
EUROPEAN TRANSACTIONS ON TELECOMMUNICATIONS
Euro. Trans. Telecomms. 2004; 15:535–548
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/ett.1017

Special Issue on P2P Networking and P2P Services

Efficient search in unstructured peer-to-peer networks

Vicent Cholvi1y,z, Pascal Felber2*,y and Ernst Biersack3

1Escuela Superior de Ciencias Experimentales y Tecnologı́a Universitat Jaume I, Campus de Riu Sec s/n, 12071 Castellón, Spain
2Institut d’informatique, Université de Neuchâtel, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland

3Institut EURECOM, 2229 Route des Crêtes – BP 193, 06904 Sophia-Antipolis, France

SUMMARY

The huge popularity of recent peer-to-peer (P2P) file sharing systems has been mainly driven by the
scalability of their architectures and the flexibility of their search facilities. Such systems are usually
designed as unstructured P2P networks, because they impose few constraints on topology and data
placement and support highly versatile search mechanisms. A major limitation of unstructured P2P
networks lies, however, in the inefficiency of their search algorithms, which are usually based on simple
flooding schemes. In this paper, we propose novel mechanisms for improving search efficiency in
unstructured P2P networks. Unlike other approaches, we do not rely on specialized search algorithms;
instead, the peers perform local dynamic topology adaptations, based on the query traffic patterns, in order
to spontaneously create communities of peers that share similar interests. The basic premise of such
semantic communities is that file requests have a high probability of being fulfilled within the community
they originate from, therefore increasing the search efficiency. We propose further extensions to balance
the load among the peers and reduce the query traffic. Extensive simulations under realistic operating
conditions substantiate that our techniques significantly improve the search efficiency and reduce the
network load. Copyright # 2004 AEI.

1. INTRODUCTION

1.1. Motivations

The last few years have witnessed the appearance of a grow-

ing number of peer-to-peer (P2P) file sharing systems. Such

systems make it possible to harness the resources of large

populations of networked computers in a cost-effective

manner, and are characterized by their high scalability.

P2P file sharing systems mainly differ by their search

facilities. The first hugely successful P2P data exchange

system, Napster [1], incorporates a centralized search

facility that keeps track of files and peer nodes; queries

are executed by the central server, while the resource-

demanding file transfers are performed using P2P commu-

nication. This hybrid architecture offers powerful and

responsive query processing, while still scaling well to

large peer populations. The central server needs, however,

to be properly dimensioned to support the user query load.

In addition, it constitutes a single point of failure and can

easily be brought down in the face of a legal challenge, as

was the case for Napster. Consequently, most recent P2P

file sharing systems have adopted more decentralized

architectures.

Roughly speaking, the P2P networks that do not rely on

a centralized directory can be classified as either structured

or unstructured. Structured P2P networks (e.g. Chord [2],

CAN [3], Pastry [4] and Tapestry [5]) use specialized

placement algorithms to assign responsibility for each file

to specific peers, as well as ‘directed search’ protocols to

Received 5 July 2004

Revised 5 July 2004

Copyright # 2004 AEI Accepted 14 July 2004

* Correspondence to: Pascal Felber, Institut d’informatique, Rue Emile-Argand 11, 2007 Neuchâtel, Switzerland. E-mail: pascal.felber@unine.ch
yThis work was performed while the authors were at Institut EURECOM.
zPartially supported by Bancaixa; Contract grant P1-1B 2003–37.

efficiently locate files. In contrast, unstructured P2P net-

works (e.g. Gnutella [6] and Freenet [7]) have no precise

control over the file placement and generally use ‘flooding’

search protocols.

Directed search protocols are particularly efficient,

because they accurately route queries toward the peers

responsible for a given file. They require few communica-

tion steps, generate little traffic and do not produce false

negatives (i.e. the search fails only if there is no matching

file in the system). Flooding protocols are less efficient,

because queries are generally broadcast indiscriminately

in a whole neighborhood and may yield false negatives.

They have, however, very little management overhead,

adapt well to the transient activity of P2P clients, take advan-

tage of the spontaneous replication of popular content and

allow users to perform more elaborate queries than with

directed search protocols, which only support exact match

queries. These properties make unstructured P2P systems

more suitable for mass-market distributed file sharing.

The main objective of this work is to develop techniques

to render the search process in unstructured P2P file shar-

ing systems more efficient and scalable, by taking advan-

tage of the common interests of the peer nodes and

effectively implement a ‘directed flooding’ search protocol.

It is meant to extend and improve Gnutella-like networks;

not to propose a complete, novel file sharing system.

1.2. Overview and contributions

In this paper, we propose Acquaintances, an extension to

Gnutella-like unstructured P2P networks that uses

dynamic topology adaptation to improve search efficiency.

As in Gnutella, our search mechanism uses time-to-live

(TTL) limited flooding to broadcast queries in a neighbor-

hood. By associating a TTL value to the query messages,

one can restrict the search diameter, i.e. the size of the

flooded neighborhood, and limit the adverse effects of

exponential message generation on the network links.

However, the probability of finding a file that does exist

in the network strongly depends on the chosen TTL value:

bigger values increase the success rate but may quickly

lead to network congestion.

To minimize this problem, we propose novel techniques

to build self-organized communities of peer nodes that

share similar interests. These communities are maintained

by dynamically adapting the topology of the P2P overlay

network based on the query patterns and the results of pre-

ceding searches. Some of the neighbor links are explicitly

reserved for building semantic communities and are con-

tinuously updated according to some link replacement

algorithm; these links allow peers to quickly locate files

that match their interests. The other links are mostly static

and random; they help maintain global connectivity and

locate more marginal content.

Semantic communities can have the adverse effect of

creating hot-spots with well-connected peers. To address

this problem, we introduce a load-balancing mechanism

that delegates, whenever possible, the responsibility to

answer a query to less-loaded peer nodes. Finally, we pro-

pose a dynamic TTL update scheme to further limit net-

work congestion without significantly degrading the query

success rate.

