
Informatica 20 (1996) 419-428 419

Distributed Shared Memory on Loosely Coupled Systems

Vicente Cholvi-Juan
Department of Computer Science
University Jaume I
Campus Penyeta Roja, Castello, Spain
E-mail: v c h o l v i @ i n f . u j i . e s
AND
Roy Campbell
Department of Computer Science
University of Illinois at Urbana-Champaign
1304 W. Springfield Av, Urbana, IL 61801
E-mail: roy@cs.uiuc.edu

Keywords : distributed systems, distributed shared memory, concurrency, operating systems

E d i t e d by: Rudi Murn
Rece ived: April 4, 1996 Rev i sed: November 5, 1996 Accepted: November 29, 1996

The distributed shared memory model (DSMM) is considered a feasible alternative
to the traditional communication model (CM), especiallv in loosely coupled distributed
sijstems. While the CM is usually considered a low-level model, the DSMM provides a
shared address space that can be used in the same way as local memory.
This paper provides a taxonomy of distributed shared memory systems, focusing on
different implementations and the factors which affect the behavior of those implemen-
tations.

1 Introduction

Many computational problems benefit from the
availability of parallel-processing power: the com-
putational problem is split into subproblems and
each one is solved concurrently. There are many
multiprocessor computers, ranging from only a
few to thousands of processors. Typically, such a
multicomputer is much more expensive than a col-
lection of loosely coupled computers, having each
only a few number of processors. The main ad-
vantage of the large multicomputer systems is the
speed of the interconnection network joining its
processors. However, trends in network technol-
ogy will make possible to have high performance
networks joining loosely coupled systems. In fact,
the number of loosely coupled distributed systems
being used as parallel computers is quickly. in-
creasing [4, 12, 32]. Thus, such systems constitute
a low-cost approach entry into the parallel com-
puting domain without necessarily requiring spe-

cial (and often expensive) hardware. They can be
easily upgraded and customized, and even though
the performance gap between them and super-
computers is stili relatively big, it is expected a
notable reduction as high-speed networks become
more popular (e.g., ATM or HiPPI networks). We
will focus our work in this type of systems.

A typical (loosely coupled) distributed system
is composed of a collection of independent com-
puters interconnected through some type of net-
work. In order to cooperate, applications written
to span several computers on such a system need
to have some mechanism to allow each one of their
parts to exchange information.

Wi th in the communication model (CM) [17, 18,
28], this information exchange is accomplished by
means of explicit transfer of messages: a given
node sends a message to another node using the
following primitives:

- send(data,address)

420 Informatica 20 (1996) 419-428 V. Cholvi-Juan et al.

Mcmoty Mcraoiy Mcmwy

Intacoiincclion NcBvork

DisiiibuU-iJSbjrtilMGT!^)'

Figure 1: Distributed Shared Memory (DSM).

— receive(data)

The CM model provides explicit control over
the communication to the programmers, being
relatively easy to overlap communication with
computation. Nevertheless, that explicit con-
trol constitutes the main disadvantage of the CM
[17, 18], as it increases its complexity. Thus, it
is necessary that the source process of a message
knows the target processes. In addition, target
processes must exist when data is sent, and must
eventually be able to receive that data. Finally,
each process must dynamically extract its state
when receiving random messages.

On the other hand, the shared memorij model
(SMM) [51] provides a shared address space which
can be used by processes in the same way as local
memory, even if they are executed concurrently
in different processors. Thus, every process can
access any address by means of two basic opera-
tions:

— data = read(address)

— write(address,data)

read returns the data in address, and write
associates data with address.

Using the SMM model has several important
benefits. In the first pla!e, it hides the partic-
ular communication mechanisms employed, thus
application developers do not need to be involved
in the management of messages, or know whether
the application runs on a multiprocessor or on a
distributed system (they should know, however,
the cost of exchanging information, so they can
decide on a performant partition). Besides, it
allows complex shared structures to be passed
by reference, providing a simple and well known
paradigm.

