
l

erence for
fficult to
memory

ework,

here
Information Processing Letters 90 (2004) 53–58

www.elsevier.com/locate/ip

Relationships between memory models

Vicent Cholvia,∗, Josep Bernabéub

a Departamento de Lenguajes y Sistemas Informáticos, Universitat Jaume I, Castellón, Spain
b Instituto Tecnológico de Informática, Universitat Politécnica de València, València, Spain

Received 3 August 2003; received in revised form 14 January 2004

Communicated by J.L. Fiadeiro

Abstract

There have been many proposals of shared memory systems, each one providing different types of memory coh
interprocess communication. However, they have usually been defined using different formalisms. This makes it di
compare among them the different proposals put forward. In this paper we present a formal framework for specifying
models with different coherency properties. We specify most of the known shared memory models using our fram
showing some of the relationships that hold among them.
 2004 Elsevier B.V. All rights reserved.

Keywords: Formal methods; Memory models; Consistency models; Distributed systems; Concurrency

1. Introduction ent for concurrent accesses to shared variables. T
ed
om-
eral
m
ch-
do

es-
res
ell-

tes
fer-

have been numerous proposals and implementations
an-

,2]
rn
On
ore
s-
re-
the
ac-
per-
m-
s of
be-

els
ms.

erved
Shared memory (reading and writing of shar
variables) is a mechanism used for inter-process c
munication in concurrent programs which has sev
important benefits. In the first place, it hides fro
the programmer the particular communication te
nique employed. Therefore, application developers
not need to be involved in the management of m
sages. In addition, it allows complex shared structu
to be passed by reference, providing a simple and w
known paradigm.

However, while the semantics of reads and wri
in sequential programs are clear, the situation is dif

* Corresponding author.
E-mail addresses: vcholvi@uji.es (V. Cholvi),

josep@iti.upv.es (J. Bernabéu).

0020-0190/$ – see front matter 2004 Elsevier B.V. All rights res
doi:10.1016/j.ipl.2004.01.007
of shared memory systems providing different sem
tics [1–7].

It seems clear that “strong” memory models [1
make it simpler to write programs, since the retu
value of each read operation is more predictable.
the other hand, “weaker” memory models can be m
efficiently implemented, since they allow more po
sible return values for each read operation [3–7],
sulting in a lower coherence overhead. However,
simple programming style that programmers are
customed to cannot be sacrificed for the sake of
formance (that would eliminate the familiar progra
ming paradigm that is one of the main advantage
shared memory). Therefore, this poses a tradeoff
tween simplicity and performance.

On the other hand, the different memory mod
have usually been defined using different formalis

.



54 V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53–58

This makes it difficult to determine how those memory
models are related and if a given memory model can

ory
t a
th
the
rk,
ng

In
in

he
we
ose
our

or
ites)

ns,
e
nto
d by

nd
ta-
ses
unt,
d to
m-
ith
ess,
ro-
an
a-
p-
had
a
of
te

that a given computation may have several finished
computations).

n-
we
ing
xt

es
ion
ced
are
ed
of

an

e
the

al-
he
ch
ut

usal
ty”

e
ed
be safely used for any task for which another mem
model is satisfactory. In this paper we presen
formal framework for specifying memory models wi
different coherency properties. We specify most of
known shared memory models using our framewo
showing some of the relationships that hold amo
them.

The rest of the paper is organized as follows.
Section 2 we introduce the basic formalism and
Section 3 we present definitions for many of t
most significant memory models. In Section 4
show some of the relationships that hold among th
memory models. Finally, in Section 5 we present
concluding remarks.

2. Preliminaries

In our formalism, we consider only operations f
accessing shared resources (i.e., reads and wr
A write operation issued by processi to store the value
u in the variablex is denoted aswi(x)u. Similarly, a
read operation reporting to processi that u is stored
in the variablex is denoted asri (x)u. Sometimes, to
describe an operation op, we use a pair of actio
start(op) and end(op), which respectively denote th
start and end of that operation. We also take i
account unfinished operations, which are describe
using only the starting action.

A computation consists of a sequence of read a
write operations. In this work, only those compu
tions that follow the model of sequential proces
executing blocking operations are taken into acco
that is, a process computing an operation is force
block until the operation completes. Therefore, co
putations will be formed by finished operations w
the possible exception of the last one for each proc
which can be unfinished. In order to reason with a p
gram computation with unfinished operations, we c
“finish” it by either removing each unfinished oper
tion or replacing it by a finished operation (that ca
tures the notion that some unfinished operations
“visible” effect, while the others did not). We say
computation fulfills a given property if at least one
its finished computations fulfills that property (no
.

Now we provide the definitions of some relatio
ships for the operations of a computation, which
use later on to characterize the computations form
part of a memory model (formally defined in the ne
section).

