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Most studies in complex networks assume that once a link is created between two nodes it is never deleted.
However, there is a recent interest towards systems where links can be rapidly rewired. An important issue in
that type of networks is to discover the topology that, given a search algorithm, optimizes the search process.
In this paper, we present a system model that, depending on the current network congestion, makes nodes to
establish link connections so that the resulting topologies tend to a starlike when congestion is small and to
randomlike topologies when congestion becomes relevant. Those topologies have been shown to be optimal in
the above-mentioned conditions. Such a model can be easily implemented in practice and therefore, may be
relevant in areas as the topology management of peer-to-peer networks.
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INTRODUCTION

In the last few years, there has been a great interest in
understanding the topological properties of complex net-
works f1,2g. That interest comes in part from a need to un-
derstand the behavior of systems such as the Internetf3g and
the World Wide Webf4g.

Whereas most of those studies assume that once a link is
created between two nodes, it is rarely deletedf5,6g, our
work is centered around dynamic communication networks
where links can be rapidly rewired. This is motivated from
the recent interest towards peer-to-peer networksf7–9g.

An important issue is to discover the topology that, given
a search algorithm,optimizesthe search processsoptimality
is defined as the minimization of the average time to perform
a searchd. Clearly, being able to obtain such topology struc-
tures seems to be a useful guide to drive the evolution of
dynamic communication networks.

In f10g, Guimeràet al. reported some interesting results
regarding the structure of several topologies optimizing the
search process in the presence of network congestion. First,
they showed that if the number of parallel searches is small,
such an optimal topology is a highly polarized starlike struc-
ture sa starlike topology, fork links per node, is formed byk
central nodes with the rest of nodes connecting their outgo-
ing links to thesed. However, this structure is inefficient if
congestion considerations become relevant, since the central
node may become overburdened. In fact, when nodes may
get easily collapsed because of the packets they must deliver,
the optimal network topology is a homogeneous-isotropic
one. Furthermore and contrary to what one could expect,
they also reportedsby means of an optimization process car-
ried out by using simulated annealingf11gd that the optimal
topologies, instead of covering a wide range of structures,
can be split in only these two categories: starlike topologies
for a small number of parallel searches and homogeneous-
isotropic topologies for large number of parallel searches,
with a sharp transition between them.

In this paper, our goal is to provide a system model that,
depending on the current network congestion, makes nodes
to establish concrete link connections so that the resulting

topologies perform not worse than both a starlike and a ran-
dom network. From the previously cited results inf10g, those
topologies can be considered as optimal.

The mechanism we use for the node’s election consists of
assigning to each node a probability and making the election
in accordance to it. More concretely, theattachment kernel
Pi that we use for such a task and that denotes the probabil-
ity of being connected and/or rewired to nodei has the form

Pi ~ ki
gi , s1d

whereki denotes the number of links of nodei and

gi = H2 if ci , threshold

0 otherwise.
J

The parameterci denotes thetraffic sin packets per unit of
timed that supports nodei. We assume that the nodes have
queues with the capacity to store as many packets as needed.
This means that no packet is ever dropped. However, and
without loss of generality, the processing power of a node is
fixed to only one packet per unit of time. Hence, we say that
a nodecollapseswhenci ù1.

The rationale behind the form ofgi is explained as fol-
lows. First of all, we note that it is knownf5g that by taking
a value ofgi =0 sfor all nodesd in Eq. s1d we obtain a random
topology; in turn, if the value ofgi is greater than 1se.g., 2d,
we obtain a starlike onef5g. Consequently, we establish that
the value ofgi will be either 2 if the traffic that supports node
i is below a given threshold value, threshold, and 0 other-
wise. That is, the network will evolve towards a randomlike
topology when many of the nodes forming the network sup-
port a traffic above threshold and towards a starlike-like to-
pology otherwise. The range of threshold will be between 0
san empty noded and 1san almost-collapsed noded.

