842

IEEE COMMUNICATIONS LETTERS, VOL. 14, NO. 9, SEPTEMBER 2010

Bounds on Stability and Latency in Wireless Communication

Vicent Cholvi and Dariusz R. Kowalski

Abstract—In this paper, we study stability and latency of
routing in wireless networks where it is assumed that no collision
will occur. Our approach is inspired by the adversarial queuing
theory, which is amended in order to model wireless commu-
nication. More precisely, there is an adversary that specifies
transmission rates of wireless links and injects data in such a
way that an average number of data injected in a single round
and routed through a single wireless link is at most r, for a given

€ (0,1). We also assume that the additional “burst” of data
injected during any time interval and scheduled via a single link
is bounded by a given parameter b.

Under this scenario, we show that the nodes following so called
work-conserving scheduling policies, not necessarily the same, are
guaranteed stability (i.e., bounded queues) and reasonably small
data latency (i.e., bounded time on data delivery), for injection
rates < 1/d, where d is the maximum length of a routing path.
Furthermore, we also show that such a bound is asymptotically
optimal on d.

Index Terms—Network stability, latency, wireless networks,
adversarial queuing theory.

I. INTRODUCTION

N this paper, we consider a multihop wireless network

where data is transmitted from its source node to its
destination node through other intermediate nodes.

One crucial issue to characterize the performance of a net-
works is that of stability. Roughly speaking, a communication
network system is said to be stable if data waiting to be
delivered (backlog) is finitely bounded at any single time.
The importance of such an issue is obvious, since if one
cannot guarantee stability, then one cannot hope for ensuring
deterministic guarantees for most of the network performance
metrics. One such metric is latency, defined as the maximum
time for delivering data from its source to its destination, taken
over all data occurring in the routing process.

Whereas in the last few years much of the analysis of worst-
case behavior of multihop wireline networks and scheduling
policies has been performed using adversarial models, which
try to create as much trouble for the scheduling algorithm as
possible [1], [2], only a few papers have been focussed on
wireless networks. In [3], Borodin et al. considered a model
in which each node can transmit, at each time step, to all its
neighbors, and show that the Nearest-to-Go scheduling policy
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is stable. They also showed that the Longest-in-System policy
is unstable. Andrews et al. [4], in a model in which a node can
transmit to only one neighbor at a time step, provided some
fully distributed scheduling algorithms that ensure network
stability, both when the routes are specified by the adversary
and when they are chosen by the nodes.

Contrary to the previous papers, which assumed that data
doesn’t suffer collisions when several nodes transmit at the
same time, in [5] Chlebus er al. studied stability of some
distributed broadcast protocols. However, they assumed a
scenario in which the transmission range of each node reaches
all the other nodes. The maximum throughput, defined to
mean the maximum rate for which stability is achievable, was
studied by Chlebus ez al. [6]. Anantharamu et al. [7] extended
this work by studying the impact of limiting the adversary by
assigning independent rates of injecting data to each node.

In this paper, we study stability in a scenario formed
by a multihop wireless network, where each node has a,
possibly different, work-conserving scheduling policy. We say
a scheduling policy is work-conserving if it cannot be idle
as long as there is data queued to be transmitted. Many
well-known scheduling policies like FIFO (First-In-First-Out),
LIS (Longest-In-System), SIS (Shortest-In System), FTG
(Farthest-To-Go), NTS (Nearest-To-Source), etc., are work-
conserving policies, whereas other policies like Round-Robin,
GPS (Generalized Processor Sharing), WFQ (Weighted Fair
Queueing), etc., are non-work-conserving.

Our main result shows that a network with nodes following
a work-conserving scheduling policy is stable provided the
data injection rate is lower than 1/d, being d the largest num-
ber of links that data can cross in the network. Furthermore,
we also show that such a bound is asymptotically optimal on
d.

The rest of the paper is organized as follows. In Section II
we introduce our adversarial model and in Section III we
present the main results about stability and latency of wireless
communication in the specified model.

II. THE MODEL

We use a modified version of the wireless adversarial model
proposed by Andrews et al. [4]. We consider a wireless
multihop undirected network of n nodes, where each node acts
as both a transmitter and a receiver. When data is transmitted
from its source node to its destination node and they are too far
away from each other to communicate, data may go through
other nodes as intermediate hops. Each node contains a queue
for each outgoing link and uses it to store there data to be sent
along the corresponding link. We assume that data is fluid-
like (in the sense that the unit to transmit can be as small as
needed), and that several pieces of data may be transmitted
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along one link in one time step. Furthermore, we assume that
data units don’t suffer collisions.! This feature is similar to the
wireline adversarial model, that also doesn’t take into account
collisions between packets.