When a SMM is built on top of a distributed
system, we get what is known as a DSMM. Even
though a DSMM is built on top of a CM (suggest-
ing a decrease in the performance), it has been
shown that DSMM can perform well [15]. Fac-
tors, such as high locality of references [23], allow
communication costs to be compensated against
multiple accesses. Multiple replicas can also re-
duce transfers between nodes, while distributing
the communication over a larger interval of time
(transfers of data are made on demand), increas-
ing concurren!e.

Of course, those paradigms do not have to be
necessarily exclusive. Indeed, systems such as
SAM [49], Locust [19] and CarlOS [38] support the
DSMM, providing at the same time mechanisms
for communication and synchronization.

The rest of the paper is organized as follows:
Section 2.1 contains an overview of different ap-
proaches to implement the DSMM. Section 2.2
addresses implementation mechanisms. Section
2.3 focuses on the problem of consistency between
shared units, while Section 2.4 analyzes the im-
portance of the shared units structure. Finally,
in Section 3 we give some concluding remarks and
suggest future research directions.

2 Characterization of the
DSMM

As we have pointed previously, the DSMM has to
be built on the CM in such a manner that it trans-
forms the memory access requests into messages
between processes. There are a lot of factors that
affect the way such transformations take pla!e. In
the next sections we identify principal issues that
characterize the behavior of DSM systems, pre-
senting some of the proposed implementations.

2.1 Implementat ion Approaches

The field of research in DSM systems was open
up in 1985 by D.R. Cheriton [17]. Since then, a
huge amount of work has been done in that area.

The earliest DSM systems provided implemen-
tations of the DSMM principally by using oper-
ating sijstem resources, through virtual memory
management mechanisms. IVY [43, 44] consti-
tutes a classical example of a system that im-
plements the DSMM by adding coherence mech-

DISTRIBUTED SHARED MEMORY. Informatica 20 (1996) 419-428 421 ,

anisms "̂ to a distributed demand paging pol-
icy. More recently, Choices [48] incorporates cus-
tom designed distributed virtual memory proto-
cols for different applications, which can be al-
tered to trade off characteristics such as resiliee
neto packet loss, network loading, etc. In the
same way, the virtual memory management sys-
tem of Mach [47, 54], a well known operating sys-
tem kernel that runs on a wide variety of archi-
teetures, is designed to be arehiteeture and oper-
ating system independent, allowing programmers
to handle directly memory as a system resource.
Thus, individual memory manager systems that
implement the DSMM can be customized for spe-
cific applications (e.g., Agora [11] or Midway [10]).

Another approach consists of making use of
hardivare components. For instance, MemNet
[22, 52] is an entireh/ hardware implementation
of the DSMM. Every node has a MemNet-device
that includes both the hosfs system bus and the
network interface, and a MemNet-cache (struc-
tured in blocks of 32 bytes) divided into a large
cache and a reserved area. The cache is used to
store the blocks whose reserved area is another
node, while the reserved area is used to store the
blocks which have to be flushed when a cache area
become full. On every memory access, the local
MemNet-device decides if it can alone handle that
request. If it needs the cooperation of other de-
vices, it will send a message and will block the
node until receiving a reply. That message will
circulate through the net (a token ring), being in-
spected by every MemNet-device (thus, the max-
imum reply time is limited). If there is a read
access, the first MemNet-device with a copy will
send it to the requester node, while if there is a
write access, in addition it will be necessary to in-
validate ali the replicas in order to maintain some
type of consistency between them.

Compilers can also provide support for trans-
forming shared accesses into primitives to manage
both coherency and synchronizations. Among the
languages for implementing the DSMM we can
mention EDS Lisp [30], an extension of an exist-
ing sequential language, and Orca [6], a new lan-
guage designed from serateh in such a way that
data shared struetures can be accessed through
higher level operations.

1Basically they are very similar to those used in the
Berkeley multiprocessor system [5]

However, currently most of the efforts are ad-
dressed in order to implement DSM environ-
ments. They consist ofuser-level libraries provid-
ing operations that programmers can use directly
[21]. For instance, TreadMarks [35] constitutes a
DSM environment that implements the DSMM
using standard Unix systems such as SunOS and
Ultrbc without requiring any modification of them
(the implementation is done at user level), avoid-
ing the performance problems by focusing on re-
ducing the communication between nodes. Also
SAM [49], a shared object system for distributed
memory machines, has been implemented as a C
library on a variety of platforms: on the CM-
5, Intel iPSC/860, Intel Paragon, IBM SPI and
on heterogeneous networks of workstations using
PVM. Other DSM environments are Quarks [16]
and CarlOS [38].

