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Abstract

A fundamental issue in the development of concurrent programs is the resource allocation problem. Roughly speaking, it
consists of providing some mechanism to avoid race conditions in the access of shared resources by two or more concurrent
processes. For such a task, maybe the most widely mechanism consists of using critical sections.

Unfortunately, it is also widely-known that programs which use several critical sections may suffer from deadlocks. In this
paper, we identify a program property, namely, beingstopper-free, which can be used to know if programs are deadlock-free.
Indeed, since we have proved that programs are deadlock-free if and only if they do not have any stopper, thus looking for a
stopper is equivalent to identifying a situation where a program may suffer a deadlock. 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

In the development of concurrent programs, consid-
erable effort has been devoted to study the resource al-
location problem, where by resource we mean a phys-
ical device as well as a section of code. While local
resources are accessed only by one process, shared re-
sources can be accessed by many processes. If two or
more processes simultaneously contend for the same
resource, they can leave the resource in an undefined
state (Fig. 1(a)). Therefore, it is necessary some mech-
anism to avoid “race conditions”.

Maybe the most widely used mechanism for such
a task consists of usingcritical sections[1]. Roughly
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speaking, a critical section can be seen as a “section
of code” which guarantees processes exclusive access
to the resources allocated within. In order to access
a critical section a process must firstly acquire it (by
executing a separate section of code), releasing it (by
executing another section of code) after leaving that
critical section. Obviously and since that forces shared
resources to be “sequentially” accessed, critical sec-
tions are an effective way of avoiding race conditions
(Fig. 1(b)).

Unfortunately, it is also widely-known that pro-
grams which use several critical sections may suffer
from deadlocks (i.e., the program being in an infinite
wait) [7]. Fundamental to this problem is knowledge
of situations where deadlocks may occur.

Detecting when the state of a distributed computa-
tion satisfies a certain property, namely, if deadlocks
may occur, constitutes a fundamental issue in the de-
sign of concurrent programs. Traditionally and in or-
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Fig. 1. Accessing a shared resource.

der to detect if a concurrent program holds a certain
property, three possible approaches have been used:
during the program’s execution, after the program’s
execution or prior to any program’s execution [10].

The first approach (also calleddynamic analysis)
must be verified by monitoring the execution as it
evolves [2]. However and even though several efficient
algorithms have been developed to detect deadlocks
dynamically [4,5], conclusions that they may draw are
not about all possible executions of the program but
about an actual execution. Similarly, the second ap-
proach (also calledpost-mortemanalysis) is unsuit-
able for our purposes, since it requires the program to
end, which can only happen if the program’s execution
has not been deadlocked (which is precisely the stud-
ied property). Finally, the third approach (also called
static analysis) is performed on a model of the pro-
gram without requiring test executions. In this paper,
we identify a program property which can be used to
known if programs are deadlock-free by using static
analysis. Such a property is minimal in the sense that
programs are deadlock-free if and only if they do not
satisfy it.

The rest of the paper is organized as follows. In
Section 2 we define the model used throughout the
paper. In Section 3 we identify a program property
which meets the above mentioned criteria. Finally, in
Section 4, we talk about the applicability of our result
and discuss some current work.

2. Formal framework

2.1. Program specification

The first thing we do in this section is to provide a
definition of program. Aprogramconsists of a set of
operations from a set of processes such that operations
from the same process are intended to be issued in a
fixed way. In order to characterize that behavior, we
will use an (irreflexive) order≺ which totally orders
operations from the same process.

An operation may be either internal to a process
and cause only a local state change, or it may involve
interaction with other processes by mean of using
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State:
for each processp ∈ Set_of_Processes:

status(p): status of processp, consisting of a pair whose first component is eitherlock or unlock
and the second component a critical section; initially the special valueidle.

for each critical sectioncs∈ Set_of_Critical_Sections:
block(cs): process blockingcs; initially the special valuenone.

Actions:
Input lockstart

p (cs) Output lockend
p (cs)

EFFECT: PRECONDITION:
status(p)←〈lock,cs〉 status(p)= 〈lock,cs〉

block(cs)= none
EFFECT:

block(cs)← p

status(p)← idle

Input unlockstart
p (cs) Output unlockend

p (cs)
EFFECT: PRECONDITION:

status(p)←〈unlock,cs〉 status(p)= 〈unlock,cs〉
EFFECT:

block(cs)← none
status(p)← idle

Scheme 1.

shared variables. However, here we consider only
operations for accessing shared resources.

A lock operation issued by processp, denoted
lockp(cs), is used to acquire the critical sectioncs.
Similarly, an unlock operation, denotedunlockp(cs),
is used by processp to release such a critical section.
In this paper, we do not allow any process to request
for any critical section which it already locks, nor
release any critical section which it does not lock.