To evaluate the effectiveness of our techniques, we have

built a network simulator and conducted extensive simula-

tions under realistic operating conditions. Results demon-

strate that, when extending a basic Gnutella-like network

with Acquaintances, one can significantly improve the

search efficiency and reduce the network load.

1.3. Paper organization

The rest of this paper is organized as follows. In Section 2,

we discuss related work, and we introduce the design of

Acquaintances in Section 3. Section 4 describes the meth-

odology used for the evaluation of Acquaintances, and

the simulation results are presented in Section 5. Finally,

Section 6 concludes the paper.

2. RELATED WORK

Our system builds on top of unstructured P2P networks,

such as Gnutella [6], but dynamically adapt the network

topology to build semantic communities. Several alterna-

tive approaches have been proposed to improve search effi-

ciency by taking advantage of the common interests of the

peer nodes.

In Reference [8], the authors propose the use of shortcuts

to exploit interest-based locality: peers that share similar

interests create shortcuts to each other. Queries are first dis-

seminated through shortcuts and, if the search fails, they are

flooded through the underlying P2P overlay. In contrast, our

approach does not create additional links, nor does it require

a specialized search process; it rather dynamically modifies

the topology of the overlay network to reflect the shared

interests of the peers, and can thus be incorporated seam-

lessly into existing Gnutella-like P2P networks.

In Reference [9], the authors propose techniques to

reduce the number of nodes that process a query, with

the premise that by intelligently selecting subsets of peers

to send queries to, one can quickly obtain relevant results.

536 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

This work focuses on the peer selection algorithms, which

yield various performance gains, but does not consider the

dynamic evolution of the structure and connectivity of the

P2P overlay.

In Reference [10], the authors propose a query algo-

rithm based on multiple random walks. This technique

reduces message overhead compared with flooding, but

at the expense of an increase in the number of hops neces-

sary to find the requested file.

Gia [11] is a P2P file sharing system that extends Gnu-

tella with one-hop replication. Each peer maintains an

index of the files stored on its neighbors, and can thus pro-

cess queries on their behalf for increased scalability. Local

indices [9] implement the same concept, but extend the

scope of indexes to all the peers located within a prede-

fined hop distance. We also rely on similar techniques to

increase search efficiency, but we further use them for load

balancing purposes and we show that they are effective

even when indexes have stringent size limitations.

Yang and Garcia-Molina [12] examine super-peer net-

works in detail, and present practical guidelines and a general

procedure for the design of an efficient super-peer network.

Whereas, we do not explicitly use super-peers, the dynamic

topology adaptation feature of our system makes it sponta-

neously organize as a super-peer network, with peers that

have more resources being better connected. Furthermore,

our dynamic topology adaption mechanisms allow quick

adaptation to variations of the workload and peer population.

In Reference [13], Crespo and Garcia-Molina propose to

explicitly classify files into semantic groups associated

with distinct (possibly overlapping) overlay networks. A

file is then requested from the overlay(s) to which it

belongs. In our approach, semantic relations are discov-

ered spontaneously at runtime, based on the user queries,

without having to explicitly classify the files—which is

known to be a difficult task in practice [13].

In Reference [14], the authors propose to use file asso-

ciations to build an so-called associative overlay and pre-

sent various algorithms to steer the search process to peers

that are more likely to have an answer to the query. In con-

trast, our approach does not require specialized searching

rules; it rather drives the search process by dynamically

adapting the network topology.

3. ACQUAINTANCES DESIGN

In this section, we introduce the basic principles of

Acquaintances and we present the key components and

algorithms used in its design.

3.1. Definitions and terminology

Each peer is connected to a set of other peers in the

network via uni-directional links, that is each peer can

locally select the other peers it wishes to link to. We

distinguish between two types of links:

* Neighbor links connect a peer p to a set of other

peers (p’s neighbors) chosen at random, as in typical

Gnutella-like networks.

* Acquaintance links connect a peer p to a set of other peers

(p’s acquaintances) chosen based on common interests.

Each peer has a bounded number of neighbor and

acquaintance links. We call p’s friends the set of peers that

have p among their acquaintances. The number of friends

of a peer is its in-degree (which is unbounded, let alone by

the size of the network).

A peer can make some of its local files accessible to

other peers. Peers that do not share any file are called

free-riders. Non-free-riders or serving peers are those

peers that contribute files to the community. A successful

request yields a list of peers that have a file matching the

original query. We assume that, when several peers have

the desired file, the peer that is closest to the requester

(in number of hops) is chosen. We call that peer the

answerer. Note that answering a query typically implies

sending a file to the requester.

Some of the mechanisms that we will introduce shortly

require peers to maintain state information about their

friends. The state of a peer consists of the list of the names

of its shared files. For load-balancing purposes, peers also

need to know the in-degree of their friends.

To illustrate these definitions, consider the sample net-

work depicted in Figure 1, in which each peer has a single

neighbor and acquaintance link. Peer p1 shares 99 files and

its state consists of the names of all these files. It has p9 as

random neighbor; p4 as acquaintance and p2; p3; p4; p6

and p8 as friends, which corresponds to an in-degree of

5. Peers p7 and p9 are free-riders and have no friends. As

we will see later, a high in-degree generally indicates that a

peer shares many files, or is well-connected to peers that

share many files; in contrast, free-riders typically have a

null in-degree. Pair-wise acquaintance relationships

between serving peers that have similar interests (e.g.

between p1 and p4) are also common in practice, and effec-

tively yield bi-directional links.

3.2. Dynamic topology adaptation

The basic principle of Acquaintances consists in dynami-

cally adapting the topology of the P2P network so that the

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 537

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

peers that share common interests spontaneously form

well-connected semantic communities. It has been shown

that users are generally interested in only some specific

types of content [13], therefore being part of a community

that shares common interests is likely to increase search

efficiency and success rate.

