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Abstract

In this paper, we present a framework to formally describe and study the inter-
connection of distributed shared memory systems. Using it allows us to classify the
consistency models in two groups, depending on whether they are fast or not. In the
case of non-fast consistency models, we show that they cannot be interconnected in
any way. In contrast, in the case of fast consistency models we provide protocols to
interconnect some of them.
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1 Introduction

Distributed shared memory (DSM) is a well-known mechanism for interprocess
communication in distributed environments [2]. Roughly speaking, it consists
in using read and write operations for interprocess communication, thus hid-
ing the particular communication technique employed by the programmers
to avoid the need to be involved in the management of messages. However,
this can cause problems in systems where several processes independently and
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formáticos, Universitat Jaume I, Campus de Riu Sec, 12071 Castellón (Spain).
Email: vcholvi@uji.es

Preprint submitted to Elsevier Science 4 December 2008



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

simultaneously submit reads and writes, since they can see each other’s oper-
ations out of order. This problem led to the concept of consistency models. A
consistency model is a specification of the allowable behavior of memory, and
it can be seen as a contract between memory implementation and the program
utilizing memory: the memory implementation guarantees that for any input
it will produce some output from the set of allowable outputs specified by the
consistency model, and the program must be written to work correctly for any
output allowed by the consistency model. Depending on the semantics of the
memory operations, a number of consistency models have been proposed in
the literature (see for instance [2–6]).

In this paper, we study the interconnection of distributed shared memory sys-
tems. By this we mean the addition of an interconnection system to several
existing distributed shared memory systems that implement a given consis-
tency model in order to obtain a single distributed shared memory system
that implements the same consistency model. There are two main reasons for
interconnecting DSM systems with new protocols instead of using a single
protocol for the whole system:

• First, in this way we can interconnect systems that are already running
without changing them. They can go on using their protocols at their local
level.

• Second, depending on the network topology, it could be more efficient to
implement several systems and interconnect them than to have one single
large system. An example of this would be a DSM system that has to be
implemented on two local area networks connected with a low-speed point-
to-point link. If the protocol that is used broadcasts updates, in a single
system with many popular protocols there would be a large number of
messages crossing the point-to-point link for the same variable update. In
this case, it would seem appropriate to implement one system in each of
the local area networks, and use an interconnecting protocol via the link to
connect the whole system. With the appropriate interconnecting protocol,
many fewer messages cross the link for each variable update.

It is interesting to compare our approach with the concept of locality, defined
by Herlihy and Wing [7]. Both approaches have to do with the ability to
compose DSM systems. However, locality addresses composability of DSM
systems with the same set of processes but disjoint sets of memory objects,
while our approach studies the composability of DSM systems with the same
set of memory objects but disjoint sets of processes.

A first contribution of this work is the introduction of a framework for the
interconnection of memory systems and the formalization of the interactions
between the existing memory systems and the interconnection system. Fur-
thermore, we identify the fastness of a memory model (a concept that will be
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defined later in the paper) as the key property that will qualify it to be an
interconnectable memory model or not.

In the case of non-fast consistency models, we show that they cannot be inter-
connected in any way, thus deriving that a number of popular memory models
can not be interconnected (e.g., the atomic, safe, regular and sequential mod-
els [8], the PCG and PCD consistency models [9, 10], the eager release model
[11], the lazy release model [12], the entry model [13], the scope model [14],
etc.).

In contrast, we show that several fast consistency models can, indeed, be
interconnected (namely, the pRAM [15], causal [16], and cache models [9]).
However, whereas the cache model can be interconnected without any restric-
tion, we found that the other two memory models can only be interconnected
when the subsystems fulfill certain restrictions. In this last situation, we give
sufficient conditions and the corresponding interconnecting protocols to do so.

Regarding previous work that has been carried out on the interconnection
of distributed shared systems, as far as we know, it has only been studied
in [17] 1 . Here, we extend the results of that paper in a number of ways.
First, we consider consistency models other than the causal one (which was
the only one considered in [17]). Second, we provide some impossibility results
related with interconnection of consistency models. Third, we use much weaker
assumptions on the systems to be interconnected.

The rest of the paper is organized as follows. In Section 2, we introduce the
framework for the interconnection of systems. In Section 3, we show the im-
possibility of interconnection for non-fast consistency models. In Section 4, we
study the interconnection of pRAM systems, in Section 5 the interconnection
of causal systems, and in Section 6 we show how to interconnect cache systems.
In Section 7, we briefly study the performance of the proposed interconnecting
protocols. Finally, in Section 8, we present some concluding remarks.

2 System Model

We consider distributed shared memory systems (or systems for short) formed
by a collection of application processes that interact via a shared memory
consisting of a set of variables. All the interactions between the application
processes and the memory are performed through read and write operations
(memory operations) on variables of the memory.

1 In addition, of course, to the preliminary version of this paper, appeared in
OPODIS’03 [1].
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Each memory operation is applied on a named variable and has an associated
value. A write operation of the value v in the variable x, denoted w(x)v, stores
v in the variable x. A read operation of the value v from the variable x, denoted
r(x)v, reports to the issuing application process that the variable x holds the
value v. To simplify the analysis, we assume that a given value is written at
most once in any given variable and that the initial values of the variables are
set by using fictitious write operations.

Furthermore, we also consider explicit synchronization operations. Synchro-
nizations can be used just to import information, as with the acquiring of a
lock, or just to export information, as with the release of a lock.

In order to characterize the system model, we specify the components that
form it, the consistency model, the system architecture and the interconnecting
system.

2.1 The Consistency Model

Roughly speaking, a consistency model (also called memory model) is a specifi-
cation of the allowable behavior of the system’s operations. To formally define
a consistency model, first we introduce what a system’s execution is. An exe-
cution α of a system S consists of a set of read and write operations, as well as
synchronization operations (if any), issued by the application processes that
form system S. Such operations must preserve the so called execution order.
To define this, first we introduce the process order.

Definition 1 (Process Order) Let p be a process of S and op, op′ ∈ α.
Then op precedes op′ in p’s process order, denoted op ≺p op′, if op and op′ are
operations issued by p, and op is issued before op′.

Definition 2 (Execution Order) Let op, op′ ∈ α. Then op precedes op′ in
the execution order, denoted op ≺ op′, if any of the following hold:

(1) op and op′ are operations from the same process p and op ≺p op′.
(2) op = w(x)v and op′ = r(x)v.
(3) There is an operation op′′ ∈ α such that op ≺ op′′ ≺ op′.

Now, we formally define a consistency model as follows:

Definition 3 (Consistency Model) A consistency model M is a set
formed by all executions of type M .

Obviously, for this definition to make sense, it is necessary to define what an
execution of type M is in each case. The specification of particular types of
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executions will be dealt with later in the paper. For such a task, we need to
define several related concepts.

Definition 4 (View) Let ≺o be an order defined on the operations of execu-
tion α, and let α′ ⊆ α. A view β of α′ preserving ≺o is a sequence formed by
all operations of α′ such that this sequence preserves the order ≺o.

Note that if ≺o does not define a total order on α′, then there can be several

views of α′. We use op
β→ op′ to denote that op precedes op′ in a view β. We

will omit the view when it is clear from the context. We will also use α → α′,
where α and α′ are sets of operations, to denote that all the operations in α
precede all the operations in α′.