2.2 Implementat ion Issues

Placement . The DSMM provides a shared ad-
dress space which can be used by processes in the
same way as local memory.

Hovvever, the implementation of such a shared
address space requires placing physically shared
units (blocks) at the local address spaces compos-
ing the global one.

That placement can be done staticallv in su
ach way that the same block is always placed
at the same node. A simple way to implement
static placement consists of employing a central
server which will store ali the blocks. Thus it will
manage every access to them [17, 18, 51]. Un-
fortunately, this implementation needs twice as
much messages as the CM. Besides, the central
server constitutes a potential bottleneck and al-
though this problem can be solved by using sev-
eral servers, troubles will stili remain if load is not
properly distributed.

Another possibility consists of using dvnamic
placement. In this !ase, blocks are transferred
to the requester node before to be accessed.
That approach avoids any communication be-
tween nodes if data is locally available, although
it may force superfluous data transfers.

Location. While finding blocks can be done
in a straightforward way when using static place-
ment, if the placement is dynamic it is necessary
to follow circulating blocks. In the same way
as in the placement of blocks, the simplest way

422 Informatica 20 (1996) 419-428 V. Cholvi-Juan et al.

of controlling circulation consists of using a sin-
gle node. But analogously to that !ase, if the
node becomes heavily loaded, the entire system
will also become overloaded. That problem can
be also solved by using several controller nodes,
but the effectiveness of that solution stili will de-
pend on the proper distribution of load. Also,
it requires maintaining a mechanism to find the
proper controller node, thus loading the system
with a new task.

Replication. To increase concurrencv, most
of the DSM systems support replication of data.
That allows different processes to use the same
data at the same time. However, and in order to
guarantee consistency of shared data, systems us-
ing replication must carry out control of replicas.

That control can be done by invalidating out-
dated replicas, as for instance systems as IVY [43]
or Clouds [36] or by propagating data to outdated
replicas. Stumm et al. [1, 51] have proposed sev-
eral algorithms intended to propagate values. Ba-
sically they use a single node, varying only the
moment when the propagation takes pla!e.

Whereas propagation is more expensive than
invalidation due that, in addition to the invali-
dating messages, data have to be sent, by using
invalidation each block-fault (a block-fault hap-
pens when a request can not be locally served)
leads to starting a process that will create a new
replica, thus increasing latency.

Application Customization. Application-
specific protocols constitute a well known ap-
proach to improve performance [17, 18]. How-
ever, although it has been shown to be an efficient
means to reduce extra communication against
general purpose protocols [26], it requires writ-
ing protocols from scratch, which has been also
shown to be difficult and error-prone.

System-provided protocols, even though with
reduced performance, seems to be a compromis-
ing solution to that problem. Indeed, experimen-
tal studies of several shared memory parallel pro-
grams [7, 15] support the hvpothesis that a sys-
tem employing a type-specific memory coherency
scheme may outperform systems using only a sin-
gle mechanism.

Nevertheless, that technique requires a rela-
tively small number of identiflable patterns that
characterize the behavior of the majority of blocks
(so that customized mechanisms can be devel-

oped).
Fault tolerance. Fault tolerance and error

recovery constitute topics also addressed by using
the DSMM. Let's introduce the approach taken
by Wu & Kent [53]. They have designed a recov-
erable distributed virtual memory system which
stands up to fail-stop processors [50] without any
global re-starting. To do that they use securittj
copies that store the necessary data to restart the
execution [8]. Given that every process shares the
global memory, a backward propagation might be
needed if each process simply creates an indepen-
dent security copy [37]. That happens if a process,
after creating a security copy, modifies the value
of a page and sends it to another process. Then,
if the first process fails, the second one will have
to get a security copy created previously to that
failure.