Dynamic topology adaptation is implemented by direct-

ing acquaintance links toward the peers that have returned

relevant results in the past (see Figure 2). Indeed, a peer

that consistently returns good results is likely to have com-

mon interests with the requesting peer and/or to serve a

large number of files. A consequence of this scheme is that

selfish peers and free-riders are likely to be acquainted

with almost no other peer.

Each peer maintains a bounded list of acquaintances.

The decision of replacing a peer from this list, i.e. promot-

ing a peer as acquaintance, depends on the history of the

responses to previous requests issued by each peer (note

that this decision is local). In this paper, we evaluate two

acquaintance replacement policies.

The least recently used (LRU) policy is the simplest.

After a successful request, a peer adds the answering peer

in front of its list, and drops the last peer of the list (see

Algorithm 1). If the answering peer is already an acquain-

tance, it is moved to the front. This scheme guarantees that

a promoted peer always replaces the peer that was least

promoted recently, and that a peer that regularly answers

queries can remain an acquaintance for a long duration.

However, when peers have diverse interests and have only

few acquaintance links at their disposal, the composition

of the acquaintance list may well change after every

query; this volatility can yield non-negligible connection

management costs.

To alleviate this problem, we use the most often used

(MOU) policy, which maintains rankings of the peers

and elects as acquaintances those that have the highest

rankings. A peer has a high ranking if it answers to many

queries, or (to a lesser extent) if it is close to peers that

have answered many queries, i.e. it is well connected

and could thus be a valuable acquaintance. After each suc-

cessful query, each peer on the path followed by the query,

in reverse order from the answerer to the requester, has its

rank increased by an exponentially decreasing value (see

Algorithm 2). To better adapt to the dynamics of the peer

population and shared content, we also introduce an aging

factor that gives more weight to recent answers by decreas-

ing the rankings over time. This scheme clearly yields

acquaintance lists with low volatility, which give prefer-

ence to peers that stay longer in the system and are

expected to be more stable.

Algorithm 1. LRU replacement policy at requester pr

Variables:

AcqList: Ordered list of N acquaintances, initially

chosen at random

Upon successful query answered by pa:

if pa 2 AcqList then

remove pa from AcqList

else

remove last element from AcqList

end if

add pa to front of AcqList

Figure 1. Sample minimal network, with a single neighbor and
acquaintance link per peer.

Figure 2. Basic principle of dynamic topology adaptation: (a) p1

issues a query. (b) p3 returns a positive response. (c) p1 promotes
p3 as acquaintance.

538 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

To best illustrate the effect of dynamic topology adapta-

tion in Acquaintances, we have represented in Figure 3(a)

and (b) the acquaintance links of a small P2P network,

before and after running a simulation (as described in

Section 4). The network evolves from a random configura-

tion toward a graph with well-connected communities.

We note that, currently, several unstructured networks

are based on the ‘super-peer’ concept (e.g. Gnutella [6],

Kazaa [15], iMesh [16]), which distinguishes between

two classes of nodes: ‘regular clients’ and ‘super-nodes’.

A super-node is a host that acts as a hub for a large number

of regular clients. If super-nodes are well connected,

they may vastly reduce the number of peers involved in

message routing. However, if super-nodes are not well

connected, they may constitute a performance and scal-

ability bottleneck. Whereas Acquaintances does not

explicitly use super-nodes, its dynamic topology adapta-

tion feature makes it spontaneously organize as a super-

peer network (see Figure 3(b) for an illustrative example).

3.3. Search

As previously mentioned, Acquaintances does not require

complex or specialized search algorithms. It uses the same

TTL-limited flooding scheme as in Gnutella-like P2P net-

works, and yet exhibits much improved search efficiency.

Algorithm 2. MOU replacement policy at requester pr

Variables:

AcqList: Ordered list of N acquaintances, initially

chosen at random

CandList: List of fpeer; rankingg pairs, ordered by

ranking, initially filled with peers from

AcqList and null rankings

a: Aging factor, with value in ð0; 1�
Upon successful query answered by pa, reached via ðpr;
p1; . . . ; pn � 1; pn ¼ paÞ:

for all fp; rg 2 CandList do

fp; rg fp; arg
end for

i 1:0
for j from n downto 1 do

if fpj; rg 2 CandList then

fpj; rg fpj; r þ ig
else

insert fpj; ig in CandList

end if

i i=2

end for

AcqList first N peers of CandList

Figure 3. Graphical representation of the effect of dynamic topology adaptation on a 200-peers network, with one acquaintance link
per peer (neighbor links are not shown for clarity). (a) At the begin of the simulation. (b) At the end of the simulation.

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 539

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

First, by organizing peers in communities that share

common interests, we improve response time by increasing

the chances that matching files are found inside the com-

munity, i.e. within a short distance, of the requester. We

can, therefore, use smaller TTL values for queries and thus

reduce the network traffic, without significant impact on

the success rate.

Second, peers can be configured to maintain a (partial)

index of the files stored on their friends. Using this state

information, a peer can explore several other peers with

similar interests at no communication cost. Clearly, this also

increases the success rate and reduces the network traffic.

Semantic communities also have some drawbacks.

First, the network can quickly become divided in several

disconnected subnetworks with disjoint interests. Second,

peers searching for unpopular or marginal content (not

part of their interests) may experience very low success

rates. For these reasons, we enforce some random connec-

tivity by means of the neighbor links. Searches are per-

formed by forwarding queries on both the acquaintance

and neighbor links.

3.4. Load balancing

Flooding algorithms naturally direct much of the traffic

toward highly connected peers. In our system, a peer that

has many friends can quickly become a hot-spot, not only

because it receives more queries, but also because it typi-

cally sends more files to requesting peers. Although, we do

not explicitly address the issue of file transfers in this

paper, it is a large source of overhead in P2P file-sharing

networks and should not be overlooked.