Definition 5 (Legal View) Let ≺o be an order defined on the operations of
execution α, and let α′ ⊆ α. A view β of α′ preserving ≺o is legal if for each
read operation r(x)v ∈ α′,

a) there is a write operation w(x)v ∈ α′ such that w(x)v
β→ r(x)v, and

b) there is no write operation w(x)u ∈ α′ such that w(x)v
β→ w(x)u

β→ r(x)v.

2.2 The System Architecture

From a physical point of view, we consider distributed systems as consisting
of a set of nodes and a network that provides communication among them.
The essence of this model has been taken from [18]. The application processes
of the system are actually executed in the nodes of the distributed system.
We assume that the shared memory abstraction is implemented by a memory
consistency system (MCS ). The MCS is composed of MCS-processes that
use local memory at the various nodes and cooperate following a distributed
algorithm, or MCS-protocol , to provide the application processes with the
impression of having a shared memory. The MCS-processes are executed at
the nodes of the distributed system and exchange information as specified by
the MCS-protocol . They use the communication network to interact if they are
in different nodes. Each MCS-process can serve several application processes,
but an application process is assigned to only one local MCS-process. For each
application process p we use mcs(p) to denote its MCS-process. An application
process and its MCS-process have to be in the same node, as stated by the
following assumption.

Assumption 1 Let p be an application process. Process p and mcs(p) are in
the same node.

An application process sequentially issues read/write/synchronization oper-
ations on the shared variables by sending (read/write/synchronization) calls
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Fig. 1. System architecture.

to its MCS-process. After sending a call, the application process blocks until
it receives the corresponding response from its MCS-process, which ends the
operation. We assume an asynchronous model. This means that there is no
bound on the amount of time instructions and message transmissions take.
We do not assume synchronized clocks among processes. We also assume that
no system component (processes, nodes, and networks) fails. Fig. 1 shows an
example of the system architecture described above.

Regarding the consistency model implemented by a system (i.e., by its MCS ),
we follow the same approach taken when defining a consistency model:

Definition 6 (System) A system is of type M if all its executions are of
type M .

Furthermore, we consider systems in which at least the last write operation on
every variable must be eventually visible in every process of the system. This
is a very natural property which is preserved by every system that we have
found in the literature. In our terminology, it means that their MCSs must
satisfy the following property:

Liveness Property. Consider any execution α of system S. If there is only
one process writing on variable x and its last operation on x was w(x)u, then
eventually the response to any read call on x issued by any application process
will contain the value u.

2.3 The Interconnection System

Interconnecting several systems involves making them to behave as though
they were one single system. Using the terminology defined above, this actually
means interconnecting several MCS s.

In our model, the load of such an interconnection will fall on an interconnection
system (IS ). An IS is a set of processes (IS-processes) that execute some
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distributed algorithm or protocol (IS-protocol). For simplicity in the IS design,
we consider the existence of one IS -process for each MCS to be interconnected.

The IS-process of each system is an application process and, hence, it has an
MCS-process that by Assumption 1 is in its same node. The IS-process uses
the MCS-process to read and write on the shared memory of the local system.
In particular, the only way a value written by an application process in some
system can be read by an application process in another system is if the IS-
process of the latter system writes it. IS-processes exchange information with
each other (as specified by the IS-protocol) by using a reliable FIFO commu-
nication network. Note that, after the interconnection, the overall system has
a global MCS formed by the MCS s of the original systems plus the IS that
interconnects them. Figure 2 presents an example of an IS interconnecting
two systems.

Definition 7 We will say that a consistency model can be interconnected if
for any collection of systems implementing this consistency model there is an
IS-protocol that interconnects them.

In the rest of the paper we will use N to denote the number of systems
to be interconnected. The systems to be interconnected will be denoted by
S0, · · · , SN −1, and the resulting interconnected system by ST . The IS-process
for each system Sk (where k ∈ {0, · · · , N − 1}) is denoted by ispk. It is worth
remarking that ispk is part of the system Sk. We consider that the set of pro-
cesses of ST includes all the processes in S0, · · · , SN −1 except isp0, · · · , ispN −1

(since they are only used to interconnect the systems S0, · · · , SN −1).

Regarding how the IS s operate, we note that it is necessary to guarantee that
any given IS-process be eventually aware of the writes taking place at the
MCS-processes that it manages, so that it could exchange such information
with other IS-processes. This functionality can be implemented in a number
of ways.

(1) Within the IS-process: for instance, it can be implemented by making
the IS-process check for any updated variable, by periodically reading
the whole memory. In this case, the IS-process will behave as a regular
application process and no additional assumption is made on the MCS-
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processes.
(2) Within the MCS-processes: in this case the MCS-processes have to com-

municate explicitly any update to the IS-process. Whereas such an ap-
proach could be more efficient than the previous one, it requires that the
MCS-processes be able to perform such a task.

(3) By using a combination of both.

In order to maintain it as general as possible, in this paper we only assume
that there is an interface (between the MCS and the IS ) that provides the
above mentioned functionality, without considering how it is implemented 2 .
However, in order to “decouple” as much as possible the original systems and
the interconnecting protocol, this interface does not allow the IS to contact
the MCS (except to read or write variables). In particular, the IS cannot block
the MCS (as was done in [17]). More formally, the interface guarantees the
following assumption:

Assumption 2 When any MCS-process updates its local memory (as a result
of a write operation issued by an application process), the IS-process will be
asynchronously notified about these events (i.e., about the updated variable,
the written value and the application process). Other than this, there is no
MCS-initiated interaction between MCS and IS processes.

3 Fast vs Non-Fast Consistency Models

In this section, we show that only systems implementing fast consistency mod-
els can be interconnected. Formally, we define a fast consistency model as
follows:

Definition 8 We say that a consistency model is fast if there is an MCS-
protocol that implements it, such that memory operations only require local
computations before returning control, even in systems with several nodes.

Since there are several examples of popular fast and non-fast models, this
implies that the property of being fast classifies the set of memory models
in a non trivial way. The following observation will be useful to prove some
subsequent results.

Observation 1 Every IS-protocol that interconnects N > 2 systems can be

2 In addition to the above mentioned approaches, a local copy of the shared mem-
ory could be stored in a protected zone of the physical memory, so that any mod-
ification generates an interruption that informs the IS-process without using the
MCS-processes. However, here we don’t consider this case, since it requires some
“help” from the operating system.
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used to interconnect 2 systems. Furthermore, every IS-protocol that intercon-
nects 2 systems can be used to interconnect N > 2 systems.

PROOF. For the first part, let us consider that there is an IS-protocol that
interconnects N > 2 systems through a set of N IS-processes. If we only have
two systems, one of the two IS-processes can simulate N −2 empty systems and
their IS-processes. Then, we have an interconnected system of two systems.

For the second part, we use induction on i to show that i systems can be
interconnected for any i ≥ 2. For i = 2 the claim is trivially true. Now,
assume that we can obtain a system S ′ by interconnecting the systems S0,
S1, ..., Si−2. The result of the interconnection is a single system. Then, the
IS-protocol can be used to properly interconnect S ′ and Si−1. 2

In what follows, we consider the interconnection of only two systems, and use
this observation to generalize our results to several systems. Now, we prove
that non-fast memory models cannot, in general, be interconnected.

