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Abstract. As a means of supporting quality of service guarantees, aggregate multi-

plexing has attracted a lot of attention in the networking community, since it requires less

complexity than flow-based scheduling. However, contrary to what happens in the case of

flow-based multiplexing, few results are available for aggregate-based multiplexing.

In this paper, we consider a server multiplexer fed by several flows and analyze the

impact caused by traffic aggregation on the flows at the output of the server. No restriction

is imposed on the server multiplexer other than the fact that it must operate in a work-

conserving fashion.

We characterize of the best arrival curves that constrain the number of bits that leave

the server, in any time interval, for each individual flow. These curves can be used to

obtain the delays suffered by packets in complex scenarios where multiplexers are inter-

connected, as well as to determine the maximum size of the buffers in the different servers.

Previous results provide tight delay bounds for networks where servers are of the

FIFO type. Here, we provide tight bounds for any work-conserving scheduling policy,

so that our results can be applied to heterogeneous networks where the servers (routers)

can use different work-conserving scheduling policies such as First-In First-Out (FIFO),

Earliest Deadline First (EDF), Strict Priority (SP), Guaranteed Rate scheduling (GR), etc.

Key words: Performance evaluation, Aggregate scheduling, Blind multiplexing,

Arrival curve.

1. Introduction. Although it is known that in flow-based architectures tight

delay bounds can be computed for single flows, the computation overhead asso-
ciated to per-flow management operations (i.e., classification and scheduling) is
often unfeasible at high speeds when dealing with many flows simultaneously.

For this reason, in large-scale packet-switched-networks, as the Internet, flows
are managed as an aggregate rather than per-flow state operation. Examples of
such architectures are Differentiated Services (Diff-Serv) adopted by the IETF

(Blake1998) and Multi-Protocol Label Switching (MPLS) (Rosen2001).
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Whereas most of the work done using aggregate multiplexing assume that
aggregate packets are served using a FIFO discipline, in practice, many devices
cannot be accurately described by a FIFO service model because packets arriving
at the output queue from different input ports may experience different delays
when traversing a node. This is due to the fact that many networking devices like
routers are implemented using input-output buffered crossbars and/or multistage
interconnections between input and output ports. Hence, packet reordering on the
aggregate level is a frequent event and should not be neglected.

In this paper, we analyze the impact caused by traffic aggregation on the
flows at the output of a work-conserving blind multiplexing server. Concretely,
we a tight arrival curve which constrains the number of packets that leave the
server, during any time interval. The paper is organized as follows. Section 2
describes our assumptions and notation. Section 3 shows our main result and it its
shown its optimality (tightness). A review of related work is reported in Section 4.
In Section 5, we show the suboptimality of taking an iterative approach to obtain
the arrival curves. Finally, in Section 6, we present some conclusions and point
out future work.

2. Aggregate scheduling: model and notation. We consider I flows
which are served as an aggregate in a work-conserving blind multiplexing server
with constant service rate R.

A fluid approach is taken, leaving packetization effects for further study;
these effects are likely to have an impact on our results in the order of one maxi-
mum packet size (Chang2000, Le-Boudec2002).

We call Ai(t) to the input function which computes the number of bits ob-
served in flow i arriving to the server between the time interval 0 to t. Similarly,
let Bi(t) be the otput function which computes the number of bits, for flow i,
during the same time interval. Let A(t) =

∑I
i=1 Ai(t) be the aggregate input

function, and B(t) =
∑I

i=1 Bi(t) the aggregate output function.
We assume that flow i arriving to the server is constrained by an arrival

curve αi (Cruz1995):

Ai(t) − Ai(s) ≤ αi(t − s) (1)

for all t,s such that s ≤ t

Arrival curves are of great importance since are used to obtain the bounds
on the delays suffered by packets, as well as properly dimension the buffer
sizes (Cruz1995, Fidler2005, Le-Boudec2001, Lenzini2005, Ying2005).
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Our problem, is to find the tightest arrival curves (α∗
i (x)) for the output func-

tions Bi(t):

Bi(t) − Bi(s) ≤ α∗
i (t − s) (2)

for all t,s such that s ≤ t

In other words, we look for the tight arrival curve which bounds flow i at the
output of the work-conserving blind multiplexing server. Note that this arrival
curve will be used to bound the flow at the input of the next server on flow’s path.

We focus on the case where arrival curves are leaky-bucket constrained.
This is a typical constraint, which allows for bursts of a certain size and a
defined sustainable rate (Cruz1995, Jiang2002, Cholvi2002, Fidler2005, Le-
Boudec2001, Lenzini2005, Ying2005). More formally, the arrival curve that is
enforced by a leaky-bucket with depth bi and sustainable rate ri is the function

αi(x) = bi + rix (3)

for all x ≥ 0

An interesting feature of leaky-bucket curves is that they allow for a very
simple description of traffic aggregation, since the aggregate arrival curve of a
number of flows is the sum of the individual arrival curves.