We therefore use the following mechanism to better bal-

ance the file traffic. Before successfully answering a query,

a peer p first checks if any of its friends also has the

requested file. If so, it delegates the responsibility for

answering the query to the peer among those serving the

file that has the smallest in-degree (note that this peer

may be p). Otherwise, p sends the file itself.

The rationale behind this approach is that well-

acquainted peers are likely to be more loaded, i.e. receive

more requests and serve more files, than peers with fewer

friends. Further, there is a good probability that some of

the friends of a peer also have the same files. Therefore,

we force the less loaded peer to assume part of the load.

3.5. Dynamic TTL

To further reduce the query traffic generated by the flood-

ing algorithm, we propose an extension for the case where

peers are ‘conscious’ of the sematic communities and can

check if a requested file falls within their interests. Intui-

tively, a query that enters a community of peers to which

the requested file belongs, is likely to be answered by a

peer of that community within a few hops. Conversely, a

query for a file that does not match the interests of the com-

munity is likely to traverse more peers before being satis-

fied. Therefore, we propose decrementing the TTL value

twice (i.e. by 2 instead of 1) when a received query falls

within the interests of the traversed peer. Clearly, this

mechanism reduces the number of messages sent by the

flooding algorithm. Our basic premise, which we sub-

stantiate later, is that this extension significantly reduces

network traffic without affecting much the success rate.

4. EXPERIMENTAL SETUP

We now present the experimental setup and methodology

used for the evaluation of Acquaintances. All results were

obtained from simulations, with extra care taken at repro-

ducing realistic operating conditions.

4.1. System model

4.1.1. Network. Similarly to Gnutella, we consider a

system model where peers are organized in an overlay net-

work. Each peer has a set of neighbors with which it com-

municates by message passing. Links are directed: a peer

p may have another peer p0 as neighbor without p0 consid-

ering p as its neighbor. Traffic can however flow in both

directions on the links. As we are mostly interested in

studying (low volume) query traffic and hop distances,

we do not explicitly take into account the bandwidth and

delay of the links.

We consider a peer-to-peer network made of 20 000

peers, which corresponds to an average-size Gnutella

network [17].y Each peer has six of outgoing links. Some

of them are chosen randomly (neighbor links), and others

adapt dynamically based on the query traffic (acquaintance

links). The number of acquaintance links varies between

0 and 5 in our experiments (the remaining links being

neighbor links). As we need to maintain global network

connectivity during the whole simulation to obtain consis-

tent results, we make sure that the network is initially fully

connected through the peers’ neighbor links (which do not

change over time). The number of incoming links is

unbounded and varies over time as acquaintance links

get updated.

yNote that, whereas current estimates of Gnutella’s size are around
100 000 peers, only 20 000 are active at a give time.

540 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

Our study considers a system in steady mode, for which

we observe significant improvements, and does not expli-

citly consider the issue of ‘churn’ (nodes coming and liv-

ing rapidly). Indeed, other studies [18] have shown that the

peers that have a lot of contents are usually much more

stable than free-riders, and changes in the free-rider popu-

lation should not impact the effectiveness of our techni-

ques (free-riders are typically acquainted with no other

peer). We therefore expect our system to be mostly insen-

sitive to churn.

4.1.2. Content. It has been observed [13] that users are

generally interested in a subset of the content available

in a peer-to-peer network. Furthermore, they are interested

in only a limited number of content categories (e.g. music

styles, literature genres). Among these categories, some

are more popular and contain more content than others;

for instance, pop music files are more widely held than jazz

or classical music files. Similarly, within each category,

some files are much more popular than others. It has been

shown that the Gnutella content and queries follow a Zipf

distribution, with a skew factor between 0:63 and 1:24 [19];

thus, in the rest of this paper, unless mentioned otherwise,

we use a Zipf distribution with a skew of 1:0 for all our

experiments. We note that most of the related studies have

used the Zipf assumption (e.g. ½10; 20; 21�), with the nota-

ble exception of a recent evaluation [22] of Kazaa [15] that

tends to indicate that the content popularity does not

always follow a Zipf distribution.

We model content by creating 50 distinct categories.

Each category has an associated popularity index, chosen

according to a Zipf distribution. We then create 200 000

distinct files and assign each of them to exactly one cate-

gory chosen according to the categories’ popularities: the

more popular a category is, the more files it contains. We

also associate a Zipf popularity to the files inside each

category. Finally, each peer is assigned a random number

(uniformly distributed between 1 and 6) of categories of

interest, that it chooses according to their popularity index.

The categories of interest of a peer are ranked using a Zipf

distribution: the peer is more interested in (i.e. requests

and shares more files from) the first chosen category than

the second one. This behavior models the few peers that

are highly interested in marginal content.

4.1.3. Cooperation. All peers do not share the same

number of files and do not exhibit the same ‘social beha-

vior’. As observed in Reference [23], a large proportion of

the user population is made of so-called free-riders, who

do not make any file accessible to other users and essen-

tially behave as clients. On the other hand, a small propor-

tion of the users (less than 5%) contribute more than two-

thirds of the files shared in the system and essentially

behave as servers. Based on the study in Reference [23],

we assign the following storage capacity to the peers in

the network: 70% of the peers do not share any file

(free-riders); 20% share 100 files or less; 7% share

between 101 and 1000 files; finally, 3% of the peers share

between 1001 and 2000 files (actual storage capacities are

chosen uniformly at random). With this distribution, we

have observed in our experiments a total storage capacity

of more than 1 600 000 files, with more than 150 000 dis-

tinct files being shared.

In this work, we do not explicitly analyze the free-riders

phenomenon (i.e. selfish individuals who opt out of a

voluntary contribution to a group’s common welfare and,

consequently, do not add value to the network). Other stu-

dies (e.g. [24]) focus on that problem and propose mechan-

isms that can be used to encourage file sharing.