2.2. System_Machine specification

Now, we provide a formal description of the pro-
tocol for accessing critical sections (i.e., the protocol
that implements lock and unlock operations). For such
a task, we use a specification based on a state machine,
System_Machine, for which it has been used a model
based on the I/O automata model of Lynch and Tuttle
(see the Appendix A).

In System_Machine, each operationop (either a
lock or an unlock) is modeled by using two actions,
which represent, respectively, its start (start(op)) and
end (end(op)). System_Machine is parameterized by
a given set of processesSet_of_Processesand a

given set of critical sectionsSet_of_Critical_Sections.
The formal definition ofSystem_Machineis given in
Scheme 1.

2.3. Interaction between a program and
System_Machine

In our formalism, the result of computing a program
P on a system specified bySystem_Machineconsists
on an execution ofSystem_Machinewhere, for each
operationop in P, there is an input actionstart(op)
which is immediately followed by its corresponding
output actionend(op). That restricts the set of exe-
cutions to those that follow the model of sequential
processes executing blocking operations: the process
executing an operation is forced to block until the op-
eration completes.

Definition 1. A computationof a programP under
a system modeled bySystem_Machineconsists of an
execution of the automataSystem_Machinesuch that
its input actions correspond with operations ofP, they
preserve the order≺ and none of them is enabled at
stateS by processp if S.status(p) �= idle.
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Fig. 2. Relationship between the trace of a computation and a programmer’s vision of such a trace.

Note that, for this definition to make sense, the set of
processes and critical sections ofSystem_Machineare
assumed that respectively include the set of processes
and critical sections of programP.

Fig. 2 shows a graphical representation of the
trace of a given computation (i.e., the subsequence of
the computation consisting of external actions only),
where the horizontal line represents the execution
order of those actions progressing from left to right.
We also provide a “programmer’s vision” of such a
trace with actions from the same process explicitly laid
out and transformed into operations. Notice that our
formalism does not make use of time. However and
as it can be seen, using a “space-time” diagram is a
convenient tool to visualize distributed computation.
In what follows and for the sake of simplicity we
will talk simply of programs, omitting that such
programs are computed on a system modeled by
System_Machine.

2.4. Deadlock specification

As it has been said, a major contribution of this
paper consists of identifying a program property for
characterizing deadlock-free programs. Thus, we have
to define what is a deadlocked computation.

Definition 2. A computationα of a programP has a
deadlockat stateS if

∃{csi} i=1,...,n
n>1

and ∃{pi} i=1,...,n
n>1

such that

∀i (
S.block(csi )= pi and

S.status(pi)= 〈lock,cs(i mod n)+1〉
)
.

Fig. 3 shows a programmer’s vision of a given
computation which at stateS has a deadlock (i.e., it
is deadlocked).

At this point, it is worthwhile to note that, even
though we use a notion of program where operations
from the same process are intended to be issued in
a fixed way, for the purpose of detecting whether a
program is deadlock-free, conclusions drawn about
them can be used to reason aboutstructured programs
(i.e., programs that, besides sequential constructs,
allow loopings and conditionals). Indeed, a program
with conditional constructs is equivalent (for our
purpose) to a number of sequential programs covering
all the possible paths that the different execution flows
may follow. Such a number of sequential programs,
even though may be high, will be finite. Thus, it is
enough to verify that every one of those programs
is deadlock-free to ensure that the program (with
conditional constructs) is deadlock-free. With regard
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Fig. 3. Deadlocked computation.

to looping constructs, the situation is simpler if each
acquired/released critical section within a given loop is
released/acquired in the same loop1. That is because,
for each one computation, the states corresponding to
the process that performs the loop will be repeated
in each one iteration. Therefore, for the purpose of
detecting whether there is a deadlock or not, it will
be equivalent to a sequential construct.

3. Stoppers: A property for characterizing
deadlocks

In this section, we introduce the “stopper” con-
cept which is the key definition for characterizing
deadlock-free programs. However, first we will intro-
duce the “contemporariness” concept (on which the
stopper concept is based on). For such a task, we use
the next notation:

Notation 1. Let op be a program operation used to
acquire a given critical section. We denoteopmatch the
unlock operation (from the same process) intended to
release the critical section acquired byop.

Notation 2. We say an operationop = lockp(cs)
is wrapper of another operationop′, denotedop=
wrappercs(op′), if op≺ op′ ≺ opmatch. We also denote

1 A very reasonable assumption since, otherwise, it may be
difficult to ensure that none critical section will be acquired more
than once and vice versa.

op∈ wrappers(op′) if, for some critical section,op is
wrapper ofop′.