To solve this problem, every node creates a
security copy before sending any modified page
since the last checkpoint (also the operating sys-
tem or even the program can create additional
copies). That is done by using twin disk pages.
One of them is a security copy. The other is either
a work copy or a wrong copy (due to a failure or
because it is an old security copy). Thus, every re-
start, the "right" page is chosen, which will avoid
a backward propagation because data do not have
to be invalidated in any node.

However, to develop truly reliable systems,
both processors and memory failures must be con-
sidered. In this way, Hoepman et al. [33] have
addressed the construction of self-stabilizing wait-
free shared memory objects (these objects occur
naturally in systems in which both processors and
memory may be faulty).

2.3 Coherency Models

As it as been previously pointed out, the use of
replication may increase concurrency. In turn, it
is necessary to maintain some kind of coherencij
between replicas.

This problem is similar to the cache coherency
problem in multiprocessor systems [5, 24], where
several processors share the same data in local
caches. In this !ase, the size of the caches is
relatively small, the connections fast and the co-
herency protocols are implemented by hardware.
On the contrary, in distributed systems the com-
munication cost is bigger, and the coherency prp-

DISTRIBUTED SHARED MEMORY... Informatica 20 (1996) 419-428 423

tocols are usually implemented by software.
A memory coherency model is characterized

by its constrains on initiation and completion of
memory accesses [20]. Depending on the prop-
erties guaranteed by the coherency model, al-
gorithms will vary in complexity. Programmers
must ensure that accesses to data conform to the
rules of the model.

Basically coherency models can be split into
non-synchronized and synchronized. Non-
synchronized models use only read and vvrite oper-
ations while synchronized ones have, in addition,
another operations (synchronizations) intended to
enforce dependencies at specific points.

Whereas most of the systems support only one
coherency model, there are systems which support
multiple coherency models within a single paral-
lel program. For instance, Midway [10], which has
been implemented using Mach 3.0 with CMU's
Unix server on MPIS R3000-based DECstations
and 5000/120s, supports release consistency, en-
try consistency and processor consistency (de-
scribed below).

2.3.1 Non-Synchron ized M o d e l s

One of the most widely known non-synchronized
models is the atomic. It was formalized by Lam-
port [41] in the !ase of one writer, and by Misra
[46] in the !ase of several writers. Also the lin-
earizabilitij condition for objects introduced by
Herlihy and Wing [31] is equivalent to the atomic
model when restricted to objects that support
read and write operations. This model requires
each read operation to obtain the "most recently
written" value. It also preserves "real-time" or-
dering of operations without blocking every pro-
cess while an operation is taking pla!e. An inter-
esting property of this model is that to guarantee
that a system is atomic, it is enough to guarantee
that each variable in isolation is atomic, i.e. the
atomic model is compositional.

The sequential model [40] resembles the atomic,
although this one does not preserve any kind of
global order between operations (only operations
from the same process are forced to preserve real-
time ordering). Sequential memory, on the con-
trary to what happens to atomic memory, does
not satisfy the compositional property. Thus, in
contrast with the atomic model, it is not possible
in general to obtain a sequential system out of

the composition of independent sequential com-
ponents.

On the other hand and in order to improve the
performance, other coherency models do not pre-
serve the "most recently written" property.

For instance, the cache model (it was intro-
duced by Goodman as cache consistency [29]}
forces only operations affecting the same vari-
able to "appear" as executed under the sequential
model.

That condition is also fulnlled by the PRAM
(Pipelined RAM) model [45]. Only now, oper-
ations appearing as sequential are those in the
same process and write ones. That allows pipelin-
ing of the write operations, which, even though
may potentially delay the effect of write oper-
ations to different processes, permits programs
take advantage of the better performance of a
PRAM implementation as compared to a sequen-
tial implementation.

The causal model [2], besides to the conditions
of the PRAM model, forces read operations to
return the value writ ten by the last causally or-
dered operation [42]. Similarly to PRAM imple-
mentations, implementations of the causal model
result in far less Communications than on sequen-
tial ones, providing also a good scalability.

Also, the processor model [29] imposes addi-
tional conditions on the PRAM one. Now, re-
strictions are imposed on the write operations to
the same variable.

