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Abstract

A fundamental issue in the development of concurrent programs is the resource allocation problem. Roughly speaking, it
consists of providing some mechanism to avoid race conditions in the access of shared resources by two or more concurren
processes. For such a task, maybe the most widely mechanism consists of using critical sections.

Unfortunately, it is also widely-known that programs which use several critical sections may suffer from deadlocks. In this
paper, we identify a program property, namely, bestmpper-freewhich can be used to know if programs are deadlock-free.
Indeed, since we have proved that programs are deadlock-free if and only if they do not have any stopper, thus looking for a
stopper is equivalent to identifying a situation where a program may suffer a deadl@6K1 Elsevier Science B.V. All rights
reserved.
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1. Introduction speaking, a critical section can be seen as a “section
of code” which guarantees processes exclusive access
In the development of concurrent programs, consid- to the resources allocated within. In order to access
erable effort has been devoted to study the resource al-a critical section a process must firstly acquire it (by
location problem, where by resource we mean a phys- executing a separate section of code), releasing it (by
ical device as well as a section of code. While local executing another section of Code) after |eaving that
resources are accessed only by one process, shared rezritical section. Obviously and since that forces shared
sources can be accessed by many processes. If two ofesources to be “sequentially” accessed, critical sec-
more processes simultaneously contend for the sametjons are an effective way of avoiding race conditions
resource, they can leave the resource in an undefinedrig. 1(b)).
state (Fig. 1(a)). Therefore, itis necessary some mech-  yUnfortunately, it is also widely-known that pro-
anism to avoid “race conditions”. grams which use several critical sections may suffer
Maybe the most widely used mechanism for such from deadlocks (i.e., the program being in an infinite
a task consists of usingitical sections[1]. Roughly  wait) [7]. Fundamental to this problem is knowledge
_ of situations where deadlocks may occur.
Y This work is partially supported by the CICYT under grant Detecting when the state of a distributed computa-
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* Corresponding author. tion satisfies a certain property, namel_y, if dgadlocks
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Fig. 1. Accessing a shared resource.

der to detect if a concurrent program holds a certain  The rest of the paper is organized as follows. In
property, three possible approaches have been usedSection 2 we define the model used throughout the
during the program’s execution, after the program’s paper. In Section 3 we identify a program property
execution or prior to any program’s execution [10]. which meets the above mentioned criteria. Finally, in
The first approach (also calletlynamic analysis Section 4, we talk about the applicability of our result
must be verified by monitoring the execution as it and discuss some current work.
evolves [2]. However and even though several efficient
algorithms have been developed to detect deadlocks
dynamically [4,5], conclusions that they may draw are
not about all possible executions of the program but
about an actual execution. Similarly, the second ap-
proach (also calleghost-mortemanalysis) is unsuit-
able for our purposes, since it requires the program to
end, which can only happen if the program’s execution ~ The first thing we do in this section is to provide a
has not been deadlocked (which is precisely the stud- definition of program. Aprogramconsists of a set of
ied property). Finally, the third approach (also called operations from a set of processes such that operations
static analysiy is performed on a model of the pro- from the same process are intended to be issued in a
gram without requiring test executions. In this paper, fixed way. In order to characterize that behavior, we
we identify a program property which can be used to will use an (irreflexive) ordex which totally orders
known if programs are deadlock-free by using static operations from the same process.
analysis. Such a property is minimal in the sense that An operation may be either internal to a process
programs are deadlock-free if and only if they do not and cause only a local state change, or it may involve
satisfy it. interaction with other processes by mean of using

2. Formal framework

2.1. Program specification



V. Cholvi, P. Boronat / Information Processing Letters 77 (2001) 283—290 285

State:
for each procesp € Set of_Processes
statug p): status of process, consisting of a pair whose first component is eitloek or unlock
and the second component a critical section; initially the special vdlee
for each critical sectionse Set of_Critical_Sections
block(cs): process blockings initially the special valuaone

Actions:
Input lock3@"(cs)
EFFECT.
statugp) < (lock, cs)

Input unlock@"(cs)
EFFECT.
statugp) < (unlock cs

Output Iock?,”d(cs)
PRECONDITION:
statug p) = (lock, cs)
block(cs) = none
EFFECT.
block(cs) < p
statug p) < idle

Output unloclgnd(cs)
PRECONDITION:

statug p) = (unlock cs)
EFFECT.

block(cs) < none

statugp) < idle

Scheme 1.

shared variables. However, here we consider only given set of critical sectiorSet of _Critical_Sections

operations for accessing shared resources.