4.2. Simulation methodology

Our simulator proceeds in a sequence of synchronous

rounds. In each round, a subset of the peers (10% in our

experiments) issue requests. Similarly to Gnutella,

searches are conducted using TTL-limited flooding. Each

request is assigned a TTL value and is disseminated via

neighbor and acquaintance links. When receiving a request

for the first time, a peer decreases the TTL value and, if it is

strictly positive, propagates the request further.

To generate a request, a peer first selects one category

among its categories of interest based on their rankings.

Then, it selects a file (that it does not already hold) from

that category according to the file popularities. The peer

then issues a request for that file. For simplicity, we always

request individual files, i.e. we do not consider broad

queries that match several distinct files.

When a serving peer receives a positive response to his

query and still has some storage capacity available, it cre-

ates a local copy of the file and makes it accessible to other

users. A positive response to a query can also result in an

update of a peer’s acquaintance links. We used an aging

factor of a ¼ 1 for the MOU acquaintance replacement

policy (see Algorithm 2).

The simulation is made of two phases:

(1) During the first phase (bootstrap phase), we populate

the system and establish acquaintance link connectiv-

ity between the peers. To that end, serving peers issue

queries, at a rate proportional to their storage capacity,

and create local copies of the files they request. In case

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 541

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

a file is not found (e.g. because it does not yet exist in

the system), we inject it at the requesting peer; this

models the behavior of peers joining the network with

a pre-existing set of files. Acquaintance links are dyna-

mically updated based on the query traffic and the

acquaintance replacement policy in use. The first

phase ends when 80% of the storage capacity has been

filled. At the end of the first phase, the storage and

acquaintance link connectivity of the core network—

composed on the serving peers that actually contribute

to the content of the system—have been established.

This corresponds to the expected state of a pre-

existing peer-to-peer network at the time a new user

connects.

(2) During the second phase, we take measurements and

observe the network’s behavior under traffic load from

both free-riders (which continue issuing queries as in

the first phase) and serving peers (which fill up the

remaining 20% of their storage capacity). This phase

allows us in particular to observe the evolution of the

connectivity of the free-rider population with respect

to the serving peers in the core of the network.

We run the simulation for at least 1000 rounds in the

second phase. Table 1 summarizes the main parameters

used in our simulations.

Based on the content and query models, it appears clearly

that the number of requests to each file, as well as the num-

ber of copies held in the system, are strongly correlated

with the popularity of the file. Figure 4 shows the number

of requests and copies observed for each file based on its

order of popularity. Figure 5 further exhibits the strong

correlation between the number of requests for a file and

its number of copies.
5. ACQUAINTANCES EVALUATION

In this section, we present and analyze the results of the

experimental evaluation of Acquaintances. We first start

by studying the overall impact of acquaintances on our

system. We then analyze search and load balancing

improvements when each peer knows the state of some

of its friends. Finally, we evaluate the effect of the dynamic

TTL optimization. Further experiments, conducted in real

Gnutella [6] and Limewire [17] networks, confirm the

results that we have obtained from simulation [25].

Note that we did not explicitly compare our approach

against other sophisticated search algorithms and archi-

tectures based on super-peers [8–14] for a number of

reasons. First, we could not obtain enough information

on some of these algorithms so as to support them in our

simulator. Second, some of the proposed architectures

make specific assumptions about the system (in particular

Figure 5. The number of requests for a file is correlated with its
number of copies.

Table 1. Parameters used in the simulations.

Parameter Value

Active peers 20 000
70 % share 0 file� free-riders
20 % share [1 . . . 100] files (uniform)
7 % share [101 . . . 1000] files (uniform)
3 % share [1001 . . . 2000] files (uniform)

Distinct files 200 000
Categories 50
Categories per peer [1 . . . 6] (uniform)
Links per peer 6

Acquaintance links {0,1,3,5}
Query TTL 6
Query rate 10%

Figure 4. The number of requests for, and copies of, each file
strongly depends on the file popularity.

542 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

when dealing with super-nodes), which would not allow

for a fair comparison. Third, a major contribution and ori-

ginal property of our algorithms is that they work by

peforming only local and dynamic topology adaptations.

They are extremely simple to implement and do not

require global or a priori knowledge about the peers, files

or query workload. We believe that this last point is extre-

mely important and easily compensate for the better effi-

ciency that other specialized search algorithms might

offer in specific deployment scenarios.

5.1. Acquaintance links

For all the experiments in this section, we assume that the

peers have no knowledge of the state of their friends. This

case corresponds to a traditional Gnutella-like network

with no extra information being transmitted between

peers.

5.1.1. Hops. The first metric used in our evaluation is

the number of hops necessary to reach the first peer that

serves the requested file. We compute the average over

all successful requests issued during each round. The num-

ber of hops is a measure of the response time and allows us

to choose adequate TTL values to experience a good query

success rate without overloading the network.

Figure 6 shows that the system, initially with random

connectivity, needs only a few rounds to set up acquain-

tance links and stabilize in an efficient configuration.

Regardless of the acquaintance replacement policy, the

number of hops is reduced by around 30% with one

acquaintance, by 60% with three acquaintances and by

80% with five acquaintances. Note that the minimum num-

ber of hops necessary to reach a file is 1, as peers do not

search for files that they already have. We have observed

that more popular files are generally found closer to the

requester; this behavior can be explained by the fact that

popular files have more copies (see Figure 4).

5.1.2. In-degree. The in-degree of a peer p is defined as

the number of other peers that have chosen p as acquain-

tance. We have computed the maximum over all peers at

the end of each round. As the number of queries received

by a peer is clearly proportional to its in-degree, it is

important to keep this value within reasonable bounds.