Finally, the safe and the regular models (they
were introduced by Lamport [41] in order to pro-
vide a way for implementing stronger models in
terms of weaker ones) force the restriction of their
executions to the write and non-overlapping op-
erations be atomic. Moreover and in the !ase of
the regular model, read operations are forced to
return the value of any previous or overlapping
write operation to the same variable.

2.3.2 Svnchronized M o d e l s

The approach of synchronized models consists of
obtaining algorithms that behave sequentially by
forcing explicit dependencies between events (by
using synchronizations) when necessary. How-
ever, that requires identifying dependencies in a
proper way, which may induce additional com-
plexity in the design of programs.

DISTRIBUTED SHARED MEMORY... Informatica 20 (1996) 419-428 425

by one process be allocated on shared units with
no data for other processes. However, the analysis
of data dependencies u"es to be a difficult task.

3 Conclusions

While many studies have shown the usefulness of
the DSMM and a big amount of work has been
done to improve the performance of DSM sys-
tems, some areas stili seem to require paying more
attention [16, 19].

Performance of the DSMM is greatly affected
by memory access patterns. As a matter of fact,
the consistency mistmach between the DSM sys-
tems and the application programs constitutes
one of the most important factors that favors low
performance. Therefore, an important approach
in order to avoid performance problems consists
of exploiting data dependencies. However, that
requires knowing access patterns, which may not
be always available.

Real-time implementations and auto-
configuring systems are other areas which
also need deeper study.

Contrary to available message passing systems
such as MPI or PVM, the DSMM has not yet
had a significant impact on non-researcher users.
The earliest systems provided experimental envi-
ronments useful to be used as benchmarks. Now,
new generation DSM systems are overcoming for-
mer problems, which allow us to envisage a wider
acceptance of the DSMM.

References

[1] A. Krishnamurthy and K. Yelick. Optimizing
parallel programming with explicit synchro-
nization. In Programming Language Design
and Implementation, June 1995.

[2] M. Ahamad, G. Neiger, J.E. Burns, P. Kohli,
and P.W. Hutto. Causal memory: Defi-
nitions, implementation and programming.
Distributed Computing, 9(l):37-49, August
1995.

[3] S. Ahuja, N. Carriero, and D. Gelern-
ter. Linda and friends. IEEE Computer,
19(8):26-34, August 1986.

[4] T.E. Anderson, D.E. Culler, and D.A. Pat-
terson. A !ase for NOW (networks of work-
stations). IEEE Micro, 15(l):54-64, Febru-
ary 1995.

[5] J. Archibals and J.L. Baer. Cache coherence
protocols: Evaluation using a multiproces-
sor model. ACM Transactions on Computer
Sgstems, 4(4):273-298, November 1986.

[6] H.E. Bal, M.F. Kaashoek, and A.S. Tanen-
baum. Orca: A language for paral-
lel programming of distributed systems.
IEEE Transactions on Software Engineering,
18(3):190-205, March 1992.

[7] J.K. Bennett, J.B. Carter, and
W. Zwaenepoel. Munin: Distributed
shared memory based on type-specific
memory coherence. In Proceedings of the
1990 International Conference on Parallel
Processing, pages 168-176. ACM, 1990.

[8] P.A. Bernstein, N. Goodman, and V. Hadzi-
lacos. Recovery algorithms for database sys-
tems. In IFIP, pages 799-807, 1983.

[9] B.N. Bershad and M.J. Zekauskas. Midway:
Shared memory parallel programming with
entry consistency for distributed memory
multiprocessors. Technical Report CMU-CS-
91-170, Carnegie-Mellon University, Septem-
ber 1991.

[10] B.N. Bershad, M.J. Zekauskas, and W.A.
Sawdon. The Midway distributed shared
memory system. In COMPCON, 1993.

[11] R. Bisiani and A. Forin. Architectural sup-
port for multilanguage parallel programming
on heterogeneus systems. In Proceedings
of the Second International Conference on
Architectural Support for Programming Lan-
guages and Operating Svstems, pages 21-30,
October 1987.