To simplify the notation, we assume that valu
are uniquely written in any variable. This assumpt
does not introduce new restrictions as it can be for
by associating a time-stamp with writes (there
logical implementation of clocks that provide bound
values [8]). Also, we assume that the initial values
the variables are set by using write operations.

Definition 1 (Relationships). Let op and op′ be two
operations in a computationα. We define theatomic,
program andcausal relationships as follows:

• Atomic: op ≺α
ATO op′ if end(op) happens before

start(op′) in α.
• Program: op≺α

PO op′ if they are operations from
the same process and op≺α

ATO op′.
• Causal: op ≺α

CAU op′ if some of the following
holds:
(1) op≺α

POop′,
(2) op= wi(x)u and op′ = rj (x)u (i.e., the read

value is the written one),
(3) ∃op′′: op≺α

CAU op′′ ≺α
CAU op′.

All of them are partial relationships and, as it c
be readily seen, op≺α

PO op′ implies both op≺α
CAU

op′ and op≺α
ATO op′. However, whereas both th

atomic and program relationships are orders,
causal relationship, since it is cyclic, is a preorder.

Basically, the atomic order [2] captures the “re
time” ordering of non-overlapping operations. T
program order [5] relaxes the atomic order in su
a way that operations follow the atomic order, b
only those from the same process. Finally, the ca
preorder [3] is defined in order to capture “causali
in the sense of [9].

3. Formalization of memory models

In this section, we show how to formalize som
of the most widely known memory models propos



V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53–58 55

in the literature. We do not consider memory models
such asrelease [10], entry [11], etc. since they make

el

of

is
ation

ce
lso

e
of
t be

on

ta-
on-
hat
ost

m-

al

ro-
ap-

n

of how it can be “serially perceived” from the point
of view of processes (provided the relationship≺α is

e
ill

ther

ite

ny

ing

sed
w
an
rk
s,
use of synchronization operations.
First, we provide a definition of memory mod

completely general.

Definition 2 (Memory model). We define amemory
model M as the set formed by all computations
typeM.

Obviously, for this definition to make sense, it
necessary in each case to define what is a comput
of typeM.

To define those computations, first we introdu
the serial computation concept (which has been a
defined using the termlegal [2] and CMP [12]).
They follow the principle of reading always “th
latest written value”, not allowing the overlapping
operations (i.e., not allowing operations that canno
compared by using the atomic order).

Definition 3 (Serial computation). A computationα is
serial if it does not contain any overlapping operati
and∀op= ri (x)u(∃op′ = wj(x)u: op′ ≺α

ATO op and
�op′′ = wk(x)v: op′ ≺α

ATO op′′ ≺α
ATO op).

Fig. 1 shows a serial computation. Serial compu
tions are quite restrictive, since there is no real c
currency (operations do not overlap). However, w
actually makes them interesting is the fact that, m
of the computations (if not all) characterizing me
ory models are based on theO-view concept, where
O ∈ {ATO,PO,CAU}, which is based on the seri
computation definition.

Definition 4 (O-view). A computationβ is an O-
view of another computationα, whereO ∈ {ATO,PO,

CAU}, if it is formed by permuting the elements ofα

in such a way that it is serial and the relation≺α
O is

preserved.1

Since in a distributed memory system, where p
cesses work asynchronously, operations may not
pear visible to all processes at the same time, anO-
view of a computationα is nothing but an explanatio

1 We say that β preserves≺α
O

if ∀op,op′: op ≺α
O

op′,
op≺β

O
op′.
O

preserved).
For a givenα, we denote the set of itsO-views

asV α
O . From Definition 1, it is clear thatV α

ATO ⊆ V α
PO

andV α
CAU ⊆ V α

PO.
Before we proceed with the definitions for th

computations characterizing memory models, we w
make use of the next notation.

Notation 1.

• αi denotes a subsequence ofα formed by re-
moving the read operations from processes o
thani.

• αx denotes a subsequence ofα formed by remov-
ing the operations on any variable other thanx.

• α〈x〉 denotes a subsequence ofα formed by
removing all the operations other than the wr
operations on variablex.

• α∗ denotes a subsequence ofα formed by remov-
ing the read operations which overlap with a
write operation on the same variable.

• V
α,γ

O denotes the subset ofV α
O containing the

computations that preserve≺γ

O .

Now, we define the computations characteriz
memory models as follows:

Definition 5. A computationα is of the type specified
below if for any prefix the following holds:

• Atomic [6,13,2]:V α
ATO �= ∅.

• Safe [6]:V α∗
ATO �= ∅.

