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The distributed shared memory model (DSMM) is considered a feasible alternative 
to the traditional communication model (CM), especiallv in loosely coupled distributed 
sijstems. While the CM is usually considered a low-level model, the DSMM provides a 
shared address space that can be used in the same way as local memory. 
This paper provides a taxonomy of distributed shared memory systems, focusing on 
different implementations and the factors which affect the behavior of those implemen-
tations. 

1 Introduction 

Many computational problems benefit from the 
availability of parallel-processing power: the com-
putational problem is split into subproblems and 
each one is solved concurrently. There are many 
multiprocessor computers, ranging from only a 
few to thousands of processors. Typically, such a 
multicomputer is much more expensive than a col-
lection of loosely coupled computers, having each 
only a few number of processors. The main ad-
vantage of the large multicomputer systems is the 
speed of the interconnection network joining its 
processors. However, trends in network technol-
ogy will make possible to have high performance 
networks joining loosely coupled systems. In fact, 
the number of loosely coupled distributed systems 
being used as parallel computers is quickly. in-
creasing [4, 12, 32]. Thus, such systems constitute 
a low-cost approach entry into the parallel com-
puting domain without necessarily requiring spe-

cial (and often expensive) hardware. They can be 
easily upgraded and customized, and even though 
the performance gap between them and super-
computers is stili relatively big, it is expected a 
notable reduction as high-speed networks become 
more popular (e.g., ATM or HiPPI networks). We 
will focus our work in this type of systems. 

A typical (loosely coupled) distributed system 
is composed of a collection of independent com-
puters interconnected through some type of net-
work. In order to cooperate, applications written 
to span several computers on such a system need 
to have some mechanism to allow each one of their 
parts to exchange information. 

Wi th in the communication model (CM) [17, 18, 
28], this information exchange is accomplished by 
means of explicit transfer of messages: a given 
node sends a message to another node using the 
following primitives: 

- send(data,address) 
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Figure 1: Distributed Shared Memory (DSM). 

— receive(data) 

The CM model provides explicit control over 
the communication to the programmers, being 
relatively easy to overlap communication with 
computation. Nevertheless, that explicit con-
trol constitutes the main disadvantage of the CM 
[17, 18], as it increases its complexity. Thus, it 
is necessary that the source process of a message 
knows the target processes. In addition, target 
processes must exist when data is sent, and must 
eventually be able to receive that data. Finally, 
each process must dynamically extract its state 
when receiving random messages. 

On the other hand, the shared memorij model 
(SMM) [51] provides a shared address space which 
can be used by processes in the same way as local 
memory, even if they are executed concurrently 
in different processors. Thus, every process can 
access any address by means of two basic opera-
tions: 

— data = read(address) 

— write(address,data) 

read returns the data in address, and write 
associates data with address. 

Using the SMM model has several important 
benefits. In the first pla!e, it hides the partic-
ular communication mechanisms employed, thus 
application developers do not need to be involved 
in the management of messages, or know whether 
the application runs on a multiprocessor or on a 
distributed system (they should know, however, 
the cost of exchanging information, so they can 
decide on a performant partition). Besides, it 
allows complex shared structures to be passed 
by reference, providing a simple and well known 
paradigm. 

When a SMM is built on top of a distributed 
system, we get what is known as a DSMM. Even 
though a DSMM is built on top of a CM (suggest-
ing a decrease in the performance), it has been 
shown that DSMM can perform well [15]. Fac-
tors, such as high locality of references [23], allow 
communication costs to be compensated against 
multiple accesses. Multiple replicas can also re-
duce transfers between nodes, while distributing 
the communication over a larger interval of time 
(transfers of data are made on demand), increas-
ing concurren!e. 

Of course, those paradigms do not have to be 
necessarily exclusive. Indeed, systems such as 
SAM [49], Locust [19] and CarlOS [38] support the 
DSMM, providing at the same time mechanisms 
for communication and synchronization. 

The rest of the paper is organized as follows: 
Section 2.1 contains an overview of different ap-
proaches to implement the DSMM. Section 2.2 
addresses implementation mechanisms. Section 
2.3 focuses on the problem of consistency between 
shared units, while Section 2.4 analyzes the im-
portance of the shared units structure. Finally, 
in Section 3 we give some concluding remarks and 
suggest future research directions. 