[12] M.A. Blumrich, K. Li, R. Alpert, C. Dub-
nicki, E.VV. Felten, and J. Sandberg. Virtual
memory mapped network interface for the
SHRIMP multicomputer. In Proceedings of
the 21th International Sijmposium on Com-
puter Architectures, April 1994.

424 Informatica 20 (1996) 419-428 V. Cholvi-Juan et al.

\ \ Rcgular ' /

Figure 2: Relations between non-synchronized
models: The sets represent the executions they
allow.

We begin the description of synchronized mod-
els with the weak model [25]. It only u"es a single
synchronization type (weak). Roughly speaking,
it forces dependencies between synchronizations
and the preceding and following operations. How-
ever, slightly different versions of this model have
been proposed varying the set of operations forced
to be related with synchronizations.

Contrary to the weak model, both the lazy-
release (LR) [34] and the eager-release (ER) mod-
els [27] use two types of synchronizations (acq and
rel). That permits addressing typical problems
(e.g., implementing critical sections) in an easier
way.

Whereas the ER model sets up dependencies
from the rel synchronizations to the whole set of
operations, the LR model sets up dependencies
from the rel synchronizations to the acq synchro-
nizations.

Moreover, and independently from the set up
dependencies, they require the first synchroniza-
tion operation for each process to be an acq syn-
chronization and impose an alternating use of the
acq and rel synchronizations. Besides, after an
acq synchronization completes, the next complet-
ing synchronization has to be executed by the
same process.

The last synchronized model we introduce is
the entry [9]. It is very similar to the LR model.
Only now synchronizations are associated with
"synchronization variables". As well as the re-
lease models, it requires the first synchronization
for each process has to be an acq synchroniza-
tion and it imposes an alternating use of the acq
and rel synchronizations. Also, the rel synchro-

nizations must be executed on the same variable
that the previous acq synchronization, and after
an acq synchronization completes, the next com-
pleting synchronization to the same variable has
be executed by the same process.

2.4 Shared Data Characteristics
DSM systems are intended to provide an address
space where data can be shared among several
nodes. Therefore it is not surprising that the char-
acteristics of those data may affect the behavior
of such systems.

Heterogeneous size and structure greatly af-
fect the system performance. That is due to the
data conversion when interchanging information
between modules (e.g., MMUs having to manage
pages with different sizes [55]).

On the other hand, in loosely coupled dis-
tributed systems, sending a big packet of data
is not, relatively speaking, much more expensive
than sending a small packet. Therefore, if pro-
grams have a high locality and we use dynamic
placement, using a big size of the shared units
may reduce the number of block-faults. But the
more we increase the size the more false sharing
arises. False sharing occurs when two non-related
variables, each one referred from a different node,
are located in the same shared unit, thereby in-
ducing unnecessary coherence operations. It is
believed to be a serious problem for parallel pro-
gram performance. This belief is also supported
by experimental evidence [13].

Multi-ivriter protocols address that problem by
allowing multiple nodes to write one block at the
same tirne and merging changes in a consistent
way at specified points. Examples of systems
using multi-writer protocols are Munin [14] and
TreadMarks [35].

Delayed protocols attack false sharing by com-
municating updates at the latest possible mo-
ment. For instance, synchronized models, because
they only suffer delays at synchronization points,
are used to reduce false sharing.

Systems supporting structured data provide the
user with control of the shared units, which can be
used to avoid false sharing. Orca [6], Indigo [39],
Linda [3] or Agora [11] are examples of systems
that allow data structures to be shared between
nodes. In this !ase, a careful analysis must be
done in such a way that data manipulated mostly

426 Informatica 20 (1996) 419-428 V. Cholvi-Juan et al.

[13] W.J. Bolosky and M.L. Scott. False shar-
ing and its effects on shared memory perfor-
mance. Technical report, Computer Science
Department, University of Rochester, 1994.

[14] J.B. Carter, J.K. Bennett, and
W. Zwaenepoel. Implementation and
performance of Munin. Operating System
Review, 25(5):152-164, October 1991.

[15] J.B. Carter, J.K. Bennett, and
W. Zwaenepoel. Techniques for reduc-
ing consistency-related communication in
distributed shared memory systems. Trans-
actions on Computer Systems, 13(3):205-
244, August 1995.