Theorem 1 There is no IS that guarantees the interconnection of systems
implementing non-fast memory models.

PROOF. We show the result by contradiction. Assume that there is a non-
fast memory model M that can be interconnected. From Observation 1, we can
consider the interconnection of two systems. Therefore, let us assume there is
an IS I that interconnects two systems implementing M . Let us first take a
distributed system with two nodes. In each node we implement a system with
one MCS-process, at least one application process, and the corresponding IS-
process. By Assumption 1, the MCS-process and the application processes (the
IS-process included) are in the same node. Then, in each of these two single-
node systems each memory operation only requires local computations. Now,
we use I to interconnect these two systems into a unique system implementing
M . By Assumption 2, I cannot block the MCS-processes. Then, every memory
operation in the resulting system still requires only local computations, which
contradicts the fact that M is not fast. 2

As a consequence of this theorem, we derive that a number of popular memory
models cannot be interconnected. In [18] it is shown that the sequential con-
sistency model is not fast. Hence, it cannot be interconnected, and the same
happens with the atomic consistency model and its derivations, i.e., the safe
and regular memory models [19]. Similarly, Attiya and Friedman [20] have
shown that the processor consistency models PCG and PCD [9, 10] are not
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fast, and consequently cannot be interconnected. Finally, Attiya and Fried-
man [20] also proved that any algorithm for the mutual exclusion problem
using fast operations must be cooperative. This implies that any synchroniza-
tion operation that guarantees mutual exclusion must be non-fast. Therefore,
any synchronized memory model that provides exclusive access cannot be in-
terconnected. As a result, we have that memory models such as the eager
release [11], the lazy release [12], the entry [13] or the scope [14] cannot be
interconnected.

On the other hand, there are a number of consistency models that are fast
and for which Theorem 1 does not apply. In the following sections we show
that some of the most popular fast memory models (namely, the pRAM [15],
the causal [16] and the cache [9]) can indeed be interconnected, although, in
some cases, in a constrained fashion.

We will assume that these fast systems control the replicas by propagating
the new values to update the replicas. This assumption does not significantly
restrict the domain of application of our results, since all current implementa-
tions of fast models we are aware of have been obtained by using propagation.

4 Interconnection of pRAM Systems

In this section, we study the interconnection of pRAM systems [15]. In this
model, every process performs all its operations locally and transmits up-
dated values to the other processes along FIFO channels. These updates are
later performed asynchronously at the remote processes. Formally, we define
a pRAM system as follows:

Definition 9 (pRAM System) A system S is pRAM if for every execution
α and every process p there is a legal view βp of αp preserving ≺q for all q
(where αp denotes the subset of operations obtained by removing from execution
α all read operations issued by processes other than p).

Following, we show that, in general, the interconnection of pRAM systems is
not possible. That is, there is no IS that interconnects every pair of pRAM
systems. The proof is based on the fact that some pRAM systems may not
be FIFO ordered (the formal definition of FIFO ordered system is provided
below). Indeed, as we pointed at the end of Section 2, it is necessary to have
a functionality that guarantees that any given IS-process be eventually aware
of the writes taking place at the MCS-processes that it manages. If such a
functionality is implemented within the IS-process (i.e., by making the IS-
process periodically read the whole memory), it is easy to prove that pRAM
systems, in general, cannot be interconnected. Basically, the idea is that when
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the IS-process finds two variables that have been modified since the last time
it read them, it cannot know in which order they were written, and may
propagate them to the other systems in an incorrect order. Hence, such a
functionality must be implemented within the MCS-processes (i.e., by making
them to communicate explicitly any update to the IS-process, as described
in Assumption 2). Depending on how this update is done, it could happen
that local replicas are updated in a different order than the write operations
were issued 3 . Then, the communication of the updates between the MCS-
processes and the IS-process (which is performed without using read and write
operations but using explicit messages) could be out of order.

In what follows in the rest of the paper, we extend our notation and use both
subscripts and superscripts to respectively denote the process that performs
the operations and the system where such a process is located.

Theorem 2 There is no IS that guarantees pRAM interconnection for every
pair of pRAM systems.

PROOF. The proof is based on the fact that when some process p in Sk

issues several write operations, it may update the corresponding variables in
its local memory in a different order from p’s process order.

Let us assume, by way of contradiction, that there is a system ST which
is the result of interconnecting two pRAM systems S0 and S1 through some
interconnection system I. From Definition 9, we know that for every execution
αT there is a legal view βT

p of αT
p , for all p, preserving ≺q, for all q.

Assume that we have an execution α0 with the following sequence of write
operations issued by process p of S0: w0

p(x)s ≺p w0
p(y)l. We know, from the

Liveness Property (see Section 2.2), that there is a time t after which any read
operation on x and y issued by any process in S1 returns s and l, respectively.
We now assume that after this time t the process p issues the write operations
w0

p(x)u and w0
p(y)v. We know, following the definition of interface’s behavior,

that when any MCS-process updates its local memory, the interface informs
isp0 about these events. Then, I can take one of the following actions:

• Case 1: isp1 issues w1
isp1(x)u and w1

isp1(y)v, in this order, in S1. In this case,
if w0

p(x)u and w0
p(y)v were issued by process p in the order w0

p(y)v ≺p w0
p(x)u

and some process q of S1 issues the read operations r1
q(x)u ≺q r1

q(y)l (which
is possible if the pRAM systems are not FIFO ordered), then it is impossible
to form a legal view βT

q preserving ≺p. Hence, we reach a contradiction.

3 An example of this behavior is the causal (and hence pRAM) algorithm of [6], in
which the update of several variables are batched into a single message and applied
in arbitrary order, in mutual exclusion with all read operations.
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1 Task Propagatek
out :: executed upon notifi-

cation from the interface to ispk that the
variable x has been updated in mcs(ispk) to
value v due to a write operation issued by
p

2 begin
3 if p 6= ispk then
4 send 〈x, v〉 to ispl, l 6= k
5 end

1 Task Propagatek
in :: executed

upon reception of 〈x, v〉
from ispl, l 6= k

2 begin
3 w(x)v
4 end

Fig. 3. The pRAM IS-protocol for each ispk, k ∈ {0, 1}.

• Case 2: isp1 issues w1
isp1(y)v and w1

isp1(x)u, in this order, in S1. In this case,
if w0

p(x)u and w0
p(y)v were issued by process p in the order w0

p(x)u ≺p w0
p(y)v

and some process q of S1 issues the read operations r1
q(y)v ≺q r1

q(x)s (which
is possible if the pRAM systems are not FIFO ordered), then it is impossible
to form a legal view βT

q preserving ≺p. Hence, we reach a contradiction.
• Case 3: isp1 does not issue w1

isp1(y)v or w1
isp1(x)u in S1. From the Liveness

Property, this case is not possible.

2

Despite the previous result, we have found that for certain types of pRAM
systems, which we call FIFO ordered, it is still possible to do this.

FIFO Ordered Systems. We say a system is FIFO ordered if for each
process p in Sk, if p issues two write operations w(x)v ≺p w(y)u, then the
mcs(ispk) process updates its local replica of x with the value v before updat-
ing its local replica of y with the value u.