PROPOSITION 1. The aggregate of a set of leaky-bucket constrained curves
I according to Equation 3 is a single leaky-bucket curve given by

αi(x) =
∑

j∈I

bj +
∑

j∈I

rjx (4)

for all x ≥ 0

Therefore and without loss of generality, we can focus on flow i = 1 and
consider the other flows as one aggregate flow. Thus, we can limit ourselves to
the case I = 2 and find an arrival curve for the output of flow 1 (flow 2 represents
the aggregate of all flows other than 1).

The term scenario is understood to mean any arbitrary collection of func-
tions (Ai(t))1≤i≤I that are wide-sense increasing and non-negative, and each
function satisfies Equation 1. For convenience, whenever necessary, we use a
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super-index to identify a scenario. For example, B
γ
i (t) is the output function of

flow i corresponding to scenario γ.
Let Γ be the set of all scenarios. Our problem is now to find the best possible

arrival curve α∗
1(x) for the output flow B1(t). In other words, we should have,

for any scenario γ ∈ Γ:

B
γ
1 (t) − B

γ
1 (s) ≤ α∗

1(t − s) (5)

for all t, s such that s ≤ t

We say that the arrival curve α∗
1 is tight if it is the smallest possible one.

Whenever necessary, we will use a super-index to identify the particular work-
conserving policy used to perform the aggregation of flows (e.g., ΓP is the set of
all scenarios in a system using P as scheduling policy).

Call Breq := supx≥0[α1(x) + α2(x) − Rx] the worst case buffer required
for a loss-free operation. We assume the finiteness condition

Breq < ∞. (6)

Otherwise, it can easily be seen that our problem has no finite solution. A
necessary and sufficient condition for a finite buffer requirement is that r1 +r2 <

R, assuming that b1 + b2 is finite.

3. Optimal arrival curve at the output flow. In this section, we obtain the
result that gives the solution to our problem. Before we proceed with it, we will
introduce some new concepts. Consider some arbitrary but fixed time interval
[s, t].

• Denote as a the value of x ≥ 0 that solves the following equation:

α2(x) − Rx = 0. (7)

Since α2 is a leaky-bucket function and r2 < R then a is defined and
unique; namely, a = b2

R−r2

. Denote sa = s − a. Also, for a given
scenario β ∈ Γ, denote as sβ the start of the busy period1 that lasts, at
least, until s.

• For any given scenario β ∈ Γ, denote as qβ(s) the number of bits of
flow 1 in the queue at time instant s.

1A busy period is a period where the server buffer is non-empty.



Tight Arrival Curve at the Output of a Server 5

time

flow 2 injects bits in a greedy fashion

s t

flow 1 injects bits in a greedy fashion

sa

Fig. 1. Scenario φ(s, t) showing the amount of flow 1 and flow 2 bits in-
jected in different time intervals.

• We say that scenario β ∈ Γ confines scenario γ for time interval [s, t],
denoted as γ ≺[s,t] β, if B

γ
1 (t) − B

γ
1 (s) ≤ B

β
1 (t) − B

β
1 (s). We also say

that β is the confiner for time interval [s, t] if ∀γ ∈ Γ (γ ≺[s,t] β).
• Given a scenario β ∈ Γ, we define βg as the scenario obtained from β

making flow 1 to inject in time interval [s − ǫ, t] (taking ǫ so that bits
injected at time instant s − ǫ are transmitted at or after time instant s) the
same number of bits injected by flow 1 in the same interval in β, but in a
greedy fashion2.

• Define Second Flow First (SFF ) as the work-conserving policy that
gives preference to bits from the second flow. Define φ(s, t) as the
scenario in ΓSFF such that (see Fig. 1):

– In time interval [sa, t] flow 1 injects α1(t − sa) bits in a greedy
fashion.

– In time interval [sa, s] flow 2 injects α2(s − sa) bits in a greedy
fashion.

– In the rest of the intervals, no flow injects any bits.

Regarding the form of the output function for flow 1 corresponding to sce-
nario φ(s, t), we have the following result:

Lemma 1. For any given time interval [s, t], we have that B
φ(s,t)
1 (t) −

B
φ(s,t)
1 (s) = min{R(t − s), α1(t − sa)}.

Proof. Taking into account how φ(s, t) has been defined, we have that, at
time instant s, all bits injected by flow 2 will be transmitted, and the buffer will
contain α1(s − sa) bits from flow 1.

