.

Definition 2 (Memory model). We define amemory
model M as the set formed by all computations of
type M.

Obviously, for this definition to make sense, it is

55

of how it can be “serially perceived” from the point
of view of processes (provided the relationshif is
preserved).

For a givena, we denote the set of it®-views
asVg. From Definition 1, it is clear thaVz;o € V5o
andV§g,, € Vo

Before we proceed with the definitions for the
computations characterizing memory models, we will
make use of the next notation.

Notation 1.

necessary in each case to define what is a computation

of type M.

To define those computations, first we introduce
the serial computation concept (which has been also
defined using the terntegal [2] and CMP [12]).
They follow the principle of reading always “the
latest written value”, not allowing the overlapping of
operations (i.e., not allowing operations that cannot be
compared by using the atomic order).

Definition 3 (Serial computation). A computationy is
serial if it does not contain any overlapping operation
andvYop=r;(x)u@op = w;(x)u: op <o op and
Fop’ = wi(x)v: op <%1 0P <% OP)-

Fig. 1 shows a serial computation. Serial computa-
tions are quite restrictive, since there is no real con-
currency (operations do not overlap). However, what
actually makes them interesting is the fact that, most
of the computations (if not all) characterizing mem-
ory models are based on th@-view concept, where
0 € {ATO, PO, CAU}, which is based on the serial
computation definition.

Definition 4 (O-view). A computationg is an O-

view of another computatios, whereO € {ATO, PO,

CAUYJ, if it is formed by permuting the elements @f
in such a way that it is serial and the relatief}, is
preserved.

Since in a distributed memory system, where pro-

cesses work asynchronously, operations may not ap-

pear visible to all processes at the same timeQan
view of a computatiom is nothing but an explanation

1 We say thatp preserves<% if Yop op: op <% op,
op<fé op.

«; denotes a subsequence @fformed by re-
moving the read operations from processes other
thani.

a, denotes a subsequencexoformed by remov-
ing the operations on any variable other than

a(y) denotes a subsequence of formed by
removing all the operations other than the write
operations on variable.

a4 denotes a subsequencexoformed by remov-
ing the read operations which overlap with any
write operation on the same variable.

V,? denotes the subset ofg containing the
computations that preservéo.

Now, we define the computations characterizing
memory models as follows:

Definition 5. A computationx is of the type specified
below if for any prefix the following holds:

Atomic [6,13,2]: Vo # 9.

o Safe [6]:V i # Y.

e Regular [6]:Vxio # ¥ andVop=r;(x)u (Fop =
wj(x)u).

e Sequential [6]V5,# 0.

e Cache [4]Vx (Vo4 #9).

o PRAM [7]: Vi (VS5 #).

Processor [4]¥i, j (3B € Vo5 A 3B € Vply Vx

(Bix) = Byy))-

Causal [3]Vi (VER] # D).

Note that those definitions have been stated based
exclusively on the set of computations they allow
independently of the architectural platform that can
be use to implement them. We would like to remark
that instead of directly using the original definitions,

56

wy(z)1

Py —

V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53-58

r1(y)2

W2 (y 2
P)

ro(xz)1

Fig. 1. Serial computation.

the above definitions have been based on the rationaleProof. Let « be a sequential computation. Therefore

behind the original definitions.

4. Relationships between memory models

An important issue regarding memory models con-
sists in determining whether a given memory model
can be safely used for any task for which another
memory model is satisfactory, i.e., determining if a
memory model “solves” another one. We say that a
memory modesolves another one if the set of compu-

VEo # ¥, which implies that3g € V5, (and conse-
quentlyVi (8; € Vp5"“). On the other hand, for each
process, we have thap; also preservesg, ;. Thus
Bi € VEx(, which implies that/ 2y # ¢ and, by Def-
inition 5, is causal. O

Proposition 5. The sequential model solvesthe proces-
sor model.

Proof. Let @ be a sequential computation. Therefore
Vo # 0. Lety € Vi, Itis enough to takg = y; and

tations that represent the first is included in the set that g7 — y; in Definition 5 to ensure that is a processor

represent the latter.

In Fig. 6 we have summarized how memory models
are related by the solvability relationship (they are
formally proved from Proposition 1 to Proposition 8).

Proposition 1. The atomic model solvesthe sequential
model.

Proof. Let « be an atomic computation. Therefore
Viro # 9. SinceViig € Vo, We have thav/S, # (.
Thus,a is sequential. O

Proposition 2. The atomic model solves the regular
model.

Proof. Let « be an atomic computation. Therefore
Vo # 9, which implies that/7 # . Furthermore,
asa is atomic thenvop = r;(x)u (3op = w;(x)u).
Thus,« is regular. O

Proposition 3. The regular model solves the safe
model.

Proof. Let « be a regular computation. Therefore
Vato # ¥, which implies thatr is safe.

Proposition 4. The sequential model solves the causal
model.

computation. O

Proposition 6. The causal model solves the pRAM
model.

Proof. Let o be a causal computation. Therefofe
(VER) # ¥). However, sinceVph € VEy(, we have
thatVi (Voo #0). Thus,a is pRAM. O

Proposition 7. The processor model solves the pRAM
model.

Proof. Let o be a processor computation. Therefore
Vi, j (3B € VS5AIB € Vpdi Vx (B = Bl,,)) which
implies thatvi (Va5 # #). Thus,« is pPRAM. O

Proposition 8. The processor model solves the cache
model.