Time is divided into fixed slots. Each node can transmit at
different capacities in the interval [0, 1], which may or may
not vary over time as a result of changing wireless channel
conditions. We use 7;;(¢) to denote the rate at which node i can
transmit to node j at time slot ¢, also referred as transmission
rate. It is assumed that the transmission rate is defined over all
pair of nodes, since 7;;(t) can be set to zero if nodes ¢ and j
are too far away from each other to communicate directly.
Furthermore, we assume that a node can transmit to only one
neighbor at each time step.

The time evolution is seen as a game between a scheduling
queue policy which decides, at each time step, which data
must be transmitted (if any), and a bounded adversary that
governs both the data arrivals and the channel conditions,
i.e., the transmission rates.

The adversary. Regarding the data arrivals, at each time step
the adversary injects a set of data into some of the nodes in
the network. More precisely, such an injection is defined by
a pair of parameters (b,r), where b > 1 is a natural number
and r satisfies 0 < r < 1. The parameter b (usually called
burstiness) models the short bursts of data the adversary can
inject into the network. The parameter r (called the injection
rate) models the long-term rate at which data can be injected
into the network. The adversary is free to choose both the
source and the destination node for any injected data. It also
specifies the routing path from the source to the destination
that data must follow. Paths don’t include the same link more
than once, and data is absorbed after traversing its route.

The adversary also controls the quality of channels between
nodes, trying to create as much trouble for the scheduling
policy as possible, by means of specifying the transmission
rates. At each time slot and for each node i, the adversary
sets up the values of the rate vector (71 (¢),7i2(t), ..., 7in (1))
before node ¢ makes its scheduling decision. These rates are
not know to the scheduling algorithm.

In order for stability to be feasible, it is necessary to impose
some restrictions on the adversary so that it would not be
able to fully load any link a priori. More specifically, we
require that the adversary satisfies the following admissibility
condition. Let I;;(t) represent the total amount of data that
the adversary injects at time ¢ and has link 75 on its path. We
say that the adversarial injection is admissible for rate r and
burst b if there exist fractions x;;(t) € [0, 1] such that

inj(t) =1, Vi, Vt (1)
J

Z 1;j (t) <r Z Tij (t)xij (t) +b, Vij, VT, 2)
teTy teT,
where T, denotes a consecutive sequence of x time steps.
One can view x;;(t) as representing fractional decisions that

IThis can be achieved by making a specific channel assignment based on
Time/Frequency/Code division or other methods for resolving contention in
the data-link layer.

indicate the assignment of data injected by the adversary
that wishes to pass through node ¢ at each time step. The
admissibility condition of Eq. 1 (combined with Eq. 2) says
that the total size of such a data is, on average, at most r.

Stability. In order to formally define stability, we denote
by d, the number of queues that a data unit p has to cross.
Furthermore, we denote by a!’ and f? the time instants that p
respectively arrives at and departs from the ith queue on its
routing path, where 1 < ¢ < d,,. If p leaves its ith queue
in time step f7, it will arrive at its (¢ + 1)st queue at time
step af,; = f!. Finally, we denote by Q7 the time p spends
in the ith queue on its path, ie., QY = fF —al. Let Q =
max, 1<i<d, Qf-

Given an adversary A (as defined above) and a scheduling
protocol P, we say a network G is stable if Q) < oo [4].

III. STABILITY CONDITIONS AND LATENCY OF ROUTING
WITH WORK-CONSERVING SCHEDULING POLICIES

In this section, we obtain a formula for the threshold value
on data injection rate guaranteeing stability in wireless net-
works with work-conserving scheduling policies (i.e., nodes
cannot be idle as long as there data queued to be transmitted).
Furthermore, we also estimate data latency for injection rates
below this threshold value.

We remark that each node may have its own, possibly
different, scheduling policy (FIFO, LIFO, Longest-in-System,
etc.), as long as they are work-conserving. Furthermore, the
scheduling policies don’t need to know the quality of the
transmission channels (i.e., the values of the rate vectors),
since they only take care of deciding the order in which data
is transmitted.

The following theorem provides a bound on the injec-
tion rate that guarantees network stability under any work-
conserving scheduling policies.

Theorem 1: Any network in which all queues use a, possi-
bly different, work-conserving scheduling policy and data are
injected by a (b, r)-adversary, is stable for r < é, where d is
the largest number of hops that any data unit traverses in the
network. Furthermore, data latency is bounded from above by
d%, where A denotes the maximum number of neighbors
a node can have.

Proof: The proof has two parts. First, we show that if
r < % then the maximum time interval data takes to cross any
queue is bounded, which implies stability. Second, we prove
that data latency is also upper bounded by d%, provided
the first condition on stability r < % holds.