2We say that in scenario β flow 1 injects bits in a greedy fashion in time interval [s, t] if ∀m :

s ≤ m ≤ t (Aβ
1
(m) − A

β
1
(s) = α1(m − s)) (resp. for flow 2).
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• Case R(t − s) > α1(t − sa): This means that not all injected flow 1 bits
have been transmitted at time instant t and, since at time s all injected
flow 2 bits have been transmitted, then R(t − s) will be transmitted at
time t.

• Case R(t− s) ≤ α1(t− sa): Since R(t− s) ≤ α1(t− sa) then, at time t

the buffer will be empty. This means that all injected flow 1 bits have
been transmitted. Namely, α1(t − sa).

Furthermore, we have that φ(s, t) is the scenario that provides the highest
number of flow 1 bits in the queue at time instant s.

Lemma 2. For any given time interval [s, t], we have that ∀β ∈ Γ (qβ(s) ≤

qφ(s,t)(s)).

Proof. If sβ ≥ sa the proof is immediate. Therefore, assume that sβ <

sa. Proof by contradiction. Assume that there is a scenario β ∈ Γ such that
(qφ(s,t)(s) ≤ qβ(s)). Therefore, we have that α1(s− sβ) + α2(s− sβ)−R(s−

sβ) > α1(s − sa). Taking into account that both α1 and α2 are leaky-bucket
constrained, we have that b1 + r1(s − sa) + r1(sa − sβ) + b2 + r2(s − sa) +

r2(sa − sβ) − R(s − sa) − R(sa − sβ) > b1 + r1(s − sa), which implies that
r1(sa−sβ)+b2 +r2(s−sa)+r2(sa−sβ)−R(s−sa)−R(sa−sβ) > 0. Since
b2+r2(s−sa)−R(s−sa) = 0 then r1(sa−sβ)+r2(sa−sβ)−R(sa−sβ) > 0,
and consequently (r1 + r2)(sa − sβ) > R(sa − sβ). Clearly, this implies that
r1 + r2 > R. But, by definition, r1 + r2 ≤ R, thus contradicting our initial
hypothesis.

The previous lemma provides us with an upper bound on the maximum num-
ber of flow 1 bits queued at any time instant.

COROLLARY 1. For all β ∈ Γ (max∀s qβ(s) = α1(a)).

Proof. Consider any time instant s. We know, from Lemma 2, that ∀β ∈ Γ

(qβ(s) ≤ qφ(s,t)(s)). But since qφ(s,t)(s) = α1(a) (see how qφ(s,t)(s) has been
defined) then the proof follows.

The following lemma relates the "confinement" relationship of any scenario
β ∈ Γ with its "greedy" version (i.e., with βg).

Lemma 3. For any given time interval [s, t], we have that ∀β ∈ Γ (β ≺[s,t]

βg).

Proof. Immediate, taking into account that, in time interval [s − ǫ, t], the
number of injected bits in both scenarios will be the same and in βg they have
been injected in a greedy fashion.
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Now, we can state the main theorem.

Theorem 1. Consider a system serving two flows in an arbitrary aggregate

manner, with the assumptions in Section 2. Define

α∗
1(x) = min{Rx, α1(x +

b2

R − r2
)}.

Then α∗
1 is the tight arrival curve for the output flow B1(t) that can be found

under these assumptions.

Proof. First, we prove that for any given time interval [s, t], we have that
∀β ∈ Γ then β ≺[s,t] φ(s, t).

• Case sβ ≥ sa: Consider scenario β ∈ Γ. On the one hand, given a time
interval [s, t], the buffer cannot transmit at a rate that is higher than R

(i.e., R(t − s)). Furthermore, the buffer cannot transmit, in time interval
[s, t], more that what is injected in time interval [sβ , t], which is, at most,
α1(t − sβ). Therefore, we have that
B

β
1 (t) − B

β
1 (s) ≤ min{R(t − s), α1(t − sβ)}.

Now, taking into account Lemma 1 and the fact that sβ ≥ sa, we have
that B

β
1 (t) − B

β
1 (s) ≤ min{R(t − s), α1(t − sβ)} ≤

min{R(t − s), α1(t − sa)} = B
φ(s,t)
1 (t) − B

φ(s,t)
1 (s). Consequently,

β ≺[s,t] φ(s, t).
• Case sβ < sa: On the one hand, the number of bits that can be

transmitted in time interval [s, t] in scenario φ(s, t) is
min{qφ(s,t)(s) + r1(t − s), R(t − s)}. Similarly, in scenario βg we have
that it is bounded by min{qβg

(s) + r1(t − s), R(t − s)}.
Since, from Lemma 2, qβg

(s) ≤ qφ(s,t)(s) then
min{qβg

(s)+r1(t−s), R(t−s)} ≤ min{qφ(s,t)(s)+r1(t−s), R(t−s)}.
Therefore βg ≺[s,t] φ(s, t). Furthermore, from Lemma 3, we have that
∀β ∈ Γ (β ≺[s,t] βg). Then β ≺[s,t] φ(s, t).