A lock operation issued by procegs, denoted
lock, (cs), is used to acquire the critical secti@s
Similarly, an unlock operation, denoteghlock, (cs),
is used by procesp to release such a critical section.

In this paper, we do not allow any process to request

for any critical section which it already locks, nor
release any critical section which it does not lock.

2.2. System_Machine specification

Now, we provide a formal description of the pro-
tocol for accessing critical sections (i.e., the protocol

The formal definition ofSystemMachineis given in
Scheme 1.

2.3. Interaction between a program and
System_Machine

In our formalism, the result of computing a program
P on a system specified byystemMachineconsists
on an execution oBystemMachinewhere, for each
operationop in P, there is an input actiostart(op)
which is immediately followed by its corresponding
output actionendop). That restricts the set of exe-
cutions to those that follow the model of sequential

that implements lock and unlock operations). For such processes executing blocking operations: the process
atask, we use a specification based on a state machinegxecuting an operation is forced to block until the op-

SystemMachineg for which it has been used a model
based on the 1/0 automata model of Lynch and Tuttle
(see the Appendix A).

In SystemMachine each operatiorop (either a
lock or an unlock) is modeled by using two actions,
which represent, respectively, its stastdrt(op)) and
end endop)). SystemMachineis parameterized by
a given set of processeSetof Processesand a

eration completes.

Definition 1. A computationof a programP under
a system modeled bgystemMachineconsists of an
execution of the automataystemMachinesuch that
its input actions correspond with operation®othey
preserve the ordek and none of them is enabled at
stateS by procesy if Ssstatugp) # idle.
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Trace of
Computation
lockgh4(cs’) unlockg™4(cs’)
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P2

Fig. 2. Relationship between the trace of a computation and a programmer’s vision of such a trace.

Note that, for this definition to make sense, the set of Definition 2. A computatione of a programP has a

processes and critical sectionsyfstemMachineare deadloclkat states if
assumed that respectively include the set of processes
and critical sections of program 3es}ti=1,...n and 3{pi}i=1,. . suchthat

Fig. 2 shows a graphical representation of the
trace of a given computation (i.e., the subsequence of
the computation consisting of external actions only), Sstatusp;) = (lock, ¢ modn)+1))-
where the horizontal line represents the execution
order of those actions progressing from left to right. ~ Fig. 3 shows a programmer’s vision of a given
We also provide a “programmer’s vision” of such a computation which at stat® has a deadlock (i.e., it
trace with actions from the same process explicitly laid is deadlocked).
out and transformed into operations. Notice that our At this point, it is worthwhile to note that, even
formalism does not make use of time. However and though we use a notion of program where operations
as it can be seen, using a “space-time” diagram is a from the same process are intended to be issued in
convenient tool to visualize distributed computation. a fixed way, for the purpose of detecting whether a
In what follows and for the sake of simplicity we Program is deadlock-free, conclusions drawn about
will talk simply of programs, omitting that such them canbe used to reason absttictured programs
programs are Computed on a System modeled by (i.e., programs that, besides Sequential constructs,
SystemMachine allow loopings and conditionals). Indeed, a program
with conditional constructs is equivalent (for our
purpose) to a number of sequential programs covering
all the possible paths that the different execution flows
may follow. Such a number of sequential programs,

As it has been said, a major contribution of this even though may be high, will be finite. Thus, it is
paper consists of identifying a program property for enough to verify that every one of those programs
characterizing deadlock-free programs. Thus, we haveis deadlock-free to ensure that the program (with
to define what is a deadlocked computation. conditional constructs) is deadlock-free. With regard