[16] J.B. Carter, D. Khandekar, and L. Kamb.
Distributed shared memory: Where we are
and where we should be headed. In Proceed-
ings of the 5th Workshop on Hot Topics in
Operating Sytems, May 1995.

[17] D.R. Cheriton. Preliminary thoughts on
problem-oriented shared memory: A de-
centralized approach to distributed systems.
ACM Operating System Review, pages 26-33,
October 1985.

[18] D.R. Cheriton. Problem-oriented shared
memory: A decentralizad approach to dis-
tributed system design. In Proceedings of
the Sixth International Conference on Dis-
tributed Computer Systems, pages 190-197.
IEEE, May 1986.

[19] T. Chiueh and M. Verma. A compiler-
directed distributed shared memory system.
In International Conference on Supercomput-
ing, 1995.

[20] V. Cholvi-Juan. Formalizing Memory Mod-
els. PhD thesis, Department of Computer
Science, Polytechnic University of Valencia,
December 1994.

[21] V. Cholvi-Juan and J.M. Bernabeu-Auban.
Implementing a distributed compiler library
that provides a .A/"-mixed memory model.
In IEEE/USP International Workshop on
High Performance Computing, pages 229-
244, March 1994.

[22] G. Delp. The Architecture and Imple-
mentation of MemNet: A High Speed-
Shared Memory Computer Communication
Netuiork. PhD thesis, Computer Science De-
partment, University of Delaware, 1988.

[23] P.J. Denning. On modeling program behav-
ior. In Proceedings of the AFIPS Spring Joint
Computer Conference, pages 937-944, 1972.

[24] M. Dubois and C. Scheurich. Synchroniza-
tion, coherence and event ordering in mul-
tiprocessors. IEEE Computer, pages 9-21,
February 1988.

[25] M. Dubois, C. Scheurich, and F. Briggs.
Memory access buffering in multiprocessors.
In Proceedings of the 13th Annual Sympo-
sium on Computer Architecture, pages 434-
442, June 1986.

[26] B. Falsafi, A.R. Lebeck, S.K. Reinhardt,
I. Schoinas, M. Hill, J.R. Larus, A. Rogers,
and D.A. Wood. Application-specific proto-
cols for user-level shared memory. In Super-
computing, November 1994.

[27] K. Gharachorloo, D. Lenoski, J. Laudon,
P. Gibbons, A. Gupta, and J. Hennessy.
Memory consistency and event ordering in
scalable shared-memory multiprocessors. In
Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages
15-26. ACM, May 1990.

[28] D.K. Gifford and N. Glasser. Remote pipes
and procedures for efficient distributed com-
munication. ACM Transactions on Com-
puter Systems, 6(3):258-283, August 1988.

[29] J.R. Goodman. Cache consistency and se-
quential consistency. Technical Report 61,
IEEE Scalable Coherence Interface Working
Group, March 1989.

[30] C. Hammer and T. Henties. Using a weak co-
herency model for a parallel lisp. In A. Bode,
editor, Distributed Memory Computing, vol-
ume 487 of Lecture Notes in Computer Sci-
ence, pages 42-51. 1991.

[31] M.P. Herlihy and J.M. Wing. Linearizabil-
ity: A correctness condition for concurrent
objects. ACM Transactions on Programming

Languages and Systems, 12(3):463-492, July
1990.

[32] M.D. Hill, J.R. Larus, and D.A. Wood. Tem-
pest: A substrate for portable parallel pro-
grams. In COMPCON Spring'95, March
1995.

[33] J.-H. Hoepman, M. Papatriantafilou, and
P. Tsigas. Toward self-stabilizing wait-free
shared memory objects. Technical Report
CS-R9514, Centrum voor Wiskunde en In-
formatica, 1995.

[34] P. Keleher, A. Cox, and W.. Zwaenepoel.
Lazy release consistency for software dis-
tributed shared memory. In Proceedings of
the 19th Annual Symposium on Computer
Architecture, pages 13-21, May 1992.

[35] P. Keleher, A.L. Cox, S. Dwarkadas, and
W. Zwaenepoel. TreadMarks: Distributed
shared memory on standard workstations
and operating systems. In Winter USENIX,
1994.