In Figure 3, we present an IS-protocol that can be used to interconnect
pRAM systems that are FIFO ordered. It consists of two concurrent tasks,
Propagatek

out and Propagatek
in. The first task, Propagatek

out, deals with trans-
ferring write operations issued in Sk to Sl, l 6= k. It is activated upon noti-
fication from the interface to ispk that the variable x has been updated to
value v due to a write operation issued by the application process p. Then,
Propagatek

out sends the pair 〈x, v〉 to ispl, l 6= k. We avoid re-propagating
write operations received from other systems by checking that the write op-
eration was not issued in Sk by ispk. The second task, Propagatek

in, deals
with applying within Sk the write operations transferred from the systems
Sl, l 6= k. It is activated whenever a pair 〈x, v〉 is received from process ispl,
l 6= k. As a result, the ispk process performs a write operation w(x)v, thus
propagating the value v to all the replicas of variable x within Sk. We note

12
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that the FIFO ordered property do not undergo substantial constraints with
respect to systems that are not FIFO ordered. Theorem 3 states formally the
guarantees provided by the above mentioned interconnection protocol.

Theorem 3 The system ST obtained by connecting N FIFO ordered pRAM
systems S0, · · · , SN −1 using the pRAM IS-protocol in Fig. 3 is pRAM.

PROOF. See Appendix A.1. 2

5 Interconnection of Causal Systems

In this section, we study the interconnection of causal systems [16]. In the
causal model, in addition to the conditions of the pRAM executions, read
operations are forced to return the value written by the lastest causally ordered
operation (i.e., read operations preserve the execution order in Definition 2).
Formally, we define a causal system as follows:

Definition 10 (Causal System) A system S is causal if for every execution
α and every process p there is a legal view βp of αp preserving ≺.

As in the case of pRAM systems, here we consider systems that are imple-
mented by using propagation. First of all, we have that since the pRAM model
is strictly weaker than the causal model [3, 16], the result of impossibility in
Section 4 is also applicable to causal systems.

Corollary 1 (from Theorem 2) There is no IS that guarantees causal in-
terconnection for every pair of causal systems.

In spite of this result, in the previous section we presented an IS-protocol for
interconnecting pRAM systems that are FIFO ordered. Thus, a question that
naturally arises is whether it is possible to interconnect causal systems that
are also FIFO ordered. However, here we show that this result does not apply
to causal systems. That is, there is no IS that interconnects every pair of
causal systems, even if they are FIFO ordered.

Theorem 4 There is no IS that guarantees causal interconnection for every
pair of causal systems, even if they are FIFO ordered.

PROOF. Let us assume, by way of contradiction, that there is a system ST

which is the result of interconnecting two FIFO-ordered causal systems S0

and S1 with the IS I. From Definition 10, we know that for every execution
αT there is a legal view βT

p of αT
p , for all p, preserving ≺.

13
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Assume that we have an execution α0 with the following write operations
issued by process r of S0: w0

r(x)s ≺ w0
r(y)l. From the Liveness Property, we

know that there is a time t after which any read operation on x and y issued
by any process in S0 returns s and l, respectively. We now assume that after
this time t the processes p and g issue the write operations w0

p(x)u and w0
g(y)v,

causally related to each other through read operations (detailed below in each
case). Following the definition of interface’s behavior, we consider that when
all MCS-processes update their local memory, the interface communicates isp0

about these events. Then, I can take one of the following actions:

• Case 1: isp1 issues w1
isp1(x)u and w1

isp1(y)v, in this order, in S1. Now, some
process q of S1 issues the following read operations r1

q(x)u ≺q r1
q(y)l. In this

case, if r0
g(y)l ≺ w0

g(y)v ≺ r0
p(y)v ≺ w0

p(x)u, then it is impossible to form a
legal view βT

q preserving ≺. Hence, we reach a contradiction.
• Case 2: isp1 issues w1

isp1(y)v and w1
isp1(x)u, in this order, in S1. Now, some

process q of S1 issues the following read operations r1
q(y)v ≺q r1

q(x)s. In this
case, if r0

p(x)s ≺ w0
p(x)u ≺ r0

g(x)u ≺ w0
g(y)v, then it is impossible to form a

legal view βT
q preserving ≺. Hence, we reach a contradiction.

• Case 3: isp1 does not issue w1
isp1(y)v or w1

isp1(x)u in S1. From the Liveness
Property, this case is not possible.

2

Nevertheless and although in general the interconnection of causal systems is
not possible even if they are FIFO ordered, we found that it is still possible
to interconnect causal systems that are globally ordered.

Globally Ordered Systems We say that a system is globally ordered if
for each two write operations w(x)v ≺ w(y)u issued by (maybe different)
processes in Sk, each mcs(p) with p in Sk updates its local replica of x with
the value v before updating its local replica of y with the value u.

In Figure 4, we present an IS-protocol that can be used to connect causal
systems that are globally ordered. It consists of two concurrent tasks,
Propagatek

out and Propagatek
in, like in the IS-protocol in Fig. 3. In fact, the

Propagatek
in task is the same. The key difference is found in task Propagateout,

where a pair 〈x, v〉 is not sent to the other systems until all the MCS replicas
of x have been updated.

Clearly, globally ordered systems provide stronger guarantees than FIFO or-
dered systems. However and similar to this latter type, they do not undergo
substantial constraints with respect to systems that are not globally ordered.
Theorem 5 states formally the guarantees provided by the above mentioned
protocol.

14
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1 Task Propagatek
out :: executed upon

notification from the interface to
ispk that the variable x has been
updated in mcs(q) for all q in Sk

to value v due to a write operation
issued by p

2 begin
3 if p 6= ispk then
4 send 〈x, v〉 to ispl, l 6= k
5 end

1 Task Propagatek
in :: executed

upon reception of 〈x, v〉
from ispl, l 6= k

2 begin
3 w(x)v
4 end

Fig. 4. The causal IS-protocol for each ispk, k ∈ {0, 1}.

Theorem 5 The system ST obtained by connecting N globally ordered causal
systems S0, · · · , SN −1 using the causal IS-protocol in Fig. 4 is causal.

PROOF. See Appendix A.2. 2

6 Interconnection of Cache Systems

In this section, we study the interconnection of cache systems [9]. Roughly
speaking, this memory model forces independent variables considered in isola-
tion to be sequential. That is, data operations on any individual variable must
“appear” to have been executed atomically in an order that is consistent with
the order seen in individual processes. Formally, a cache system is defined as
follows:

Definition 11 (Cache System) A system S is cache if for every execution
α and every variable x there is a legal view βx of αx preserving ≺ (where αx

denotes the subset of operations obtained by removing from execution α all the
operations on variables other than x).

We show that, unlike the previous models, the interconnection of cache systems
is always possible, independently of how they are implemented. In Figure 5, we
present an IS-protocol that can be used to connect cache systems of any type.
It consists of only one task Propagatek. Note that each IS-process maintains
a copy of the latest value propagated from the other system in last(x) for
each variable x. That copy must be initialized with a special value (namely,
NoData). Note also that initially one of the IS-processes (for instance isp0)
must send a message with 〈x, NoData〉 to the other for each variable x to
start the interconnection. Theorem 6 states formally the guarantees provided
by the above mentioned protocol.
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1 Task Propagatek(x) :: executed upon reception of 〈x, v〉
from ispl, l 6= k

2 begin
3 if v 6= NoData then
4 w(x)v
5 last(x) := v
6 r(x)u
7 if u = last(x) then
8 u := NoData
9 send 〈x, u〉 to ispl, l 6= k

10 end

Fig. 5. The cache IS-protocol for each ispk, k ∈ {0, 1}.