2 Characterization of the 
DSMM 

As we have pointed previously, the DSMM has to 
be built on the CM in such a manner that it trans-
forms the memory access requests into messages 
between processes. There are a lot of factors that 
affect the way such transformations take pla!e. In 
the next sections we identify principal issues that 
characterize the behavior of DSM systems, pre-
senting some of the proposed implementations. 

2.1 Implementat ion Approaches 

The field of research in DSM systems was open 
up in 1985 by D.R. Cheriton [17]. Since then, a 
huge amount of work has been done in that area. 

The earliest DSM systems provided implemen-
tations of the DSMM principally by using oper-
ating sijstem resources, through virtual memory 
management mechanisms. IVY [43, 44] consti-
tutes a classical example of a system that im-
plements the DSMM by adding coherence mech-
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anisms "̂  to a distributed demand paging pol-
icy. More recently, Choices [48] incorporates cus-
tom designed distributed virtual memory proto-
cols for different applications, which can be al-
tered to trade off characteristics such as resiliee 
neto packet loss, network loading, etc. In the 
same way, the virtual memory management sys-
tem of Mach [47, 54], a well known operating sys-
tem kernel that runs on a wide variety of archi-
teetures, is designed to be arehiteeture and oper-
ating system independent, allowing programmers 
to handle directly memory as a system resource. 
Thus, individual memory manager systems that 
implement the DSMM can be customized for spe-
cific applications (e.g., Agora [11] or Midway [10]). 

Another approach consists of making use of 
hardivare components. For instance, MemNet 
[22, 52] is an entireh/ hardware implementation 
of the DSMM. Every node has a MemNet-device 
that includes both the hosfs system bus and the 
network interface, and a MemNet-cache (struc-
tured in blocks of 32 bytes) divided into a large 
cache and a reserved area. The cache is used to 
store the blocks whose reserved area is another 
node, while the reserved area is used to store the 
blocks which have to be flushed when a cache area 
become full. On every memory access, the local 
MemNet-device decides if it can alone handle that 
request. If it needs the cooperation of other de-
vices, it will send a message and will block the 
node until receiving a reply. That message will 
circulate through the net (a token ring), being in-
spected by every MemNet-device (thus, the max-
imum reply time is limited). If there is a read 
access, the first MemNet-device with a copy will 
send it to the requester node, while if there is a 
write access, in addition it will be necessary to in-
validate ali the replicas in order to maintain some 
type of consistency between them. 

Compilers can also provide support for trans-
forming shared accesses into primitives to manage 
both coherency and synchronizations. Among the 
languages for implementing the DSMM we can 
mention EDS Lisp [30], an extension of an exist-
ing sequential language, and Orca [6], a new lan-
guage designed from serateh in such a way that 
data shared struetures can be accessed through 
higher level operations. 

1Basically they are very similar to those used in the 
Berkeley multiprocessor system [5] 

However, currently most of the efforts are ad-
dressed in order to implement DSM environ-
ments. They consist ofuser-level libraries provid-
ing operations that programmers can use directly 
[21]. For instance, TreadMarks [35] constitutes a 
DSM environment that implements the DSMM 
using standard Unix systems such as SunOS and 
Ultrbc without requiring any modification of them 
(the implementation is done at user level), avoid-
ing the performance problems by focusing on re-
ducing the communication between nodes. Also 
SAM [49], a shared object system for distributed 
memory machines, has been implemented as a C 
library on a variety of platforms: on the CM-
5, Intel iPSC/860, Intel Paragon, IBM SPI and 
on heterogeneous networks of workstations using 
PVM. Other DSM environments are Quarks [16] 
and CarlOS [38]. 

2.2 Implementat ion Issues 

Placement . The DSMM provides a shared ad-
dress space which can be used by processes in the 
same way as local memory. 

Hovvever, the implementation of such a shared 
address space requires placing physically shared 
units (blocks) at the local address spaces compos-
ing the global one. 

That placement can be done staticallv in su 
ach way that the same block is always placed 
at the same node. A simple way to implement 
static placement consists of employing a central 
server which will store ali the blocks. Thus it will 
manage every access to them [17, 18, 51]. Un-
fortunately, this implementation needs twice as 
much messages as the CM. Besides, the central 
server constitutes a potential bottleneck and al-
though this problem can be solved by using sev-
eral servers, troubles will stili remain if load is not 
properly distributed. 