Figure 7 shows that, by introducing acquaintances, we

increase the maximum in-degree in the network. This is

not surprising as the peers that serve many files are more

likely to be chosen as acquaintances by the other peers.

Conversely, free-riders should be acquainted with almost

no other peer. The LRU acquaintance replacement policy

exhibits more volatility than MOU.

5.1.3. Promotions. To quantify the stability of links,

we use the percentage of promotions, i.e. the proportion

of successful requests that have induced a dynamic topol-

ogy adaptation (update of the requester’s acquaintance

list). We compute the average overall successful requests

issued during each round. A small value means that the

connectivity of the system is stable.

Figure 8 shows that the LRU acquaintance replacement

policy introduces much volatility, while the MOU policy

yields a very stable network after a few rounds. Stability

is particularly important when updates to acquaintance

links have a significant connection management cost, or

require extra messages to be transmitted between peers

(e.g. to transfer state).

Figure 6. Number of hops to the closest peer that serves the
requested file. Figure 7. Maximum in-degree over all the peers in the network.

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 543

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

5.1.4. Load distribution. In order to analyze how the

introduction of acquaintances affects the load distribution

of the system, we have computed the coefficient of varia-

tion of the number of requests answered by each peer (i.e.

the standard deviation of the values divided by their mean).

This metric shows how the file transfer load, which is a

bandwidth- and time-consuming operation, is distributed

among the peers. Small values indicate that the load is well

balanced among the peers. Table 2 shows that acquain-

tances have a relatively small influence on the coefficient

of variation, and consequently do not significantly degrade

the load distribution of the system (when compared to a

basic Gnutella-like network). The acquaintance replace-

ment policy has no noticeable impact on the load distribu-

tion.

We also represent the number of requests answered by

the busiest peer, computed over all peers during each

round (remember that the query rate is 10%, which means

that approximately 2000 requests are issued during each

round). This metric helps us to identify hot-spots. Table 2

shows that, while the introduction of acquaintances leads

to a higher request load on the busiest peer, this increase

remains quite moderate and does not indicate the creation

of hot-spots. The values show not influence from the

acquaintance replacement policy.

5.1.5. TTL values. With TTL-limited flooding, the suc-

cess rate of queries strongly depends on the chosen TTL

value. Consequently, it is very important to choose a value

that simultaneously provides a high success rate and limits

the number of messages sent over the network.

The metric used to study the effect of the TTL value is

the cumulative success rate, i.e. the cumulative probability

of success in the TTL-limited neighborhood of the reques-

ter. High success rates for small TTL values indicate that

search is more efficient. Figure 9 shows the results for var-

ious number of acquaintances. We can observe that more

acquaintances leads to higher success rates for any TTL

value. Without acquaintance, we need a TTL value of 5

to have a 90% success rate. With 5 acquaintances, we only

need a TTL of 3 to get the same success rate, and a TTL of

2 still provides better than 80% success rate.

We have also measured the cumulative number of hits,

i.e. the cumulative number of positive responses to a query

in the TTL-limited neighborhood of the requester. We have

computed the average over all successful requests issued

during each round. Having several positive responses can

reduce the download times as we can request a file from

the least loaded or topologically-closest peer, or even use

multi-source parallel download techniques [26].

Figure 10 shows that, for small TTL values, the number

of hits increases with the number of acquaintances. This

behavior results from the fact that acquaintance links are

explicitly designed to connect to peers that have a high

probability of serving the requested files. However, for

high TTL values we observe an opposite behavior: the

Figure 8. Percentage of successful requests that yield an acquain-
tance promotion.

Table 2. Effect of acquaintances on the load distribution.

No. of Coefficient of No. of requests
acquaintances variation of answered by the

answered requests busiest peer

LRU MOU LRU MOU

0 2.3 2.3 5.5 5.5
1 3.1 3.0 10.0 9.7
3 3.7 3.6 11.5 12.7
5 4.1 3.8 13.8 13.5

Figure 9. Cumulative success rate, averaged over the last 800
rounds of the simulation, with a MOU acquaintance replacement
policy.

544 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

number of hits is higher when using less acquaintances.

This can be explained by the fact that, when using more

acquaintance links, we have less randomness and it

becomes harder to find the extra copies of a file that are

located outside of the requester’s semantic communities.

This problem is more severe when a peer searches for mar-

ginal content that does not belong to its semantic commu-

nities. Therefore, it is desirable to maintain a good balance

of acquaintance and random links.

5.2. Friends awareness

We now consider the case where each peer maintains an

index of the files stored on its friends and uses this knowl-

edge to answer to queries on their behalf, when possible.

Our experiments show that, even with a single acquain-

tance, the number of hops needed to reach the first peer

that serves, or has a friend that serves, the requested file

drops to the optimal value 1 after a few rounds. This occurs

regardless of the acquaintance replacement policy (LRU or

MOU). As almost all requests are satisfied after a single

hop, peers have no incentive to change their acquain-

tances; we have indeed observed that the number of pro-

motions with both the LRU and MOU acquaintance

replacement policies is almost null.

The experiments also show that the in-degree of the

busiest peer grows quickly to almost attain the total num-

ber of peers in the system. This indicates that one peer acts

as a central hub that all other peers choose as acquain-

tance; it is chosen initially because it serves many files,

and later because it has many friends and consequently

can answer to almost all queries. This snowball effect leads

the system to spontaneously self-configure as a system

with a central ‘index’ peer, like Napster. The major

difference with a centralized system is that, if the central

index fails or leaves, the system quickly reconfigures and

chooses another index peer.

A configuration with a central index has the major draw-

back of overloading the index peer (experiments show a

significant degradation of the load distribution). In addi-

tion, the index peer must have enough resources to main-

tain the state of all its friends, i.e. the list of almost all the

files served by all the peers in the P2P network.