Vi (Sblockcs) = p; and

2.4. Deadlock specification
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Fig. 3. Deadlocked computation.

to looping constructs, the situation is simpler if each op e wrappergop) if, for some critical sectiongp is
acquired/released critical section within a givenloopis wrapper ofop'.
released/acquired in the same ldofhat is because,
for each one computation, the states corresponding toDefinition 3. Let OP be a set of operations, each one
the process that performs the loop will be repeated from a different process, of a programand letPop
in each one iteration. Therefore, for the purpose of denote a subprogram Bfsuch that each one operation
detecting whether there is a deadlock or not, it will is previous (with respect te) to some operation in
be equivalent to a sequential construct. OP. We sayOP is contemporaryif there is a total
ordering<" on the operations iPop that preserves
< such that ifop <" op and op = lock, (cs) and
3. Stoppers: A property for characterizing op = lock, (cs) (wherep # p’) thenop, ., <" Op.
deadlocks
Fig. 4 shows the operations that form a program
In this section, we introduce the “stopper” con- (explicitly laid out for each process). As it can be
cept which is the key definition for characterizing readily seen, boxed operations are contemporary since
deadlock-free programs. However, first we will intro-  there is a total ordering for their preceding operations
duce the “contemporariness” concept (on which the which preserves the conditions stated at Definition 3
stopper concept is based on). For such a task, we usgwe provide a possible ordering).
the next notation: As the next lemma shows, contemporary operations
are characterized by the fact that, in some computa-
Notation 1. Let op be a program operation used to tion, they may beoutstanding(i.e., at some state of
acquire a given critical section. We denog, .., the the computation, the start actions have been executed
unlock operation (from the same process) intended to and the end actions have not been executed).
release the critical section acquireddyy
Lemma 1. Let OP be a set of operations, each one
Notation 2. We say an operatiorop = lock,(cs) from a different process, of a program. OP is
is wrapper of another operatiomp, denotedop = contemporary iff there is a computation of such a

wrappefs(op), if op < op < Ofmarch We also denote  program where at a given state, the whole set of
operations inOP are outstanding.

1A very reasonable assumption since, otherwise, it may be . L
difficult to ensure that none critical section will be acquired more Proof. (=) As OP is contemporary, by Definition 3,
than once and vice versa. there is a total ordering™ on the operations iRop
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P71 : locky, (cs”) locky, (cs’) unlocky, (cs”) unlocky, (cs’)

P2 : locky, (cs) unlocky, (cs) |locky,(cs”)

P3 : locky, (cs) |locke,(cs’)
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locky, (cs”)

Order: locky, (cs”) lockp, (cs’) unlocky, (es”) unlocky, (cs’) locky, (cs) unlocky,(cs) locky,(cs) ...

Fig. 4. Contemporary operations.

that gives a way for executing those operations so that Proof. (=) By contradiction.

all of them end.

Let us now compute the whole program by
executing first the operations Pop in the ordering
given by<T. At such a state, as operationsige will
end, nothing prevents operationsd® from starting

Let P be a program with a stopper. We will prove
that there is at least a computation Bf with a
deadlock.

From the stopper’s definition, we know that there is
a set of critical sectionfcs}i=1... . n~1 and a set of

.....

immediately one after another. That makes operations processe$p;}i—1....». n>1 Such that

in OP being outstanding.

(<) Assume a given computation where, at a given
state, operations iOP are outstanding. Therefore, at
that state operations Pop have ended.

It is immediate to verify that the execution order
of such operations fulfills the specification ef' in
Definition 3. O

Now, we can proceed with the definition of stopper.

Definition 4. Given a progranP, we say that a set
of critical sectiondcs }i=1....». »>1 forms astopperif
Apiti=1...., n, n>1 such that

Vi (Jop, op’: op=wrappefs (op) and
op = lock,, (€S modn)+1))

and where the set formed by thosp operations is
contemporary.