Theorem 6 The system ST obtained by connecting N cache systems (regard-
less of whether they are FIFO/globally ordered or not) S0, · · · , SN −1, using the
cache IS-protocol in Fig. 5 is cache.

PROOF. See Appendix A.3. 2

Observe that the proposed interconnection algorithm is usually highly ineffi-
cient in terms of the network traffic it causes, given that, for each memory
object, there is a continuous exchange of messages between the IS-processes.
Since the main target of this work is to identify whether consistency models
can be interconnected, we are not very concerned about efficiency. However,
we note that the algorithm can be easily optimized to decrease the network
traffic. For instance, instead of handling each variable independently, the al-
gorithm could work at a larger scale, dealing with several (or even all the)
variables simultaneously. This optimization can be done by modifying task
Propagatek() so that it is executed only upon reception of a given set of 〈x, v〉
pairs (for different variables), and executing the same code for each one of
them. Additionally, instead of transferring continuously messages between the
IS-processes, such a transfer could be performed only when a given time in-
terval has passed or when the variable x is updated at the sending system,
whichever happens first. This optimizations can be done by adding some sim-
ple pieces of code that implement this wait condition. Note, however, that in
some cases, these changes could increase the latency. The correctness proofs
of these alternative interconnecting protocols are in essence the same as the
one for the algorithm shown in Figure 5.
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7 Performance

In this paper, we have approached the interconnection problem from a theoret-
ical point of view, trying to decide whether it is possible to interconnect given
consistency models. We have not been concerned above with the efficiency of
the interconnection algorithms we have proposed and the performance of the
resulting interconnected system. However, we do here a brief and simple per-
formance evaluation of algorithms and systems. We compare the performance
of a system obtained using our IS-protocols with the performance of a system
that uses a MCS-protocol connecting all the processes directly. We assume
that the same MCS-protocol is used in the global DSM system of reference
and in each of the systems interconnected with our IS-protocols.

First, observe that our IS-protocols should not affect the response time a
process observes when issuing a memory operation, since its MCS-process is
not affected (in particular, cannot be blocked) by the interconnection. Since
the three models that we study are fast, the response time of the algorithms
that implement them (e.g., [15] for pRAM, [16,21] for causal, or [6] for cache)
only depends on local computation at a node. This does not change with the
interconnection.

Second, let us look at the latency of a DSM system, which is the largest
time until a value that is written becomes visible in any other process. In
a single DSM system this time depends on the MCS-protocol used. For in-
stance, if we discard the time for local computations, for the pRAM and
causal algorithms [15, 16, 21] the latency depends on the time to complete a
broadcast in the system. Let us denote this time by TB(n) in a system with
n MCS-processes, which we safely assume is at most linear on n. The only
algorithm for cache consistency of which we are aware [6] has instead latency
Lcache(n) = Θ(nTB(n)) 4 .

The three proposed IS-protocols propagate as soon as they can any new value
they are aware of by sending a message. In the case of pRAM and causal
consistencies this is done immediately, while in the case of cache consistency
the IS-process may need to wait for a message from the other IS-process. Then,
using the algorithms referred above, the interconnection of two systems S0

and S1 with n0 and n1 MCS-processes respectively (n = n0 + n1), has latency
TB(n0)+TB(n1)+d (IS-processes are assumed to use existing MCS-processes)
in the case of pRAM and causal, where d is the delay of a point-to-point
communication. In the case of cache this latency is Lcache(n0)+Lcache(n1)+d. In
the three cases, since TB(n) is at most linear, the latency of the interconnected
system is larger than the latency in the original system. However, since the

4 The algorithm of [6] uses a token-passing scheme in which the n MCS-processes
broadcast messages in a cyclic fashion.
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broadcast delay cannot be smaller than d, the latency increases at most by
a constant factor of 3. If this is generalized to N systems the increase factor
depends on the topology. In the worst case, systems are connected as a line,
and the worst factor becomes 2N − 1. In the best case systems are connected
as a star, and the increase factor is again bounded by a small constant 5.

Regarding the network traffic, the pRAM and causal protocols [15, 16, 21]
broadcast a message for each write operation. Let MB(n) be the number of
messages that a broadcast requires, which again is at most linear on n. Since
the interconnection of S0 and S1 implies sending one point-to-point message
for each variable update, the traffic in the interconnected system is MB(n0) +
MB(n1) + 1 messages per write operation. This again implies a small increase
of networks traffic, bounded by a factor of 3 if MB(n) is constant, and bounded
by an additive constant term if MB(n) is linear. Generalizing for N systems
the worst case is a factor of 2N − 1, when MB(n) is constant and systems are
connected as a line, and the best is an additive term of O(N), when MB(n)
is linear and systems are connected in a star.

The evaluation of network traffic for the cache consistency model cannot be
based on messages per write operation, since both the basic MCS-protocol [6]
and the IS-protocol of Figure 5 send messages continuously, even if variables
are not written. The difference is that the IS-protocol sends one message per
variable in the memory. If both protocols transmit at similar intervals, the
single system sends MB(n) messages every interval, while the system after the
interconnection of S0 and S1 sends MB(n0) + MB(n1) + V messages, where
V is the number of variables. Clearly, this latter value can be very large if V
is large. However, as mentioned in Section 6, some optimizations can reduce
the traffic. For instance, if all the changes in the memory are sent by the
IS-process in one single message, the traffic becomes MB(n0) + MB(n1) + 1
messages. Then, the increase of traffic is similar to the one observed for the
pRAM and causal consistencies.

8 Conclusions

In this paper, the interconnection of distributed shared memory systems has
been studied. We have classified the consistency models in two groups, de-
pending on whether they are fast or not. In the case of non-fast consistency
models, we have shown that they cannot be interconnected in any way. In
contrast, in the case of fast consistency models we have provided protocols
with which to interconnect some of them. Whereas in some cases it is possi-
ble to interconnect fast consistency models without any restriction, other fast
consistency models need some additional constraints. In this last situation,
we gave sufficient conditions and the corresponding protocols to do so. Fig-
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Memory Model Globally Ordered FIFO Ordered General

Systems Systems Systems

Non-fast Models No No No

Causal Yes No No

pRAM Yes Yes No

Cache Yes Yes Yes

Fig. 6. Possibilities of interconnection under the different types of systems in this
work.

ure 6 summarizes these results. At this point, we note that whereas we have
shown that cache systems can be interconnected in a more general fashion
than pRAM and causal systems, the protocol that we have used for such a
task is, in general, less efficient than the protocols used for interconnecting
pRAM and causal systems.
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A Appendix

A.1 Correctness Proof of Theorem 3

Let p be some process in Sk, k ∈ {0, 1} and βk
p be a legal view of execution αk

p

preserving ≺q for all q in Sk, as in Definition 5. From Definition 9, such a legal
view must exist by the fact that Sk is a pRAM system. We denote by orig(op)
the original write operation propagated as operation op in αk

p by process ispk.
Similarly, given a write operation op issued in Sl, l 6= k, we denote by prop(op)
the write operation issued by ispk as a result of propagating op to Sk as defined
by the IS-protocol. We define βT

p as the sequence obtained by replacing in βk
p

every write operation op from ispk by the write operation orig(op).