Another possibility consists of using dvnamic 
placement. In this !ase, blocks are transferred 
to the requester node before to be accessed. 
That approach avoids any communication be-
tween nodes if data is locally available, although 
it may force superfluous data transfers. 

Location. While finding blocks can be done 
in a straightforward way when using static place-
ment, if the placement is dynamic it is necessary 
to follow circulating blocks. In the same way 
as in the placement of blocks, the simplest way 



422 Informatica 20 (1996) 419-428 V. Cholvi-Juan et al. 

of controlling circulation consists of using a sin-
gle node. But analogously to that !ase, if the 
node becomes heavily loaded, the entire system 
will also become overloaded. That problem can 
be also solved by using several controller nodes, 
but the effectiveness of that solution stili will de-
pend on the proper distribution of load. Also, 
it requires maintaining a mechanism to find the 
proper controller node, thus loading the system 
with a new task. 

Replication. To increase concurrencv, most 
of the DSM systems support replication of data. 
That allows different processes to use the same 
data at the same time. However, and in order to 
guarantee consistency of shared data, systems us-
ing replication must carry out control of replicas. 

That control can be done by invalidating out-
dated replicas, as for instance systems as IVY [43] 
or Clouds [36] or by propagating data to outdated 
replicas. Stumm et al. [1, 51] have proposed sev-
eral algorithms intended to propagate values. Ba-
sically they use a single node, varying only the 
moment when the propagation takes pla!e. 

Whereas propagation is more expensive than 
invalidation due that, in addition to the invali-
dating messages, data have to be sent, by using 
invalidation each block-fault (a block-fault hap-
pens when a request can not be locally served) 
leads to starting a process that will create a new 
replica, thus increasing latency. 

Application Customization. Application-
specific protocols constitute a well known ap-
proach to improve performance [17, 18]. How-
ever, although it has been shown to be an efficient 
means to reduce extra communication against 
general purpose protocols [26], it requires writ-
ing protocols from scratch, which has been also 
shown to be difficult and error-prone. 

System-provided protocols, even though with 
reduced performance, seems to be a compromis-
ing solution to that problem. Indeed, experimen-
tal studies of several shared memory parallel pro-
grams [7, 15] support the hvpothesis that a sys-
tem employing a type-specific memory coherency 
scheme may outperform systems using only a sin-
gle mechanism. 

Nevertheless, that technique requires a rela-
tively small number of identiflable patterns that 
characterize the behavior of the majority of blocks 
(so that customized mechanisms can be devel-

oped). 
Fault tolerance. Fault tolerance and error 

recovery constitute topics also addressed by using 
the DSMM. Let's introduce the approach taken 
by Wu & Kent [53]. They have designed a recov-
erable distributed virtual memory system which 
stands up to fail-stop processors [50] without any 
global re-starting. To do that they use securittj 
copies that store the necessary data to restart the 
execution [8]. Given that every process shares the 
global memory, a backward propagation might be 
needed if each process simply creates an indepen-
dent security copy [37]. That happens if a process, 
after creating a security copy, modifies the value 
of a page and sends it to another process. Then, 
if the first process fails, the second one will have 
to get a security copy created previously to that 
failure. 

To solve this problem, every node creates a 
security copy before sending any modified page 
since the last checkpoint (also the operating sys-
tem or even the program can create additional 
copies). That is done by using twin disk pages. 
One of them is a security copy. The other is either 
a work copy or a wrong copy (due to a failure or 
because it is an old security copy). Thus, every re-
start, the "right" page is chosen, which will avoid 
a backward propagation because data do not have 
to be invalidated in any node. 

However, to develop truly reliable systems, 
both processors and memory failures must be con-
sidered. In this way, Hoepman et al. [33] have 
addressed the construction of self-stabilizing wait-
free shared memory objects (these objects occur 
naturally in systems in which both processors and 
memory may be faulty). 

2.3 Coherency Models 

As it as been previously pointed out, the use of 
replication may increase concurrency. In turn, it 
is necessary to maintain some kind of coherencij 
between replicas. 