If we remove the contemporariness condition for the
op operations in the last definition, we say that those
critical sections form @otential-stopper

The next theorem states our main result, namely,
that programs are deadlock-free if and only if they do
not have any stopper.

Theorem 1. Let stopperé) denote the whole set of
stoppers for a prograr®. Then,P is deadlock-free iff
stoppersP) = .

Vi (3op, op’: op=wrappef¥ (op) and
op = lock,, (cs; modn)+1))

and where the set formed by thosg operations is
contemporary.

By Lemma 1, there is a computatienof P such
that at a given stats, the whole set obg operations
are outstanding.

We will prove that at this statey has a deadlock;
that is, for alli the following holds:

(1) Sblockcs) = p;.

Proof. We know that at staté all theop operations
are outstanding. Take

op' = locky, (Cs(i mod n)+l)-
We also know that there is awp operation such that
op= wrappefs (op).

Therefore, from the specification oBystem
Machine(and taking into account the wrapper’s def-
inition), we have thaB.blockcs) = p;. O

(2) Sstatugp;) = (lock, CS; modn)+1)-

Proof. We know that at stats all the op’ operations
are outstanding. Take

op = lock, (CS(i mod n)+l)~
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Therefore, from the specification oBystem
Maching we have that

Sstatug p;) = (lock, ¢S modn)+1)- O

(<) By contradiction.

Let o be a computation of which has a deadlock
at states. We will prove thatstoppersP) # (.

By definition of deadlock, we know that at some
statesS there is a set of critical sectioriss};—1

..... n

.....

Vi (Sblockcs) = p; and
Sstatusp;) = (lock, €S modn)+1))-

We will prove that such critical sections form a
stopper; that is, we will prove the following two
things:

(1) For alli, there is a pair of operatiorap andop
such that the following holds:

(a) op=wrappefs (op).

Proof. By the conditions of deadlock, we have
that Sstatugp;) = (lock €S modn)+1) and
Sblockcs) = p;.

Therefore, from the specification oBystem
Machineand taking into account the definition of
computation, we have that

Jop= locky, (cs): Op< OP < OPmatch O

(b) op = locky, (CSi modn)+1))-

Proof. By the conditions of deadlock, we have
that Sstatugp;) = (lock, cs; modn)+1). There-
fore, from the specification of System
Machineand taking into account the definition of
computation, we have that

op =locky, (CSi modm)+1)- O

(2) The set formed by the previoag operations is
contemporary.

Proof. By contradiction. Assume it is not contempo-
rary. By Lemma 1, such operations can not be out-
standing at the same time. Therefore, for samee
have thatSstatugp;) # (lock, CS; modn)+1)-

However, we have assumed that at statéhere
is a deadlock, which implies th&t (S.statugp;) =

289

(lock, €S modn)+1)), thus contradicting the hypothe-
sis. O

4. Discussion and current work

In order to check whether or not a program is
deadlock-free by using static analysis, the simplest
technique consists of “enumerating” the whole set of
states where a given program is executed and search
for deadlock states. Unfortunately, such a technique is
hindered by the well-known state explosion problem:
the number of states in a concurrent system tends to
increase exponentially with the number of processes.
In fact, because of the related complexity results,
static analysis tools are necessarily exponential on
the number of processes [6] and so does finding if a
program is stopper-free.

Despite that result that shows the intractability (in
general) of using a static analysis to check whether
or not a program is deadlock-free, there are some
reasons for supporting such an approach. Indeed, to
check whether or not a program is stopper-free, first
we look for any potential-stopper. Therefore, if a
program has not any potential-stopper (which is a
relatively simple task), we can say it is deadlock-
free. Nevertheless, despite there are many potential-
stopper-free programs for which this last result is
relevant (see for instance the SPLASH testbed [9]),
there are other programs for which this situation do not
apply. In that case, it is necessary to check whether the
potential-stoppers are in fact stoppers by identifying
if the op operations in Definition 4 are contemporary,
and this is not a simple task.