In what follows, we denote as N (i) the set of nodes that
are neighbors of node i. We also note that d = max,{d,}.

Remark 1: Note that we don’t assume, a priori, whether the
scenario formed by the network, the scheduling policy, and the
adversary, is stable or not. Thus, if it is unstable, the time p
takes to leave its ith queue could be infinite (i.e., f/ = o).

Remark 2: Note that if f = oo (for some p) then Q) = oo.
However, we base our proof of finding under which conditions,
Q < oo (which will automatically imply f” < c0).

Part (1): Let p be a data unit that attains the maximum @
(ie., Q¥ = Q) at the ith queue on its path. We will call it the
ith queue of data p.
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Let ¢ be the oldest time step such that (1) t3 < af, and (2)
in every step in (¢p,a’] the ith queue is non- empty Hence,
we have that during the interval (¢p, f7'] the ith queue is non-
empty.

Define ¢! as the set formed by all data units served by the
ith queue during the interval (¢5, f7], and let p* be the oldest
data unit in ¢¥ (i.e., Vp' € ¢¥ (a’l’/ > a’")). Hence, by the
definition of p*, all data in ¢! must have been injected during
the interval [a, 17

Based on the above mentioned scenario and on the defi-
nition of the adversarial model, QY = fP — a is bounded
by the maximum number of data units injected during the
interval [af*, /7 —1] (i.e., the worst-case scenario is: where
all data injected since the time instant af* until p is served,
cross the ith queue of p and is scheduled before p) minus the
data served by the ith queue of p during the interval [t 5, a?].
Recall that in each step in the period [t g, a?] the ith queue of
p is non-empty. We have

Jr -
7 zfip_l ag)
< Z (’I" Z Tij(t)«fij(t) + b) — Z Z Tij (t)l‘” (t)
JEN@)  ¢=a?" JEN(i) t=tp
tp—1 af
- Z ( Z rij(O)zi(t) + 7 Z rij ()i (t) +
JEN@)  ¢=a?" t=tp
fip_l af
P> e+ b= Y ()
t=al+1 t=tp

Now, taking into account that » < 1, we have

tp—1 fip_l

<> (T o)+ Y riBag(t )4—b)

JEN(@)  y=aP” t=al+1
and taking also into account that 7;;(¢t) < 1, we finally
obtain

tp—1 fP-1

Z (T Z zij(t) +r Z xij(t)+b)

JEN@E)  4=a?” t=al+1

;e <

Let k& be the hop number of p* when it arrives to the
queue where p attains the maximum (). Taking into ac-
count the first admissibility condition (Eq. (1)) we have that
2 jen() Tij(t) = 1 for all t, where z;;(t) € [0, 1]. Therefore,

17—
< r(tp—ad ) +r(ff —al — 1)+ |N@)| b

= r(tp—al +a? —a ) +r(fP —a’ —1)+|N()|-b
:r(tB—ai)—Fr(ai aﬁ')—‘—r(fip—af—l)—k
IN(@)]-b

Since af > tp, then we have

fp—ap <

P—al < or(af —al)+r(ff —al = 1)+ ING)|-b
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Since fP —a? = Q¥ = Q and ¥ —da? < (d—1)Q, and
taken into account that () is the maximum time a data unit
takes to cross a queue, and d — 1 is the maximum number
of queues a data unit crosses until reaching its last queue, we
have that

Q<rQd-1)+r(@—1)+[N@]-b
Q<rQd—r+|N(@)| b

It follows that @) < oo for r < 1/d.

Part (2): Consider a data unit p that traverses a path
with d, queues, where d, < d. This network satisfies the
property delivered in Part (1). Call ¢, the latency of p and
let A = max; [N ()\ From the above derivation we see that

bAr bA
5y < dpQ < dbA=r < g bA

Tightness of the bounds.

In [8], Charny and Le Boudec shown that, in the wireline
model (here, we refer to the “standard” adversarial queueing
model [1] for wireline networks), there exists a large enough
network which considers constant rate links and the FIFO
scheduling policy, that becomes unstable when » > 1/(d—1).
However, we can simulate the behavior of such a network in
a wireless scenario by using the same iterative steps as in [8]
(note that such simulation may not be possible in general,
since the models are different); for details see [9].

This implies that any bound for stability must be lower or
equal to 1/(d — 1). Let’s refer to this as the optimistic bound.

Now, we define a parameter €(d) measuring the difference
between such an optimistic stability bound (i.e., 1/(d—1)) and
the bound provided in Theorem 1 (i.e., 1/d) when we increase

d. We have that it behaves like €(d) ~ -1 — 2 ~ . There-

fore, we have that our bound in Theorem 1 is asymptotically
optimal within that limit.
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