Lemma 1 βT
p is formed by all operations of αT

p .

PROOF. First of all, note that the difference between αk
p and αT

p is that,
for each operation op issued by ispk in αk

p, αT
p contains the original operation

orig(op). Since βk
p is a sequence formed by all operations of αk

p, and βT
p is

obtained by replacing in βk
p every write operation op from ispk by the write

operation orig(op), then the set of operations in βT
p is the same as that of

αT
p . 2

The following Lemmas show that βT
p preserves the order in which the opera-

tions are issued in any process of ST .

Lemma 2 Let op = wk
q (x)v and op′ = wk

q (y)u be two operations of αT issued
by the same process q of Sk. If op ≺q op′ on αk, then Propagatek

out will send
to Sl, l 6= k, 〈x, v〉 before 〈y, u〉.

PROOF. Directly since, as the system Sk is FIFO ordered, ispk receives the
message in Sk with the value v of variable x from process q before the message
with the value u of variable y also from process q, and then Propagatek

out sends
the pair 〈x, v〉 to ispl before it sends 〈y, u〉. 2

Lemma 3 Let op and op′ be two write operations of αT issued by the same
process q of Sl, where l 6= k. If op ≺q op′ on αl, then prop(op) → prop(op′) in
βk

p , for all p.

PROOF. We know that βk
p is a legal view that preserves the q’s process

order ≺q on αk, for all q. Then, the result follows from Lemma 2, from the
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fact that the channel connecting ispl to ispk is reliable and FIFO, and from
the implementation of task Propagatek

in (see Fig. 3). 2

Lemma 4 βT
p preserves ≺q for all q.

PROOF. By way of contradiction, let us assume that βT
p does not preserve

the order among operations issued by a process q of ST . Hence, there must be
at least two operations op and op′ of αT

p issued by q such that op ≺q op′ but
op′ precedes op in βT

p . Let us consider two possible cases.

• Case 1: q is in Sk. Since op′ precedes op in βT
p , op′ also precedes op in βk

p , by
definition of βT

p . Then, βk
p does not preserve q’s process order ≺q. However,

this is not possible since, by definition, βk
p is a legal view preserving ≺q, for

all q. Hence, we reach a contradiction.
• Case 2: q is in Sl, l 6= k. Since both operations are in βT

p , which only con-
tains read operations from process p of system Sk, both must be write
operations. Let op and op′ be propagated as operations prop(op) and
prop(op′), respectively, issued by process ispk. From Lemma 3, we have
that prop(op)→prop(op′) in βk

p . Observe now that, by definition, operation
prop(op) in βk

p is replaced by op and operation prop(op′) is replaced by op′

to obtain βT
p . Then op precedes op′ in βT

p and we reach a contradiction.

2

Lemma 5 βT
p is legal.

PROOF. By definition, βk
p is legal. Also by definition, βT

p is obtained by
replacing in βk

p every write operation op from ispk by the write operation
orig(op). Therefore, βT

p is legal. 2

Theorem 7 (Corresponds to Theorem 3) The system ST obtained by
connecting N FIFO ordered pRAM systems S0, · · · , SN −1 using the pRAM
IS-protocol in Fig. 3 is pRAM.

PROOF. Let N = 2. From Lemma 1, βT
p is formed by all operations of

αT
p . Also, from Lemma 4, βT

p preserves ≺q for all q. Finally, from Lemma 5,
βT

p is legal. Then, βT
p is a legal view of αT

p preserving ≺q for all q. Hence,
ST is a pRAM system. The extension to more than 2 systems follows from
Observation 1. 2
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A.2 Correctness Proof of Theorem 5

Let p be some process in system Sk, k ∈ {0, 1}, and let mcs(p) be its MCS-
process. Recall that αk

p (resp. αT
p ) is the set obtained by removing from αk

(resp. αT ) all read operations except those from process p. We define βk
p as a

sequence with the same operations as αk
p that preserves the order in which all

operations of αk
p are issued by process p, and the order in which every write

operation is applied in mcs(p). Formally,

Definition 12 Let βk
p be a sequence of the operations in αk

p. Let op and op′

be in αk
p. Then op → op′ in βk

p , if any of the following happen:

(1) op and op′ are operations from the same process p of Sk and op ≺p op′.
(2) op = wk

q (x)u, op′ = wk
s (y)v, and in mcs(p) the local copy of x is updated

with u before updating y with v.
(3) op = wk

q (x)u, op′ = rk
p(y)v, and in mcs(p) the local copy of x is updated

with u before p issues op′.

Note that, as in αk
p, every write operation of process ispk in βk

p is the propa-
gation of a write operation issued by a process of Sl, l 6= k. We define βT

p as
the sequence obtained by replacing in βk

p every write operation op from ispk

by the write operation orig(op).

Definition 13 (Non-Transitive Execution Order) Let op and op′ be two
operations in an execution α. Then op precedes op′ in the non-transitive exe-
cution order (op ≺nt op′) on α if any of the following holds:

(1) op and op′ are operations from the same process p and op ≺p op′ on α.
(2) op = w(x)v and op′ = r(x)v.

Definition 14 (≺–Related Sequence) Let op and op′ be two operations in
an execution α such that op ≺ op′ on α. A ≺–related sequence between op
and op′ is a sequence of operations op1, op2, . . . , opm belonging to α such that
op1 = op, opm = op′, and opi ≺nt opi+1 on α, for 1 ≤ i < m.

Note that at least one ≺–related sequence always exists between op and op′ if
op ≺ op′ on α.

When considering the composed system ST , a ≺–related sequence Seq between
operations op and op′ of execution αT can be divided into n subsequences
subSeq1, subSeq2, . . . , subSeqn, such that all the operations in subsequence
subSeqi belong to the same system Sk and the operations in consecutive sub-
sequences belong to different systems. We use subSeqk

i to express that all the
operations of the ith subsequence belong to system Sk.
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We use first(subSeqk
i ) and last(subSeqk

i ) to denote the first and last operation
of the subsequence subSeqk

i , respectively. Note that, in two consecutive subse-
quences subSeqk

i and subSeql
i+1 of a given sequence, last(subSeqk

i ) = wk
j (x)v

and first(subSeql
i+1) = rl

l(x)v, i.e. the first operation of the later subsequence
reads the value written by the last operation of the former subsequence.

Lemma 6 Let op and op′ be two operations in αT
p issued in system Sk such

that op ≺ op′ in αT . If there is a ≺–related sequence between op and op′ with
one single subsequence subSeqk

1 , then op → op′ in βk
p .