Definition 3. Let OP be a set of operations, each one
from a different process, of a programP and letPOP

denote a subprogram ofP such that each one operation
is previous (with respect to≺) to some operation in
OP. We sayOP is contemporaryif there is a total
ordering≺T on the operations inPOP that preserves
≺ such that if op′ ≺T op and op= lockp(cs) and
op′ = lockp′(cs) (wherep �= p′) thenop′match≺T op.

Fig. 4 shows the operations that form a program
(explicitly laid out for each process). As it can be
readily seen, boxed operations are contemporary since
there is a total ordering for their preceding operations
which preserves the conditions stated at Definition 3
(we provide a possible ordering).

As the next lemma shows, contemporary operations
are characterized by the fact that, in some computa-
tion, they may beoutstanding(i.e., at some state of
the computation, the start actions have been executed
and the end actions have not been executed).

Lemma 1. Let OP be a set of operations, each one
from a different process, of a programP. OP is
contemporary iff there is a computation of such a
program where at a given state, the whole set of
operations inOP are outstanding.

Proof. (⇒) As OP is contemporary, by Definition 3,
there is a total ordering≺T on the operations inPOP



288 V. Cholvi, P. Boronat / Information Processing Letters 77 (2001) 283–290

Fig. 4. Contemporary operations.

that gives a way for executing those operations so that
all of them end.

Let us now compute the whole programP by
executing first the operations inPOP in the ordering
given by≺T. At such a state, as operations inPOP will
end, nothing prevents operations inOP from starting
immediately one after another. That makes operations
in OP being outstanding.

(⇐) Assume a given computation where, at a given
state, operations inOP are outstanding. Therefore, at
that state operations inPOP have ended.

It is immediate to verify that the execution order
of such operations fulfills the specification of≺T in
Definition 3. ✷

Now, we can proceed with the definition of stopper.

Definition 4. Given a programP, we say that a set
of critical sections{csi}i=1,...,n, n>1 forms astopperif
∃{pi}i=1,...,n, n>1 such that

∀i (∃op,op′: op=wrappercsi (op′) and

op′ = lockpi (cs(i mod n)+1)
)

and where the set formed by thoseop′ operations is
contemporary.

If we remove the contemporariness condition for the
op′ operations in the last definition, we say that those
critical sections form apotential-stopper.

The next theorem states our main result, namely,
that programs are deadlock-free if and only if they do
not have any stopper.

Theorem 1. Let stoppers(P) denote the whole set of
stoppers for a programP. Then,P is deadlock-free iff
stoppers(P)= ∅.

Proof. (⇒) By contradiction.
Let P be a program with a stopper. We will prove

that there is at least a computation ofP with a
deadlock.

From the stopper’s definition, we know that there is
a set of critical sections{csi}i=1,...,n, n>1 and a set of
processes{pi}i=1,...,n, n>1 such that

∀i (∃op,op′: op= wrappercsi (op′) and

op′ = lockpi (cs(i mod n)+1)
)

and where the set formed by thoseop′ operations is
contemporary.

By Lemma 1, there is a computationα of P such
that at a given stateS, the whole set ofop′ operations
are outstanding.

We will prove that at this state,α has a deadlock;
that is, for alli the following holds:

(1) S.block(csi )= pi .

Proof. We know that at stateS all theop′ operations
are outstanding. Take

op′ = lockpi

(
cs(i mod n)+1

)
.

We also know that there is anop operation such that
op=wrappercsi (op′).

Therefore, from the specification ofSystem_
Machine(and taking into account the wrapper’s def-
inition), we have thatS.block(csi )= pi . ✷
(2) S.status(pi)= 〈lock,cs(i mod n)+1〉.

Proof. We know that at stateS all theop′ operations
are outstanding. Take

op′ = lockpi

(
cs(i mod n)+1

)
.
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Therefore, from the specification ofSystem_
Machine, we have that

S.status(pi)=
〈
lock,cs(i mod n)+1

〉
. ✷

(⇐) By contradiction.
Let α be a computation ofP which has a deadlock

at stateS. We will prove thatstoppers(P) �= ∅.
By definition of deadlock, we know that at some

stateS there is a set of critical sections{csi} i=1,...,n
n>1

and a set of processes{pi}i=1,...,n, n>1 such that

∀i (
S.block(csi )= pi and

S.status(pi)= 〈lock,cs(i mod n)+1〉
)
.

We will prove that such critical sections form a
stopper; that is, we will prove the following two
things:
(1) For all i, there is a pair of operationsop andop′

such that the following holds:

(a) op=wrappercsi (op′).