Therefore, we have that the scenario φ(s, t) is the confiner for time interval
[s, t]. Taking into account Lemma 1 and considering how sa has been defined,
the proof follows.

Since α1 is a leaky-bucket curve, then we have that α∗
1 is bounded by the

server rate R and by a leaky-bucket function with parameters (b∗1, r1), with

b∗1 = b1 + r1
b2

R − r2
.
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Fig. 2. Worst case arrival curves for the output of flow 1. The server rate
is R = 10, α1(x) = 15 + 3x and α2(x) = 10 + 6x.
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Fig. 3. Worst case arrival curve for the output of flow 1 when varying the
parameters of the aggregate flow 2. The server rate is R = 10,
α1(x) = 10 + 3x, α2A(x) = 10 + 3x, α2B(x) = 20 + 3x and
α2C(x) = 10 + 6x. α∗

1i(x) represents the arrival curves for the
output of flow 1 when flow 2 is constrained by α2i(x).

Fig 2 provides a numerical example of the shape of this curve. In Figure 3,
we also illustrate how the parameters of flow 2 affect α∗

1(x). As expected, the
increment of the sustainable ratio (r2), as well as the burst (b2) of the curve for
flow 2, produces an increase in α∗

1(x).
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4. Related work. Regarding previous work that has dealt with the char-
acterization of arrival curves that constrain the number of packets that leave an
arbitrary blind multiplexing server, to our knowledge, the only source that we
are aware is a result in (Le-Boudec2001). In this result, when two leaky-bucket
constrained flows (αi(x) = bi + rix) arrive to a server with strict service curve
βR,T , when r1 + r2 ≤ R the output of flow 1 is constrained by a the following
leaky-bucket arrival curve:

α∗∗
1 (x) = (b1 + b1T + r1

b2 + r2T

R − r2
) + r1x

In a constant rate server, as assumed in this paper, T=0 and Equation 4
matches our result. Contrary to our result in (Le-Boudec2001) it is not demon-
strated that the bound is optimal either for constant servers nor for a server
provinding a βR,T service curve.

A similar result has been reported in (Cruz1998) for the case of FIFO multi-
plexing (and extended for concave piecewise linear arrival curves in (Cholvi2002)).
In that case, the arrival curve for the output of flow 1 (which is also optimal) is
bounded by a leaky-bucket function with parameters (d1, r1), with:

d1 = b1 + r1
b2

R

Now, we have that d1 is lower than b∗1. However, it must be taken into account
that FIFO is a special case of work-conserving aggregate multiplexing policy
(i.e., the FIFO bound is not valid, in general, for work-conserving multiplexing
policies).

5. Feasible scenarios. In this section, we show that, contrary to what hap-
pens at the input, at the output not all valid scenarios in accordance with the worst
case arrival curves can occur.

PROPOSITION 2. Consider a work-conserving server serving two flows
(with the assumptions in Section 2). Then, at the output, not all valid scenarios in
accordance with the worst case arrival curve can occur.

Proof. By counter-example. Let us focus on a system where α1(x) =

α2(x) = min{Rx, b + rx}. Clearly, we have that α∗
1(x) = α∗

2(x). Denote as
x′ the point where α∗

1 (and consequently α∗
2) changes the value of its linearity.

Therefore Rx′ ≤ b∗ + rx′.
Take a scenario, denoted β∗, in which both flow 1 and flow 2 are greedy

in time interval [s, s + x′] at the output. By definition of the arrival curve (see
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Equation 1), β∗ is a valid scenario. Assume, by way of contradiction, that this
scenario can occur. Since Rx′ ≤ b∗ + rx′ then both flow 1 and flow 2 will
transmit (at the output of the server) in time interval [s, s+x′] at a rate of R. This
implies that, in time interval [s, s + x′], the server will transmit at a rate of 2R,
which is not possible.

As a consequence of this, we have that taking an iterative approach to charac-
terize the arrival curves at the output when flows pass throughout several servers
does not guarantee that they will be optimal (in the sense that, although valid,
they do not necessarily have to be the tight arrival curves that can be found).

6. Conclusions. In this paper, we have analyzed the impact caused on the
input flows by a work-conserving blind multiplexing server. We provide the tight
arrival curve at the output of the server. Furthermore, it has been shown that
the scenarios at the output of such server are, in general, more restrictive than
those at the input, which explains the well-known inefficiency involved in finding
performance bounds by iteratively applying output burstiness bounds in arbitrary
work-conserving servers (Le-Boudec2001).

An important issue is to extend our result to the case where the arrival curve
constraints for the input flows are piecewise linear functions, which correspond
to combination of leaky-buckets. This will allows us to work directly with the
variable bit rate case (or T-SPEC) used by the IETF.
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