PROOF. Let us assume, by way of contradiction, that the claim does not
hold. Then, op ≺ op′ on αk, and op′ → op in βk

p . This is only possible if there are
at least two “consecutive” operations opi and opi+n in subSeqk

1 and belonging
to αk

t such that opi+n → opi in βk
p . We say opi+n and opi are two consecutive

operations in subSeqk
1 if they are in αk

t , t 6= p, and between them there is no
other operation belonging to αk

p (i.e., every operation opi+l, 1 ≤ l < n, is a
read operation issued by a process other than p). Note that if n > 1 then
these two consecutive operations opi and opi+n can only be write operations.
We have three cases:

• Case 1: opi = wk(x)v and opi+n = wk(y)u. From the definition of the ≺–
related sequence, opi ≺ opi+n on αk. As the system Sk is Globally Ordered,
if opi ≺ opi+n on αk, then opi must be applied in all processes of Sk (and,
of course, in p) before opi+n. Therefore, from the second condition of Defi-
nition 12, opi → opi+n in βk

p , and we reach a contradiction.
• Case 2: opi = wk(x)v and opi+1 = rk

p(x)v. From the definition of the ≺–
related sequence, opi ≺nt opi+1 on αk. Obviously, the write operation wk(x)v
must be applied before issuing rk

p(x)v, since, otherwise, opi+1 could not
obtain the value v in x. Therefore, from the third condition of Definition 12,
opi → opi+1 in βk

p , and we reach a contradiction.
• Case 3: opi and opi+1 are issued by the same process p. From the definition

of the ≺–related sequence, opi ≺nt opi+1 on αk and, from case 1 of ≺nt,
opi ≺p opi+1. Then, from the first condition of Definition 12, opi → opi+1 in
βk

p , and we reach a contradiction.

2

Lemma 7 Let op and op′ be two operations in αT
p .

(1) If they are issued by system Sk and op ≺ op′ on αT , then op → op′ in βk
p .

(2) If they are issued by system Sk and op = wk(x)v and op′ = wk(y)u and
op ≺ op′ on αT , then Propagatek

out will send the pairs 〈x, v〉 and 〈y, u〉
to Sl in this order.

(3) If they are issued by system Sl, l 6= k, and are write operations and
op ≺ op′ on αT , then prop(op) → prop(op′) in βk

p .
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(4) If they are issued by systems Sl and Sk respectively and op = wl(x)v ≺ op′

on αT , then prop(op) → op′ in βk
p .

(5) If they are issued by systems Sk and Sl respectively and op ≺ op′ = wl(x)v
on αT , then op → prop(op′) in βk

p .

PROOF.

Proof of Part 1: Let Seq be a ≺–related sequence between op and op′. We use
induction on the number of subsequences of Seq to show the result. Note
that this number has to be odd. In the base case, the sequence Seq has only
one subsequence subSeqk

1 . Hence, from Lemma 6, op = first(subSeqk
1) →

op′ = last(subSeqk
1 ) in βk

p . Assume the claim is true for sequences with i
subsequences. We show it also holds if Seq has i + 2 subsequences. By the
induction hypothesis, we have that op = first(subSeqk

1) → last(subSeqk
i ) in

βk
p . Note that last(subSeqk

i ) = wk
t (x)v is propagated to system Sl, l 6= k, by

process ispk after, in all processes of Sk, the local copy of x is updated with
the value v. Later on, ispl propagates the pair (y, u) from last(subSeql

i+1) =
wl

q(y)u as wk
ispk(y)u (see Fig. 4). Then, wk

t (x)v is applied by all processes

in Sk (and, of course, by p) before wk
ispk(y)u and therefore, from the second

condition of βk
p in Definition 12, wk

t (x)v → wk
ispk(y)u in βk

p . From the sec-

ond condition of ≺–related order, wk
isp(y)u ≺nt first(subSeqk

i+2) = rk
s (y)u

on αk, and then, wk
isp(y)u ≺ op′ = last(subSeqk

i+2) on αk. Then, from
Lemma 6, wk

ispk(y)u → op′ = last(subSeqk
i+2) in βk

p . Hence, by transitiv-

ity, op = first(subSeqk
1) → op′ = last(subSeqk

i+2) in βk
p .

Proof of Part 2: If there is a ≺–related sequence between op and op′ with a
single subsequence, then op ≺ op′ on αk, and it follows (since the system
is globally ordered) that op is applied in all processes of Sk before op′.
Otherwise, the proof of Part 1 shows the same fact when the ≺–related
sequences between op and op′ have more than one subsequence. Thus, since
the task Propagatek

out of our IS–protocol (see Fig. 4) propagates operations
in the order they are locally applied, it will send the pair 〈x, v〉 of op to Sl

before the pair 〈y, u〉 of op′.
Proof of Part 3: From Part 1, op→op′ in βl

q, l 6= k. Then, the result follows
from Part 2, from the fact that the channel connecting ispl to ispk is reliable
and FIFO, and from the implementation of task Propagatek

in (see Fig. 4).
The process ispk issues prop(op) and prop(op′) in Sk and, thus, from the
first condition of execution order, prop(op) ≺ prop(op′) on αk. Hence, from
Lemma 6, prop(op) → prop(op′) in βk

p .
Proof of Part 4: Let Seq be a ≺–related sequence with n sub-
sequences between op and op′. Let us assume last(subSeql

n−1) =
wl

q(y)u and first(subSeqk
n) = rk

s (y)u. From Part 3, prop(op) →
prop(last(subSeql

n−1)) = prop(wl
q(y)u) = wk

ispk(y)u in βk
p . From second
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condition of ≺–related order, wk
isp(y)u ≺nt first(subSeqk

n) = rk
s (y)u on

αk, and then, wk
isp(y)u ≺ op′ = last(subSeqk

n) on αk. As we know, be-
cause the system Sk is Globally Ordered and from Definition 12 of βk

p ,
wk

ispk(y)u → op′ = last(subSeqk
n) in βk

p . Hence, by transitivity, op =

prop(op) → op′ = last(subSeqk
n) in βk

p .
Proof of Part 5: Similar to the proof of Part 4.

2

Lemma 8 βT
p preserves ≺.

PROOF. In this proof we show that if there are two operations op and op′

in αT
p such that op ≺ op′ on αT , then op → op′ in βT

p .

Let us make a case analysis:

• Case op and op′ are issued by processes in Sk: From Part 1 of Lemma 7, if
op ≺ op′ on αT , then op → op′ in βk

p . Then, by definition of βT
p , we have

that op → op′ in βT
p .

• Case op and op′ are issued by processes in Sl, where l 6= k: Since both
operations are in αT

p , which only contains read operations from process p of
system Sk, both operations must be write operations. Then, let op and op′

be propagated as prop(op) and prop(op′) operations.
From Part 3 of Lemma 7, we have that if op ≺ op′ on αT , then prop(op) →

prop(op′) in βk
p . Hence, replacing prop(op) and prop(op′) by op and op′,

respectively, we have that, by definition of βT
p , op → op′ in βT

p .
• Case op is issued by some process in Sl and op′ is issued by some process

in Sk, where l 6= k: op must be a write operation, since αT
p only contains

read operations from process p of system Sk. Such an operation will be
propagated from Sl to Sk as described by the IS–protocol and it will appear
in Sk as a (write) operation prop(op) issued by process ispk.

From Part 4 of Lemma 7, if op ≺ op′ on αT , then prop(op) → op′ in βk
p .

Hence, replacing prop(op) by op, we have that, by definition of βT
p , op → op′

in βT
p .