At this point, we are currently focusing our efforts
in guaranteeing deadlock-freedom. Our approach con-
sists of makingop’ operations in Definition 4 being
non-contemporary (note that, whereas this approach is
not surprising from our results, here we clearly showed
the rationale behind it). For such a task, we are follow-
ing two different approaches: the first one consists of
introducing new locks to ensure that their subsequent
operations will not be executed at the same time; the
second one consists of introducing some dependencies
between existing locks so that they not only will check
that no other process is accessing the requested criti-
cal section but that some other critical sections are not
being accessed at this time [3].
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Appendix A. Thel/O automata formalism actions of A, beginning with an initial state, and (if
finite) ending with a state. We denote the set of exe-
In this Appendix we introduce the I/O automata cutions of 4 by exec$A). From an executior, we
formalism. We use a slight simplification of the I/O can extract thérace, which is the subsequence of the
automaton of Lynch and Tuttle, ignoring the aspects execution consisting of external actions only. Because
related to liveness. We include only those parts we transitions to different states may have the same ac-
consider necessary to understand the paper. For a fulltion, different executions may have the same trace. We
discussion, the reader is referred to [8]. denote the set of traces gfby traceg.A).
In the 1/O automata formalism, all components in
a system are modeled by using automata. An I/O

automatonA is composed of: References
(1) A set ofstates some of which are designated as , o
initial states [1] GR Andrewg, Concur.rent Progrgmmlng. Principles and Prac-
A . . . tice, Benjamin/Cummings Publishing Company, Inc., New
(2) A signature of actions, sig(.4). Such a signa- York, 1991.
ture consists of three mutually disjoint setsaaf [2] O. Babaoglu, E. Fromentin, M. Raynal, A unified framework
tions input, in(sig(.A)); output out(sig(A)); and for the specification and run-time detection of dynamic proper-
internal, int(sig(A)). We denote the set of ex- ties in distributed computations, Technical Report UBLCS-95-
ternal actions of the Signature axt(sig(A)) _ 2 tI)Departr:ﬂ«;g;\; of Computer Science, University of Bologna,
L . ebruary .
In(Slg(.A)) U OUt(Slg(A))' [3] P. Boronat, V. Cholvi, Dependences between critical sections
(3) A transition relation which is a set of triples of in synchronized memory models, in: Proc. International Con-
the form(s, =, S’), whereS’ ands are states, and ference on Computing and Information, June 1998.
7 an action. This triple means that in st&gthe [4] G. Igracha, S. T(zu;a?, Dis;ributed deadlock detection, Distrib-
: : uted Comput. 2 (3) (1987) 127-138.
aUIoma’[?n can atomlca"y do actienand Change [5] P.A. Buhr, M. Fortier, M.H. Coffin, Monitor classification,
to states’. ACM Comput. Surveys 27 (1) (1995) 63-107.

An element of the transition relation is called a [6] J.C. Corbett, Evaluating deadlock detection methods for con-
step Output actions are intended to model the actions current software, IEEE Trans. Software Engrg. 22 (3) (1996).
that are triggered by the automaton itself, while [7] E.G. Coffman, M.J. Elphick, A. Shoshani, System deadlocks,

. . . . ACM Comput. Surveys 3 (2) (1971) 67-78.
input actions model actions that are triggered by the [8] N. Lynch, Distributed Algorithms, Morgan Kaufmann Pub-

environment of the automaton (an automaton must lishers, Inc., Los Altos, CA, 1996.
be prepared to receive any input action at any time). [9] J. Singh, W. Weber, A. Gupta, SPLASH: Stanford paral-
Internal actions are used to model communication lel applications for shared memory, Comput. Architecture

News 20 (1) (1992) 5-44.
[10] R.N. Taylor, A general-purpose algorithm for analyzing con-
current programs, Comm. ACM 26 (1983) 362-376.

between components within the automaton.
An executiona of A is a (finite or infinite) alter-
nating sequenc8opm1S172...71,S, ... of states and