This problem is similar to the cache coherency 
problem in multiprocessor systems [5, 24], where 
several processors share the same data in local 
caches. In this !ase, the size of the caches is 
relatively small, the connections fast and the co-
herency protocols are implemented by hardware. 
On the contrary, in distributed systems the com-
munication cost is bigger, and the coherency prp-



DISTRIBUTED SHARED MEMORY... Informatica 20 (1996) 419-428 423 

tocols are usually implemented by software. 
A memory coherency model is characterized 

by its constrains on initiation and completion of 
memory accesses [20]. Depending on the prop-
erties guaranteed by the coherency model, al-
gorithms will vary in complexity. Programmers 
must ensure that accesses to data conform to the 
rules of the model. 

Basically coherency models can be split into 
non-synchronized and synchronized. Non-
synchronized models use only read and vvrite oper-
ations while synchronized ones have, in addition, 
another operations (synchronizations) intended to 
enforce dependencies at specific points. 

Whereas most of the systems support only one 
coherency model, there are systems which support 
multiple coherency models within a single paral-
lel program. For instance, Midway [10], which has 
been implemented using Mach 3.0 with CMU's 
Unix server on MPIS R3000-based DECstations 
and 5000/120s, supports release consistency, en-
try consistency and processor consistency (de-
scribed below). 

2.3.1 Non-Synchron ized M o d e l s 

One of the most widely known non-synchronized 
models is the atomic. It was formalized by Lam-
port [41] in the !ase of one writer, and by Misra 
[46] in the !ase of several writers. Also the lin-
earizabilitij condition for objects introduced by 
Herlihy and Wing [31] is equivalent to the atomic 
model when restricted to objects that support 
read and write operations. This model requires 
each read operation to obtain the "most recently 
written" value. It also preserves "real-time" or-
dering of operations without blocking every pro-
cess while an operation is taking pla!e. An inter-
esting property of this model is that to guarantee 
that a system is atomic, it is enough to guarantee 
that each variable in isolation is atomic, i.e. the 
atomic model is compositional. 

The sequential model [40] resembles the atomic, 
although this one does not preserve any kind of 
global order between operations (only operations 
from the same process are forced to preserve real-
time ordering). Sequential memory, on the con-
trary to what happens to atomic memory, does 
not satisfy the compositional property. Thus, in 
contrast with the atomic model, it is not possible 
in general to obtain a sequential system out of 

the composition of independent sequential com-
ponents. 

On the other hand and in order to improve the 
performance, other coherency models do not pre-
serve the "most recently written" property. 

For instance, the cache model (it was intro-
duced by Goodman as cache consistency [29]} 
forces only operations affecting the same vari-
able to "appear" as executed under the sequential 
model. 

That condition is also fulnlled by the PRAM 
(Pipelined RAM) model [45]. Only now, oper-
ations appearing as sequential are those in the 
same process and write ones. That allows pipelin-
ing of the write operations, which, even though 
may potentially delay the effect of write oper-
ations to different processes, permits programs 
take advantage of the better performance of a 
PRAM implementation as compared to a sequen-
tial implementation. 

The causal model [2], besides to the conditions 
of the PRAM model, forces read operations to 
return the value writ ten by the last causally or-
dered operation [42]. Similarly to PRAM imple-
mentations, implementations of the causal model 
result in far less Communications than on sequen-
tial ones, providing also a good scalability. 

Also, the processor model [29] imposes addi-
tional conditions on the PRAM one. Now, re-
strictions are imposed on the write operations to 
the same variable. 

Finally, the safe and the regular models (they 
were introduced by Lamport [41] in order to pro-
vide a way for implementing stronger models in 
terms of weaker ones) force the restriction of their 
executions to the write and non-overlapping op-
erations be atomic. Moreover and in the !ase of 
the regular model, read operations are forced to 
return the value of any previous or overlapping 
write operation to the same variable. 

2.3.2 Svnchronized M o d e l s 

The approach of synchronized models consists of 
obtaining algorithms that behave sequentially by 
forcing explicit dependencies between events (by 
using synchronizations) when necessary. How-
ever, that requires identifying dependencies in a 
proper way, which may induce additional com-
plexity in the design of programs. 
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by one process be allocated on shared units with 
no data for other processes. However, the analysis 
of data dependencies u"es to be a difficult task. 