• Regular [6]:V α∗
ATO �= ∅ and∀op= ri (x)u (∃op′ =

wj(x)u).
• Sequential [6]:V α

PO �= ∅.
• Cache [4]:∀x (V

αx

PO �= ∅).
• pRAM [7]: ∀i (V

αi

PO �= ∅).
• Processor [4]:∀i, j (∃β ∈ V

αi

PO ∧ ∃β ′ ∈ V
αj

PO: ∀x

(β〈x〉 = β ′〈x〉)).
• Causal [3]:∀i (V

αi ,α
CAU �= ∅).

Note that those definitions have been stated ba
exclusively on the set of computations they allo
independently of the architectural platform that c
be use to implement them. We would like to rema
that instead of directly using the original definition



56 V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53–58

re
Fig. 1. Serial computation.

the above definitions have been based on the rationaleProof. Let α be a sequential computation. Therefo
α α
behind the original definitions.

on-
del
her

a
t a
-

that

els
re
).

re

re

re

V �= ∅, which implies that∃β ∈ V (and conse-
h

re

r

re

see
ch

s
ced
,

4. Relationships between memory models

An important issue regarding memory models c
sists in determining whether a given memory mo
can be safely used for any task for which anot
memory model is satisfactory, i.e., determining if
memory model “solves” another one. We say tha
memory modelsolves another one if the set of compu
tations that represent the first is included in the set
represent the latter.

In Fig. 6 we have summarized how memory mod
are related by the solvability relationship (they a
formally proved from Proposition 1 to Proposition 8

Proposition 1. The atomic model solves the sequential
model.

Proof. Let α be an atomic computation. Therefo
V α

ATO �= ∅. SinceV α
ATO ⊆ V α

PO, we have thatV α
PO �= ∅.

Thus,α is sequential. ✷
Proposition 2. The atomic model solves the regular
model.

Proof. Let α be an atomic computation. Therefo
V α

ATO �= ∅, which implies thatV α∗
ATO �= ∅. Furthermore,

asα is atomic then∀op= ri(x)u (∃op′ = wj(x)u).
Thus,α is regular. ✷
Proposition 3. The regular model solves the safe
model.

Proof. Let α be a regular computation. Therefo
V

α∗
ATO �= ∅, which implies thatα is safe.

Proposition 4. The sequential model solves the causal
model.
PO PO
quently∀i (βi ∈ V

αi,α
PO ). On the other hand, for eac

processi, we have thatβi also preserves≺α
CAU. Thus

βi ∈ V
αi,α
CAU, which implies thatV αi,α

CAU �= ∅ and, by Def-
inition 5, α is causal. ✷
Proposition 5. The sequential model solves the proces-
sor model.

Proof. Let α be a sequential computation. Therefo
V α

PO �= ∅. Let γ ∈ V α
PO. It is enough to takeβ = γi and

β ′ = γj in Definition 5 to ensure thatα is a processo
computation. ✷
Proposition 6. The causal model solves the pRAM
model.

Proof. Let α be a causal computation. Therefore∀i

(V
αi,α
CAU �= ∅). However, sinceV αi

PO ⊆ V
αi ,α
CAU, we have

that∀i (V
αi

PO �= ∅). Thus,α is pRAM. ✷
Proposition 7. The processor model solves the pRAM
model.

Proof. Let α be a processor computation. Therefo
∀i, j (∃β ∈ V

αi

PO∧∃β ′ ∈ V
αj

PO: ∀x (β〈x〉 = β ′〈x〉)) which

implies that∀i (V
αi

PO �= ∅). Thus,α is pRAM. ✷
Proposition 8. The processor model solves the cache
model.

Proof. Let α be a processor computation. We can
that it is also cache in the following way. For ea
variablex, we construct a computationβ , containing
the write operations on variablex in the same order a
in β〈x〉. The remaining operations can be easily pla
in the right order to see thatβx is sequential. Hence
∀x (V

αx

PO �= ∅) and, by Definition 5, we have thatα is
cache. ✷



V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53–58 57

ot
Fig. 2. Atomic (u = 1, v = 2 andw = 1), sequential (u = 0, v = 0 andw = 1), regular (u = 0, v = 2 andw = 1), safe (u = 3, v = 2 andw = 1)
and cache (u = 0, v = 0 andw = 0) computation.

Fig. 3. pRAM computation.

Fig. 4. Causal computation.

Fig. 5. Processor computation.

Clearly, not always a memory model solves another combinations of memory models in which it is n

one. On the contrary that with the solvability relations,

ach
er,
ns
as

that
mic
del,
usa
that

sor,

,
ng

included one into another.

-

at it

es

n-
here we do not state in an independent manner e
one of the non-solvability relationships. Howev
they can be easily proved by using contradictio
taking the computations presented in Figs. 2–5
counterexamples. For instance, since Fig. 6 shows
the causal model does not solve neither the ato
model, nor the sequential, nor the processor mo
nor the cache, nor the regular, etc., therefore the ca
computation depicted in Fig. 4 has been chosen so
it is not neither atomic, nor sequential, nor proces
nor cache, nor regular, etc.