To overcome these drawbacks, we adopt a less extreme

approach and we bound the maximum number of friends

that a peer needs to keep track of. We have run simulations

with this limit set to 25. Figure 11 shows the improvement

of the number of hops needed to reach the first peer that

answers a query, with respect to the case where peers keep

no state. We observe gains ranging from 8 to 16% with the

LRU acquaintance replacement policy, and from 25 to

35% with MOU. The lower performance of LRU can be

explained by the higher volatility of the network connec-

tivity, which leads peers to only perform short-term opti-

mizations.

Figure 12 shows the increase of the maximum in-degree

resulting from the introduction of friend state knowledge.

This increase is pretty important with MOU (between 80

and 95%) but, as we shall see shortly, moderate enough

to not cause hot-spots. With LRU, the increase is almost

negligible. The evolution of the number of promotions is

not shown, as it follows the very same trend observed in

Figure 8 (except for values being approximately 15%
lower with LRU).

Table 3 shows that the load distribution of the system is

not much affected (compare with Table 2). The increase of

the number of requests answered by the busiest peer is

moderate even with the MOU acquaintance replacement

Figure 10. Cumulative number of hits, averaged over the last 800
rounds of the simulation, with a MOU acquaintance replacement
policy.

Figure 11. Improvement of the average number of hops per
request when maintaining the state of 25 friends (w.r.t. maintain-
ing no state).

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 545

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

policy, which confirms that friends awareness does not

cause hot-spots.

We have also analyzed the effectiveness of the load bal-

ancing technique described in Subsection 3.4. The distri-

bution of the file traffic in the system with the load

balancing optimization is also shown in Table 3 (values

are in parentheses). Note that, in that case, the peer that

answers a query is not necessarily the one that sends the

requested file. We observe low variation and moderate load

on the busiest peer, which indicates that our techniques

balance effectively the file traffic load.

5.3. Dynamic TTL

We finally evaluate the effectiveness of the dynamic TTL

mechanism described in Subsection 3.5, which decrements

the TTL value twice when a query falls within the interests

of the peer being traversed during query flooding. As

queries require fewer hops to be satisfied within the scope

of a semantic community, we expect this optimization to

have little impact on the success rate while significantly

decreasing the query traffic.

We have measured the total number of query messages

sent across the network, and computed the average over all

requests (successful or not) issued during the last 800

round of the simulation, after the network topology has

stabilized. Table 4 shows a important reduction of the

query traffic when using the dynamic TTL optimization,

by factors of 4 to more than 8. Note that adding acquain-

tances has the effect of decreasing the number of messages

sent in the network, because well acquainted peers receive

higher query traffic but forward each query only once. We

have also performed experiments with the dynamic TTL

optimization and a TTL value of 7 (instead of 6). Results

show that query traffic is still reduced by factors of

1.5–1.8.

We have also measured the query failure rate, i.e. the

proportion of requests that yield a negative result

although the requested file is available in the system.

Unsurprisingly, the percentage of failures with the

dynamic TTL optimization is high (10%) with no

acquaintances, because it is designed to take advantage

of the semantic communities that are created by the

acquaintance links. When using acquaintances, the fail-

ure rate decreases (4–6%) but remains significantly

higher than with a static TTL value. In contrast, when

increasing the TTL value to 7, the dynamic TTL optimi-

zation exhibits much lower failure rates (less than 0:1%).

This optimization can thus at the same time improve the

success rate and reduce the query traffic, when using an

adequate TTL value.

Table 3. Effect of acquaintances on the load distribution when
maintaining the state of 25 friends.

No. of Coefficient of No. of requests
acquaintances variation of answered answered (files sent)

requests (sent files) by the busiest peer

LRU MOU LRU MOU

0 2.4 2.4 5.8 5.8
1 3.0 (2.5) 4.1 (3.2) 9.7 (7.2) 30.9 (13.8)
3 3.4 (2.6) 4.3 (3.1) 11.8 (7.6) 36.7 (14.7)
5 3.9 (2.7) 4.7 (2.9) 14.7 (8.4) 27.5 (11.3)

Figure 12. Increase of the maximum in-degree when maintaining
the state of 25 friends (w.r.t. maintaining no state).

Table 4. Number of messages and percentage of faults per request, averaged over the last 800 rounds of the simulation, with a MOU
acquaintance replacement policy.

No. of Messages % Faults
acquaintances

static dyn static dyn dyn7 static dyn7 static dyn dyn7
(TTL¼ 7) (TTL¼ 6) (TTL¼ 7)

0 41 312 4953 8.3 22 524 1.8 0.27 10.47 0.03
1 33 624 4217 7.9 18 559 1.8 0.14 6.64 0.02
3 17 613 2883 6.1 10 267 1.7 0.36 4.76 0.02
5 6765 1709 3.9 4474 1.5 0.90 4.48 0.02

546 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

6. CONCLUSION

Acquaintances is a novel approach for improving search

efficiency in unstructured P2P network. Its fundamental

design principle lies in the dynamic adaptation of the

network topology, driven by the history of successful

requests and achieved by having each peer maintain a list

of acquaintances that are likely to best answer queries.

Acquaintance links connect peers that share similar inter-

ests and spontaneously build semantic communities. They

provide a short path to content that belongs to the core

interests of a requesting peer. To guarantee some diversity

and help find more marginal content, each peer also main-

tains a set of random neighbors. This combination of

semantic and random links provides efficient, yet robust,

search facilities to unstructured P2P networks.

Query forwarding is implemented by the same TTL-

limited flooding mechanism found in Gnutella-like P2P

file sharing systems. Acquaintances does therefore repre-

sent a non-intrusive extension to legacy P2P networks,

where each peer modifies the network topology by locally

optimizing its connectivity. It also incorporates load-

balancing mechanisms that offload potential hot-spots in

popular semantic communities, as well as a dynamic

TTL optimization that further reduces the network traffic.