3 Conclusions 

While many studies have shown the usefulness of 
the DSMM and a big amount of work has been 
done to improve the performance of DSM sys-
tems, some areas stili seem to require paying more 
attention [16, 19]. 

Performance of the DSMM is greatly affected 
by memory access patterns. As a matter of fact, 
the consistency mistmach between the DSM sys-
tems and the application programs constitutes 
one of the most important factors that favors low 
performance. Therefore, an important approach 
in order to avoid performance problems consists 
of exploiting data dependencies. However, that 
requires knowing access patterns, which may not 
be always available. 

Real-time implementations and auto-
configuring systems are other areas which 
also need deeper study. 

Contrary to available message passing systems 
such as MPI or PVM, the DSMM has not yet 
had a significant impact on non-researcher users. 
The earliest systems provided experimental envi-
ronments useful to be used as benchmarks. Now, 
new generation DSM systems are overcoming for-
mer problems, which allow us to envisage a wider 
acceptance of the DSMM. 
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Figure 2: Relations between non-synchronized 
models: The sets represent the executions they 
allow. 

We begin the description of synchronized mod-
els with the weak model [25]. It only u"es a single 
synchronization type (weak). Roughly speaking, 
it forces dependencies between synchronizations 
and the preceding and following operations. How-
ever, slightly different versions of this model have 
been proposed varying the set of operations forced 
to be related with synchronizations. 

Contrary to the weak model, both the lazy-
release (LR) [34] and the eager-release (ER) mod-
els [27] use two types of synchronizations (acq and 
rel). That permits addressing typical problems 
(e.g., implementing critical sections) in an easier 
way. 

Whereas the ER model sets up dependencies 
from the rel synchronizations to the whole set of 
operations, the LR model sets up dependencies 
from the rel synchronizations to the acq synchro-
nizations. 

Moreover, and independently from the set up 
dependencies, they require the first synchroniza-
tion operation for each process to be an acq syn-
chronization and impose an alternating use of the 
acq and rel synchronizations. Besides, after an 
acq synchronization completes, the next complet-
ing synchronization has to be executed by the 
same process. 

The last synchronized model we introduce is 
the entry [9]. It is very similar to the LR model. 
Only now synchronizations are associated with 
"synchronization variables". As well as the re-
lease models, it requires the first synchronization 
for each process has to be an acq synchroniza-
tion and it imposes an alternating use of the acq 
and rel synchronizations. Also, the rel synchro-

nizations must be executed on the same variable 
that the previous acq synchronization, and after 
an acq synchronization completes, the next com-
pleting synchronization to the same variable has 
be executed by the same process. 

2.4 Shared Data Characteristics 
DSM systems are intended to provide an address 
space where data can be shared among several 
nodes. Therefore it is not surprising that the char-
acteristics of those data may affect the behavior 
of such systems. 

Heterogeneous size and structure greatly af-
fect the system performance. That is due to the 
data conversion when interchanging information 
between modules (e.g., MMUs having to manage 
pages with different sizes [55]). 

On the other hand, in loosely coupled dis-
tributed systems, sending a big packet of data 
is not, relatively speaking, much more expensive 
than sending a small packet. Therefore, if pro-
grams have a high locality and we use dynamic 
placement, using a big size of the shared units 
may reduce the number of block-faults. But the 
more we increase the size the more false sharing 
arises. False sharing occurs when two non-related 
variables, each one referred from a different node, 
are located in the same shared unit, thereby in-
ducing unnecessary coherence operations. It is 
believed to be a serious problem for parallel pro-
gram performance. This belief is also supported 
by experimental evidence [13]. 

Multi-ivriter protocols address that problem by 
allowing multiple nodes to write one block at the 
same tirne and merging changes in a consistent 
way at specified points. Examples of systems 
using multi-writer protocols are Munin [14] and 
TreadMarks [35]. 

Delayed protocols attack false sharing by com-
municating updates at the latest possible mo-
ment. For instance, synchronized models, because 
they only suffer delays at synchronization points, 
are used to reduce false sharing. 

Systems supporting structured data provide the 
user with control of the shared units, which can be 
used to avoid false sharing. Orca [6], Indigo [39], 
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that allow data structures to be shared between 
nodes. In this !ase, a careful analysis must be 
done in such a way that data manipulated mostly 
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