[36] Y.A. Khalidi. Hardmare Support for Dis-
tributed Object-Based Svstems. PhD thesis,
School of Information and Computer Science,
Georgia Institute of Technology, 1989.

[37] K.H. Kim. Programmer-transparent coordi-
nation of recovery concurrent processes: Phi-
losophy and rules for emcient implementa-
tion. IEEE Transactions on Softuiare Enge-
nieering, 14(8):810-821, June 1988.

[38] RT. Koch, R.J. Fowler, and E. Jul. Message-
driven relaxed consistency in a software dis-
tributed shared memory. In First Sympo-
sium on Operating System Design and Im-
plementation, pages 75-85. USENDt Associ-
ation, November 1994.

[39] P. Kohli, M. Ahamad, and K. Schwan. In-
digo: User-level support for building dis-
tributed shared abstractions. Technical Re-
port GIT-ICS-94/53, School of Information
and Computer Science, Georgia Institute of
Technologv, March 1995.

[40] L. Lamport. How to make a multiprocessor
computer that correctly executes multipro-
cess programs. IEEE Transactions on Com-
puters, 28(9):690-691, September 1979.

[41] L. Lamport. On interprocess communica-
tion: Parts I and II. Distributed Commput-
ing, 1(2):77-1101, 1986.

[42] L. Lamport. Time, clocks and the ordering of
events in a distributed system. Communica-
tions ofthe ACM, 21(7):558-565, July 1991.

[43] K. Li and P. Hudak. Memory coherence in
shared virtual memory systems. In Proceed-
ings of the 5th Annual ACM Symposium on
Principles of Distributed Computing, pages
229-239. ACM, August 1986.

[44] K. Li and P. Hudak. Memory coherence in
shared memory systems. ACM Transactions
on Computer Systems, 7(4):321-359, Novem-
ber 1989.

[45] R.J. Lipton and J.S. Sandberg. PRAM:
A scalable shared memory. Technical Re-
port C S-TR-180-88, Princeton Universitv,
Department of Computer Science, Septem-
ber 1988.

[46] J. Misra. Axioms for memory access in asyn-
chronous hardware systems. ACM Transac-
tions on Programming Languages and Sys-
tems, 8(1):142-153, January 1986.

[47] R.F. Rashid et al. Machine-independent vir-
tual memory management for paged unipro-
cessor and multiprocessor architectures. In
Proceedings of the 2nd Symposium on Archi-
tectural Support for Programming Languages
and Operating Systems, October 1987,

[48] A. Sane, K. MacGregor, and R. Campbell.
Distributed virtual memory consistency pro-
tocols: Design and performance. In Second
IEEE Workshop on Experimental Distributed
Systems, 1990.

[49] D.J. Scales and M.S. Lam. The design and
evaluation of a shared object system for dis-
tributed memory machines. In First Sympo-
sium on Operating Sgstems Design and Im-
plementation. USENDC.

[50] F.B. Schneider. Fail-stop processors. In Pro-
ceedings IEEE, pages 66-70. IEEE, 1983.

[51] S. Stumm and S. Zhou. Algorithms imple-
menting distributed shared memory. IEEE
Computer, 23(5):54-64, May 1988.

[52] S. Sureshchandran and T.A. Gonsalves. The
performance of the MemNet distributed
shared memorv architectures. Technical Re-
port TR-CSE-90-02, Department of Com-
puter Science, Indian Institute of Technol-
ogy, January 1990.

[53] K.-L. Wu and W.K. Fuchs. Recoverable
distributed shared virtual memory. IEEE
Transactions on Computers, 39(4):460-469,
April 1990.

[54] M. Young et al. The duality of memory
and communication in the implementation of
a multiprocessor operating system. In Pro-
ceedings ofthe Eleventh ACMSijmposium on
Operating Systems Principles, pages 63-76.
ACM, November 1987.

[55] S. Zhou, M. Stumm, and T. Mclnerney. Ex-
tending distributed shared memory to het-
erogeneous environments. In Proceedings of
the lOth International Conference on Dis-
tributed Computing Systems, pages 30-37.
IEEE, 1990.