In order to specify the congestion of a nodei, we consider
that each node generates packets at a rater per unit of time,
independently of the rest of the nodes. The destination of
each of those packets is randomly fixed at the moment of its
creation and they move in parallel according to a local search
algorithm using minimum paths between nodes. For such a
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model, we use the result of Guimeràet al. f10g, which pro-
vides the number of packets that arrive at the node, on aver-
age, as a function ofr, its betweenness centralityf12g, de-
notedbi, sthe betweenness centralityof a node is defined as
the number of routes, through shortest paths, that cross itd
and the number of nodes in the systemsdenotednd,

ci =
rbi

n − 1
. s2d

In order to evaluate how “good” a network topology is,
we consider a scenario similar tof10g. Thus, we assume that
the arrival of packets at a given nodei is a Poisson process
with meanci and that the delivery of packets is also a Pois-
son distribution. In that case, we have that the average size of
the queues is given byf13g

knil =
ci

1 − ci
=

rbi

n − 1

1 −
rbi

n − 1

, s3d

and the average load of the networkkNstdl is given by

kNstdl = o
i=1

n

knil = o
i=1

n
ci

1 − ci
= o

i=1

n
rbi

n − 1

1 −
rbi

n − 1

. s4d

According to Little’s lawf13g, the average time needed by
a packet to reach its destination is proportional to the total
load of the network, and therefore minimizingkNstdl is
equivalent to minimizing the average cost of a search. Con-
sequently, we consider a topology to beoptimal if it mini-
mizes the value ofkNstdl.

At this point, we would like to remark that Eq.s2d is only
valid for values ofr such thatci does not become collapsed.
When at least one of the nodes in the network collapses
swhich can occur for values ofr lower than 1d, the average
load of the networkkNstdl divergesf10g.

TOPOLOGY EVOLUTION

Our experiments are carried out using simulations. At
each simulation, we start with a starlike topology and in-

FIG. 1. sColor onlined Average loadskNstdld of several networks as a function ofr for several values of the thresholdsin log-logd. We
consider a scenario with 64 nodes and 2, 3, 4, and 5 links per node. The dashed and continuous lines respectively represent the average load
of starlike and random networks.
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crease the value ofr sinitially 0d until reaching the value
such that some node becomes collapsedsi.e., until ci ù1 for
someid; at that point, we repeat the same process in inverse
order.

For each value ofr, we take a single node and perform
one rewiring per link, using as attachment kernel the func-
tion in Eq.s1d. Then, we repeat the same process for another
node, until covering the whole set of nodes in the networksa
roundd. We repeat that process five times and results are
evaluated, for each value ofr, at the end of the last round.
We provide average values after repeating the experiments
ten times. We have observed that the topology does not de-
pend on whether we are increasing or decreasing the valuer,
but only on the value itself. Also, no disconnections have
been observed.

We remark that the simulations are based on calculating
the betweenness centrality and then obtaining the value of
the congestion of each node by using Eq.s2d, rather than
making nodes to inject packets into the network and measur-
ing the congestion of each node.

Performance evaluation. In our first experiment we take
64 nodes and vary the number of links that each node estab-
lished with other nodes from 2 to 5. We also take as values of
the threshold 0.1, 0.3, 0.8, and 1.

Figure 1 shows the result of evaluating the value ofkNstdl
for those scenariosssimilar results where obtained by using
32 and 128 nodesd. We found that for small values ofr,
starlike topologies outperform random topologies, and for
high values ofr random topologies outperform starlike to-
pologiessalthough in some cases the difference was mini-
mald. This is consistent with previous resultsf10g.