Finally, as the two following propositions show
it is also possible to establish relationships amo
l

Proposition 9. The intersection of the processor and
causal models does not solve the sequential model.

Proof. By contradiction. Consider the following com
putationw1(x)1 r1(x)1 r1(y)0 w2(y)1 r2(y)1 r2(x)0
which is both processor and causal, and assume th
is sequential.

This computation, in order to be sequential, forc
r1(y) to go beforew2(y). However, that forcesr2(x)

to go afterw1(x), which makes this computation no
sequential. ✷



58 V. Cholvi, J. Bernabéu / Information Processing Letters 90 (2004) 53–58

-

ra-

ces

l”

re-

ork
ess

ifi-
ded
ls.

Namely, it consists on specifying the type of compu-
tations that the memory model allows. This, as we

lly

de
that
red
ons

bil-

n
ges

sal
is-

ency,
ace

at
om-

b.

ory,
e-

allel

a

ncy
of

92,

ar-
ed
70,
91.
e–

are
8 (1)
Fig. 6. Relationships between memory models.

Proposition 10. The intersection of the pRAM and
cache models does not solve neither the processor nor
the causal nor the regular models.

Proof. By contradiction. Consider the following com
putationw1(x)1 w1(y)1 r2(y)1 w2(x)2 r2(x)2 r3(x)2
r3(x)1 which is both pRAM and cache.

This computation is not regular, since the ope
tionsr3(x)1 should return a value 2.

Also, it is not processor. Indeed, process 2 for
the next ordering of write operationsw1(x)1 w1(y)1
w2(x)2 and process 3 forcesw2(x)2 w1(x)1 w1(y)1,
which implies thatβ〈x〉 �= β ′〈x〉.

Finally, it is not causal either since any “potentia
causal view for process 3 forcesw2(x)2 to go be-
fore w1(x)1, which does not preserve the causal p
order. ✷

5. Conclusions

In this paper we have presented a formal framew
that can be used to study the way memory acc
operations take place.

We have shown how to define the most sign
cant memory models. Furthermore, we have provi
a “methodology” to specify new memory mode
shown previously, is strongly based on theO-view
concept (i.e., on how computations can be “seria
perceived” from the point of view of processes).

The availability of an adequate formalism ma
it possible to establish some of the relationships
hold among them. Those relationships were infer
directly based exclusively on the set of computati
they allow.

References

[1] H. Attiya, J. Welch, Sequential consistency versus lineariza
ity, ACM Trans. Comput. Systems 12 (2) (1994) 91–122.

[2] M. Herlihy, J. Wing, Linearizability: A correctness conditio
for concurrent objects, ACM Trans. Programming Langua
Systems 12 (3) (1990) 463–492.

[3] M. Ahamad, G. Neiger, J. Burns, P. Kohli, P. Hutto, Cau
memory: Definitions, implementation and programming, D
trib. Comput. 9 (1) (1995) 37–49.

[4] J. Goodman, Cache consistency and sequential consist
Technical Report 61, IEEE Scalable Coherence Interf
Working Group (March 1989).

[5] L. Lamport, How to make a multiprocessor computer th
correctly executes multiprocess programs, IEEE Trans. C
put. 28 (9) (1979) 690–691.

[6] L. Lamport, On interprocess communication I, II, Distri
Comput. 1 (2) (1986) 77–101.

[7] R. Lipton, J. Sandberg, PRAM: A scalable shared mem
Technical Report CS-TR-180-88, Princeton University, D
partment of Computer Science, September 1988.

[8] A. Singh, Bounded timestamps in process networks, Par
Process. Lett. 6 (2) (1996) 259–264.

[9] L. Lamport, Time, clocks and the ordering of events in
distributed system, Comm. ACM 21 (7) (1991) 558–565.

[10] P. Keleher, A. Cox, W. Zwaenepoel, Lazy release consiste
for software distributed shared memory, in: Proceedings
the 19th Annual Symposium on Computer Architecture, 19
pp. 13–21.

[11] B. Bershad, M. Zekauskas, Midway: Shared memory p
allel programming with entry consistency for distribut
memory multiprocessors, Technical Report CMU-CS-91-1
Carnegie–Mellon University, Pittsburgh, PA, September 19

[12] W. Collier, Reasoning About Parallel Architectures, Prentic
Hall International Editions, Englewood Cliffs, NJ, 1992.

[13] J. Misra, Axioms for memory access in asynchronous hardw
systems, ACM Trans. Programming Languages Systems
(1986) 142–153.