Experimental evaluation has shown that our techniques are

effective at improving search efficiency. Optimizations to

the actual search algorithm, such as random walks [10],

are orthogonal to our techniques and could thus be used

to further improve the efficiency of Acquaintances.

REFERENCES

1. Napster. http://www.napster.com.
2. Stoica I, Morris R, Karger D, Kaashoek M, Balakrishnan H. Chord: a

scalable peer-to-peer lookup service for internet applications. In
Proceedings of SIGCOMM, August 2001; pp. 149–160.

3. Ratnasamy S, Handley M, Karp R, Shenker S. A scalable content-
addressable network. In Proceedings of SIGCOMM, August 2001;
pp. 161–172.

4. Rowstron A, Druschel P. Pastry: scalable, distributed object location
and routing for large-scale peer-to-peer systems. In Proceedings of
the IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware). November 2001; pp. 329–350.

5. Zhao BY, Kubiatowicz J, Joseph AD. Tapestry: an infrastructure for
fault-tolerant wide-area location and routing, Technical Report

UCB/CSD-01-1141, Computer Science Division, University of
California, Berkeley, April 2001.

6. Gnutella. http://gnutella.wego.com.
7. Clarke I, Sandberg O, Wiley B, Hong TW. Freenet: a distributed

anonymous information storage retrieval system. In Proceedings of
the Workshop on Design Issues in Anonymity and Unobservability,
July 2000; pp. 46–66.

8. Sripanidkulchai K, Maggs B, Zhang H. Efficient content location
using interest-based locality in peer-to-peer systems. In Proceedings
of INFOCOM, April 2003; pp. 2166–2176.

9. Yang B, Garcia-Molina H. Improving search in peer-to-peer
systems. In Proceedings of the International Conference on Distri-
buted Computing Systems (ICDCS), July 2002; pp. 5–14.

10. Lv C, Cao P, Cohen E, Li K, Shenker S. Search and replication in
unstructured peer-to-peer networks. In Proceedings of the ACM
International Conference on Supercomputing (ICS), June 2002; pp.
84–95.

11. Chawathe Y, Ratnasamy S, Breslau L, Lanham N, Breslau L.
Making Gnutella-like P2P systems scalable. In Proceedings of
SIGCOMM, August 2003; pp. 407–418.

12. Yang B, Garcia-Molina H. Designing a super-peer network. In
Proceedings of the 19th International Conference on Data Engineer-
ing (ICDE), March 2003; p. 49.

13. Crespo A, Garcia-Molina H. Semantic overlay networks for P2P
systems. Technical Report, Computer Science Department, Stanford
University, 2003.

14. Cohen E, Kaplan H, Fiat A. Associative search in peer-to-peer net-
works: harnessing latent semantics. In Proceedings of INFOCOM,
April 2003; pp. 1261–1271.

15. Kazaa. http://www.kazaa.com.
16. iMesh. http://www.imesh.org.
17. Limewire. http://www.limewire.org.
18. Saroiu S, Gummadi KP, Gribble SD. A measurement study of peer-

to-peer file sharing systems. In Proceedings of Multimedia Comput-
ing and Networking (MMCN), January 2002; pp. 156–170.

19. Sripanidkulchai K. The popularity of Gnutella queries and its
implications on scalability (http://www.openp2p.com), February
2001.

20. Schlosser MT, Condie TE, Kamvar SD. Simulating a file–sharing
network. In Proceedings of the 1st Workshop on Semantics in
Peer-to-Peer and Grid Computing, May 2003; pp. 69–79.

21. Iamnitchi A, Ripeanu M, Foster I. Small-world file-sharing commu-
nities. In Proceedings of INFOCOM, March 2004.

22. Gummadi KP, Dunn RJ, Saroiu S, Gribble SD, Levy HM, Zahorjan J.
Measurement, modeling, and analysis of a peer-to-peer file-sharing
workload. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), October 2003; pp. 314–329.

23. Adar E, Huberman BA. Free riding on Gnutella. First Monday,
September 2000.

24. Golle P, Leyton-Brown K, Mironov I. Incentives for sharing in peer-
to-peer networks. In Proceedings of the 3rd ACM Conference on
Electronic Commerce, October 2001; pp. 264–267.

25. Pianese F, Impagliazzo V. Building semantic communities on the
Gnutella network. Technical Report, EURECOM Institute, Decem-
ber 2003.

26. Rodriguez P, Biersack EW. Dynamic parallel-access to replicated
content in the internet. IEEE/ACM Transactions on Networking,
2002; 10(4):455–465.

AUTHORS’ BIOGRAPHIES

Vicent Cholvi graduated in Physics from the University of Valencia, Spain and received his doctorate in Computer Science in 1994
from the Polytechnic University of Valencia. In 1995, he joined the Jaume I University in Castell�o, Spain where he is currently an
Associate Professor. His interests are in distributed and communication systems.

EFFICIENT SEARCH IN UNSTRUCTURED P2P NETWORKS 547

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

Pascal Felber received his M.Sc. degree and Ph.D. in Computer Science from the Swiss Federal Institute of Technology. From 1998 to
2004, he has worked at Oracle Corporation and Bell-Labs in the U.S.A., and at Institut EURECOM in France. He is now a professor of
Computer Science at the University of Neucĥatel, Switzerland. His main research interests are in the area of object-based and depend-
able distributed systems.

Ernst Biersack received his M.Sc. degree and Ph.D. in Computer Science from the Technische Universit€at M€unchen, Germany and
his habilitation from the University of Nice, France. From 1989 to 1992, he was a Member of Technical Staff with the Computer
Communications Research District of Bell Communications Research, U.S.A. Since March 1992, he has been a Professor in Tele-
communications at Institut EURECOM in Sophia Antipolis, France. His interests are in networking and communication systems.

548 V. CHOLVI, P. FELBER AND E. BIERSACK

Copyright # 2004 AEI Euro. Trans. Telecomms. 2004; 15:535–548