Proof. By the conditions of deadlock, we have
that S.status(pi) = 〈lock,cs(i mod n)+1〉 and
S.block(csi )= pi .
Therefore, from the specification ofSystem_
Machineand taking into account the definition of
computation, we have that

∃op= lockpi (csi ): op≺ op′ ≺ opmatch. ✷
(b) op′ = lockpi (cs(i mod n)+1)).

Proof. By the conditions of deadlock, we have
that S.status(pi) = 〈lock,cs(i modn)+1〉. There-
fore, from the specification of System_
Machineand taking into account the definition of
computation, we have that

op′ = lockpi

(
cs(i mod n)+1

)
. ✷

(2) The set formed by the previousop′ operations is
contemporary.

Proof. By contradiction. Assume it is not contempo-
rary. By Lemma 1, such operations can not be out-
standing at the same time. Therefore, for somei, we
have thatS.status(pi) �= 〈lock,cs(i mod n)+1〉.

However, we have assumed that at stateS there
is a deadlock, which implies that∀i (S.status(pi) =

〈lock,cs(i mod n)+1〉), thus contradicting the hypothe-
sis. ✷

4. Discussion and current work

In order to check whether or not a program is
deadlock-free by using static analysis, the simplest
technique consists of “enumerating” the whole set of
states where a given program is executed and search
for deadlock states. Unfortunately, such a technique is
hindered by the well-known state explosion problem:
the number of states in a concurrent system tends to
increase exponentially with the number of processes.
In fact, because of the related complexity results,
static analysis tools are necessarily exponential on
the number of processes [6] and so does finding if a
program is stopper-free.

Despite that result that shows the intractability (in
general) of using a static analysis to check whether
or not a program is deadlock-free, there are some
reasons for supporting such an approach. Indeed, to
check whether or not a program is stopper-free, first
we look for any potential-stopper. Therefore, if a
program has not any potential-stopper (which is a
relatively simple task), we can say it is deadlock-
free. Nevertheless, despite there are many potential-
stopper-free programs for which this last result is
relevant (see for instance the SPLASH testbed [9]),
there are other programs for which this situation do not
apply. In that case, it is necessary to check whether the
potential-stoppers are in fact stoppers by identifying
if the op′ operations in Definition 4 are contemporary,
and this is not a simple task.

At this point, we are currently focusing our efforts
in guaranteeing deadlock-freedom. Our approach con-
sists of makingop′ operations in Definition 4 being
non-contemporary (note that, whereas this approach is
not surprising from our results, here we clearly showed
the rationale behind it). For such a task, we are follow-
ing two different approaches: the first one consists of
introducing new locks to ensure that their subsequent
operations will not be executed at the same time; the
second one consists of introducing some dependencies
between existing locks so that they not only will check
that no other process is accessing the requested criti-
cal section but that some other critical sections are not
being accessed at this time [3].
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Appendix A. The I/O automata formalism

In this Appendix we introduce the I/O automata
formalism. We use a slight simplification of the I/O
automaton of Lynch and Tuttle, ignoring the aspects
related to liveness. We include only those parts we
consider necessary to understand the paper. For a full
discussion, the reader is referred to [8].

In the I/O automata formalism, all components in
a system are modeled by using automata. An I/O
automatonA is composed of:
(1) A set ofstates, some of which are designated as

initial states.
(2) A signature of actions, sig(A). Such a signa-

ture consists of three mutually disjoint sets ofac-
tions: input, in(sig(A)); output, out(sig(A)); and
internal, int(sig(A)). We denote the set of ex-
ternal actions of the signature asext(sig(A)) =
in(sig(A))∪ out(sig(A)).

(3) A transition relation, which is a set of triples of
the form(S,π,S′), whereS′ andS are states, and
π an action. This triple means that in stateS, the
automaton can atomically do actionπ and change
to stateS′.

An element of the transition relation is called a
step. Output actions are intended to model the actions
that are triggered by the automaton itself, while
input actions model actions that are triggered by the
environment of the automaton (an automaton must
be prepared to receive any input action at any time).
Internal actions are used to model communication
between components within the automaton.

An executionα of A is a (finite or infinite) alter-
nating sequenceS0π1S1π2 . . .πnSn . . . of states and

actions ofA, beginning with an initial state, and (if
finite) ending with a state. We denote the set of exe-
cutions ofA by execs(A). From an executionα, we
can extract thetrace, which is the subsequence of the
execution consisting of external actions only. Because
transitions to different states may have the same ac-
tion, different executions may have the same trace. We
denote the set of traces ofA by traces(A).
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