Proof. Let« be a processor computation. We can see
that it is also cache in the following way. For each
variablex, we construct a computatigh, containing
the write operations on variablein the same order as
in B(xy. The remaining operations can be easily placed
in the right order to see that, is sequential. Hence,
vx (Vpg # 9) and, by Definition 5, we have thatis
cache. O

V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53-58 57

wy(z)1 r1(y)u r1(y)v
P — — —
wa(y)1 wa(y)2 ra(z)w
P — — —

Fig. 2. Atomic ¢ = 1,v =2 andw = 1), sequentiali{ =0, v =0 andw = 1), regular { =0,v =2 andw = 1), safe { =3, v=2andw =1)
and cachey = 0, v = 0 andw = 0) computation.

r1(z)l r1(y)1
Py — —
wa(z)1
Py ——"
r3(y)1 r3(x)0
Py — —
Fig. 3. pPRAM computation.
wy(x)l ri(z)2
Py —-_— -—
wo ()2 ro(z)l
Py P -_—
Fig. 4. Causal computation.
ri(z)l wi (y)1
751 e ——
wa(x)1
Py —
r3(y)1 r3(2)0
Ps — —

Fig. 5. Processor computation.

Clearly, not always a memory model solves another combinations of memory models in which it is not
one. On the contrary that with the solvability relations, included one into another.
here we do not state in an independent manner each
one of the non-solvability relationships. However,
they can be easily proved by using contradictions
taking the computations presented in Figs. 2-5 as
counterexamples. For instance, since Fig. 6 shows that o))
the causal model does not solve neither the atomic Proof. By contradiction. Consider the following com-
model, nor the sequential, nor the processor model, Putationwi(x)1 r1(x)1 r1(y)0 w2(y)1r2(y)1r2(x)0
nor the cache, nor the regular, etc., therefore the causalhich is both processor and causal, and assume that it
computation depicted in Fig. 4 has been chosen so thatlS Sequential.
it is not neither atomic, nor sequential, nor processor, ' hiS computation, in order to be sequential, forces
nor Cache' nor regu|ar’ etc. Vl(y) to go beforeu)z(y). HOWeVer, that forcesz(x)
Fina”y, as the two fo”owing propositions show, to go afterw1(x), which makes this Computation non-
it is also possible to establish relationships among sequential. O

Proposition 9. The intersection of the processor and
causal models does not solve the sequential model.

58

Safe

Fig. 6. Relationships between memory models.

Proposition 10. The intersection of the pRAM and
cache models does not solve neither the processor nor
the causal nor the regular models.

Proof. By contradiction. Consider the following com-
putationwy(x)1 wi(y)1r2(y)1 wa(x)2 r2(x)2 r3(x)2
r3(x)1 which is both pRAM and cache.

This computation is not regular, since the opera-
tionsrz(x)1 should return a value 2.

Also, it is not processor. Indeed, process 2 forces
the next ordering of write operations; (x)1 w1(y)1
wz(x)2 and process 3 forcasy(x)2 wi(x)1 wi(y)l,
which implies tha(x) # B/,

Finally, it is not causal either since any “potential”
causal view for process 3 forces;(x)2 to go be-
fore w1(x)1, which does not preserve the causal pre-
order. O

5. Conclusions

In this paper we have presented a formal framework

V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53-58

Namely, it consists on specifying the type of compu-
tations that the memory model allows. This, as we
shown previously, is strongly based on tideview
concept (i.e., on how computations can be “serially
perceived” from the point of view of processes).

The availability of an adequate formalism made
it possible to establish some of the relationships that
hold among them. Those relationships were inferred
directly based exclusively on the set of computations
they allow.

References

[1] H. Attiya, J. Welch, Sequential consistency versus linearizabil-
ity, ACM Trans. Comput. Systems 12 (2) (1994) 91-122.

[2] M. Herlihy, J. Wing, Linearizability: A correctness condition
for concurrent objects, ACM Trans. Programming Languages
Systems 12 (3) (1990) 463—492.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, P. Hutto, Causal
memory: Definitions, implementation and programming, Dis-
trib. Comput. 9 (1) (1995) 37-49.

[4] J. Goodman, Cache consistency and sequential consistency,
Technical Report 61, IEEE Scalable Coherence Interface
Working Group (March 1989).

[5] L. Lamport, How to make a multiprocessor computer that
correctly executes multiprocess programs, IEEE Trans. Com-
put. 28 (9) (1979) 690-691.

[6] L. Lamport, On interprocess communication |, I, Distrib.
Comput. 1 (2) (1986) 77-101.

[7] R. Lipton, J. Sandberg, PRAM: A scalable shared memory,
Technical Report CS-TR-180-88, Princeton University, De-
partment of Computer Science, September 1988.

[8] A. Singh, Bounded timestamps in process networks, Parallel
Process. Lett. 6 (2) (1996) 259-264.

[9] L. Lamport, Time, clocks and the ordering of events in a
distributed system, Comm. ACM 21 (7) (1991) 558-565.

[10] P. Keleher, A. Cox, W. Zwaenepoel, Lazy release consistency
for software distributed shared memory, in: Proceedings of
the 19th Annual Symposium on Computer Architecture, 1992,
pp. 13-21.

[11] B. Bershad, M. Zekauskas, Midway: Shared memory par-
allel programming with entry consistency for distributed
memory multiprocessors, Technical Report CMU-CS-91-170,
Carnegie—Mellon University, Pittsburgh, PA, September 1991.

that can be used to study the way memory access[12] w. Collier, Reasoning About Parallel Architectures, Prentice—

operations take place.
We have shown how to define the most signifi-

cant memory models. Furthermore, we have provided

a “methodology” to specify new memory models.

Hall International Editions, Englewood Cliffs, NJ, 1992.

[13] J. Misra, Axioms for memory access in asynchronous hardware
systems, ACM Trans. Programming Languages Systems 8 (1)
(1986) 142-153.