Depending on the threshold value, curves have a different
behavior. For moderate and high values ofr, the curves with
high thresholdssi.e., 0.8 and 1d are the most loaded. At the
other extreme, for small values ofr, the most loaded curve
has threshold of 0.1sthis is more evident in the case where
there are two linksd. In betweensi.e., with 0.3d, we found that
the load of the corresponding curve follows the dashed curve
until it crosses the continuous curve, and then follows this
one ssee Fig. 1d. Therefore, and taking into account the re-
sults in f10g, it can be argued that our topologies with a
threshold of 0.3 are to optimal. Intuitively, this can be ex-
plained if we take into account the fact that nodes self-adapt
dynamicallysby means of modifying the probability of being

connectedd to avoid congestion, which results in a minimiza-
tion of the load of the network. Also, it allows us to explain
why, for high values ofr, they perform even better than
randomlike networks: whereas random networks uniformly
distribute the load among all nodes, statistically, there is al-
ways a node more connected than the restsi.e., with a bigger
betweenness centralityd. Such nodes, for high values ofr, are
the first to become overloaded, thus quickly increasing the
load of the network. On the contrary, the use of thresholds
permits us to minimize the number of overloaded nodes,
minimizing the load of the network. In Fig. 2, we illustrate
the form of the obtained topologies.

To analyze the topology evolution, we focus on the cumu-
lative degree distributionPskd when we vary the injection
rate r. Such a metric represents the probability that a ran-
domly selected node has exactlyk or more edges. We con-
sider the case where there are three links per node and
threshold of 0.3. The results of our simulations are shown in
Fig. 3. Forr=0 we have thatgi =2 for all nodes and conse-
quentlyPi ~ki

2; therefore, we have a starlike topology. At the
other extreme, forr=1 we have thatgi =0 for many nodes

FIG. 2. sColor onlined Illustration of several optimal topologies for different values ofr in a scenario with 64 nodes, 3 links per node,
and a threshold of 0.3.

FIG. 3. sColor onlined Cumulative degree distribution for sev-
eral values ofr sin log-logd in a scenario with 64 nodes, 3 links per
node, and a threshold of 0.3. The horizontal axis is the vertex de-
gree and the vertical axis is the probability distribution of degrees
si.e., the fraction of vertices that have a degree equal tok or higherd.
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and consequentlyPi will be the same for all of them; thus,
the network will tend to be random. In between, there is a
transition from one type of topology to the other. This can be
observed by looking at the form of curves: for values ofr
above 0.05, curves appear to have an exponential distribution
stypical of random networksd and below it, curves quickly
evolve towards a starlike cumulative degree distribution
curve.

Deployment of the model. In order to justify that the pro-
posed model can be easily implemented in practice, we first
point out the fact that our approach consists of making the
nodes establish connections with other nodes by considering
only their vertex degreeswhich can be easily obtainedd and
their congestion level. Despite that, to obtain a node’s con-
gestion we used the betweenness centralityswhich can only
be obtained by means of having global network informa-
tiond; in a realistic case, congestion can be directly measured
from the node’s local state.

Furthermore and for the sake of simplicity, to perform the
node’s election we considered the whole set of nodes, al-
though it seems feasible to consider only a subset of them.
As a matter of fact, Newman’s resultf14g shows that our
approach is also valid if we consider, as a potential node’s
target, those reached along a random walk.

On the other hand, an important aspect of our model is the

convergence periodbetween topologies. We define it as the
number of rounds that must pass between two “stable” to-
pologies with different values ofr. Our experiments have
shown that it is very small, both when we increase the injec-
tion rates<1 roundd and when we decrease its<5 roundsd,
which shows that our model reacts very fast to any change in
the injection rate.

In summary, our work presents a dynamical model for
topology adaptation that takes into account the congestion
level at the nodes. As it has been shown, the resulting net-
work topologies optimize the search process in scenarios
where links can be easily rewired, such as the topology man-
agement of peer-to-peer networksf7–9g. Furthermore, such a
model can be easily deployed in practice.

Some issues are still open for future work. Currently, we
are studying the case when there are restrictions on how
nodes can establish linksse.g., scenarios where nodes may be
physically separated at a distance that overpasses their cov-
erage distanced.
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