• Case op is issued by some process in Sk and op′ is issued by some process
in Sl, where l 6= k: op′ must be a write operation, since αT

p only contains
read operations from process p of system Sk. Such an operation will be
propagated from Sl to Sk as described by the IS–protocol and it will appear
in Sk as a (write) operation prop(op′) issued by process ispk.

From Part 5 of Lemma 7, if op ≺ op′ on αT , then op → prop(op′) in
βk

p . Hence, replacing prop(op′) by op′, we have that, by definition of βT
p ,

op → op′ in βT
p .

2
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Lemma 9 βT
p is legal.

PROOF. If process p issues some read operation op = rk
p(x)u is because,

when this operation is invoked, it has the value u in its local copy of x. Then,
the latest write operation applied on x in p is op′ = wk(x)u. Hence, from
the third condition of Definition 12, op′ must be the previous nearest write
operation on x in βk

p . Therefore, from Definition 5, βk
p is legal. Note that, by

definition of βT
p , if we replace in βk

p every write operation op from ispk by the
write operation orig(op), we obtain βT

p . Then, βT
p is legal. 2

Theorem 8 (Corresponds to Theorem 5) The system ST obtained by
connecting N globally ordered causal systems S0, · · · , SN −1 using the causal
IS-protocol in Fig. 4 is causal.

PROOF. Let N = 2. From Lemma 1, βT
p is formed by all operations of αT

p .
Also, from Lemma 8, βT

p preserves ≺. Finally, from Lemma 9, βT
p is legal.

Then, βT
p is a legal view of αT

p preserving ≺. Hence, ST is a causal system.
The extension to more than 2 systems follows from Observation 1. 2

A.3 Correctness Proof of Theorem 6

Let βk
x be a legal view of α(x)k preserving ≺ on α(x)k, as described in Defi-

nition 5. Such a legal view must exist by the fact that Sk is a cache system.
We define opi as the ith write operation propagated by process isp from one
system to the other (regardless of the system in which it is issued). We use
op(x)k

i to indicate that opi is issued by some process in Sk on variable x. We
use propl(op(x)k

i ) to denote the write operation issued by the task Propagatel
i

as a result of the propagation of op(x)k
i .

We define βk
x,i as the subsequence of operations of βk

x issued by processes of
Sk from op(x)k

i (or propk(op(x)l
i)) until op(x)k

i+1 (or propk(op(x)l
i+1)) without

including them.

We define βT
x,i as the sequence formed by all operations issued by processes of

ST between the ith and ith + 1 propagation of write operations on variable x
so that operations belonging to α(x)k follow the order they have in βk

x , and
operations belonging to α(x)l follow the order they have in βl

x. Formally, βT
x,i

can be obtained as follows: op(x)i · head(x)k
i · head(x)l

i · tail(x)k
i · tail(x)l

i, where
head(x)k

i denotes the subsequence of βk
x,i that includes all read operations from

the beginning of βk
x,i until the first write operation in βk

x,i (not included), and
tail(x)k

i is the subsequence of βk
x,i that includes all the operations in βk

x,i that
are not in head(x)k

i .
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Finally, we define βT
x as the sequence obtained by concatenating the sequences

of βT
x,i such that βT

x,i goes before βT
x,i+1, ∀i. In what follows, we will prove that

it is a legal view of α(x)T .

Lemma 10 βT
x is a sequence formed by all operations of α(x)T .

PROOF. α(x)T is, by definition, the set of all operations in α(x)k and α(x)l

issued by all processes of Sk and Sl other than ispk and ispl (i.e., by all
processes of ST ).

We know that βk
x and βl

x are sequences of all operations of α(x)k and α(x)l,
respectively, because they are legal views. Then, since βT

x is formed as the
sequence of operations of ST obtained by concatenating the sequences of legal
views βk

x and βl
x, it is a sequence of all operations of α(x)T . 2

Lemma 11 βT
x preserves ≺.

PROOF.

We show that if there are two operations op and op′ in α(x)T such that op ≺ op′

on α(x)T , then op → op′ in βT
x . We have two possible cases.

• Case 1: op and op′ have been issued by processes of a same system. Let
us suppose that op and op′ are issued by processes of Sk. Note that, by
definition, Sk is a cache system. Then, from Definition 11, there must be a
legal view βk

x preserving the execution order ≺ on α(x)k and hence, from
Definition 4, if op ≺ op′ on α(x)k then op → op′ in βk

x . It is easy to check
from the definition of βT

x that operations of αT and issued by processes of
Sk appear in βT

x and in βk
x in the same order. Hence, op → op′ in βT

x .
• Case 2: op and op′ have been issued by processes of different systems. Let

us suppose that op is issued by some process of Sk, and op′ is issued by some
process of Sl. We know, from Case 1, that βT

x preserves ≺ on α(x)k, and also
preserves ≺ on α(x)l. Then, βT

x will preserve ≺ on α(x)T if it also preserves
≺ between any two operations from different systems. Then, by definition of
βT

x , it is enough to show that the second condition of the Execution Order
is preserved between two operations op and op′ from different systems such
that op = wk(x)u and op = rl(x)u in βT

x,i. We can see, by definition, that op
must be the ith write operation propagated from Sk to Sl (that is, op(x)k

i ),
and op′ is a read operation in head(x)l

i. Then, by definition, op → op′ in
βT

x,i, and, hence, op → op′ in βT
x .

2

Lemma 12 βT
x is legal.
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PROOF. Let op = r(x)u be a read operation of βT
x . From Definition 5, βT

x

is legal if op′ = w(x)u is the nearest previous write operation to op in βT
x . We

know, by definition, that βk
x is the same sequence as βT

x but replacing each
write operation op from ispk by prop(op). We have two possible cases.

• Case 1: op = rk(x)u and op′ = wk(x)u are operations in α(x)T issued
by processes of Sk. By definition, as βk

x is a legal view of execution α(x)k

preserving ≺ on α(x)k, op′ = wk(x)u is the nearest previous write operation
to op = rk(x)u in βk

x . Then, by definition of βT
x , op′ is also the nearest

previous write operation to op in βT
x . Therefore, βT

x is legal.
• Case 2: op = rk(x)u and op′ = wl(x)u are operations in α(x)T issued by

systems Sk and Sl respectively. Let op′ = wl(x)u be the write operation
op(x)l

i. Then, its corresponding write operation in Sk is propk(op(x)l
i) =

wk
ispk(x)u. By definition, as βk

x is a legal view of α(x)k preserving ≺ on α(x)k,

propk(op(x)l
i) is the nearest previous write operation to op in βk

x . Then, by
definition of βT

x , propk(op(x)l
i) is replaced by op′ = op(x)l

i to obtain βT
x ,

and op′ = op(x)l
i is also the nearest previous write operation to op in βT

x .
Therefore, βT

x is legal.

2

Theorem 9 (Corresponds to Theorem 6) The system ST obtained by
connecting N cache systems (regardless of whether they are FIFO/globally
ordered or not) S0, · · · , SN −1, using the cache IS-protocol in Fig. 5 is cache.

PROOF. Let N = 2. From Lemma 10, βT
x is formed by all operations of

α(x)T . From Lemma 11, βT
x preserves ≺. Finally, from Lemma 12, βT

x is legal.
Then, βT

x is a legal view of α(x)T preserving ≺. Hence, ST is a cache system.
The extension to more than 2 systems follows from Observation 1. 2
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