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On the Feasible Scenarios at the
Output of a FIFO Server

Vicent Cholvi, Juan Echagüe, and Jean-Yves LeBoudec

Abstract— In this paper we consider the case of a FIFO
multiplexer fed by flows that are individually constrained by
piecewise linear concave arrival curves. We show that, contrary
to what happens at the input, at the output not all valid scenarios
in accordance with the worst case arrival curves can occur. This
implies that taking an iterative approach to characterize the
arrival curves at the output when flows pass throughout several
FIFO nodes is suboptimal (in the sense that, although valid, they
do not necessarily have to be the best arrival curves that can be
found).

Index Terms— FIFO, aggregate scheduling, differentiate ser-
vices, network calculus.

I. INTRODUCTION

AGGREGATE packet scheduling has attracted a lot of at-
tention in the networking community. For instance, in the

Differentiated Services framework [1]–[3], a required per–hop
behavior is provided on an aggregate basis. Additionally, front
ends to optical switches require aggregated multiplexing if
they are to be performed [4]. Thus, there is a need for a deeper
understanding of the effects caused by traffic aggregation.

Recent work [1], [5], [6] has shown that the delay bounds
with a FIFO network depend on the level of utilization and the
number of hops. Moreover, the effect of multiplexing several
flows into a FIFO scheduler has been tightly quantified and
shown to result in a increased burstiness at the output of the
FIFO server [7], [8].

In this paper, we show that, contrary to what happens at
the input, not all valid scenarios (which will be formally
defined below) can occur at the output of a FIFO server. As
a consequence of this, we demostrate that iteratively apply-
ing the ”optimal” output burstiness bounds when flows pass
through several FIFO nodes does not guarantee that the overall
burstiness bound will be tight. Such a result has some potential
applications, such as its use in the Expedited Forwarding
Service (EF) [9]. The goal of the EF (a service which has been
developed in the Differentiated Services Working Group of
IETF [10]) is to provide an aggregate of flows with some hard
delay guarantees by ensuring that, at each hop, the aggregate
requiring EF treatment receives a service rate exceeding the
total bandwidth requirements of all flows from the aggregate
at each hop.
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The rest of the paper is organized as follows. In Section II
we give our assumptions and notation. In Section III we show
the suboptimality of taking an iterative approach to charac-
terize the worst case arrival curves. Finally, in Section IV we
present our conclusions.

II. PRELIMINARIES

Integrated services in the Internet architecture: an overview
In this section we describe our model and assumption. We
take a fluid approach and consider I flows, served as one
aggregate in a constant rate server, with rate R. Aggregation
of all flows is done in a FIFO manner. Call Ai(t) the input
function, which is defined as the number of bits observed on
flow i at the input between 0 and t. Similarly, let Bi(t) be
the output function. We assume that Ai(t) is left-continuous,
which does not appear to be a loss of generality. In this
framework, the input-output characterization of our system is
as follows. Let A(t) =

∑I
i=1 Ai(t) be the aggregate input

function; the aggregate output function B(t) =
∑I

i=1 Bi(t) is
given by [11]

B(t) = inf
0≤s≤t

A(s) + R(t − s)

For any time t, define v(t) by

v(t) = sup{s such that s ≤ t and A(s) ≤ B(t)} (1)

The time v(t) is interpreted as the minimum of t and the
arrival time of the first bit leaving after t. Then the input-
output characterization for all i is:

Bi(t) = Ai(v(t)) (2)

We assume that input flow i is constrained by an arrival
curve αi; in other words [12]

for all t, s such that s ≤ t : Ai(t)−Ai(s) ≤ αi(t−s) (3)

Without loss of generality, we can focus on flow i = 1 and
consider the set of all flows j �= i as one aggregate flow. Thus,
we can limit ourselves to the case I = 2 and find an arrival
curve for the output of flow 1. In this paper, we focus on the
case where the arrival curves αi are concave piecewise linear,
which correspond to constraints imposed by the combination
of leaky buckets and are common in practice.

Given the above mentioned assumptions, the following
result appears in [8].

Theorem 2.1: Consider a FIFO system serving two flows
with the above mentioned assumptions. Define

α∗
1(x) = min{Rx,α1(x + a1(x))} for all x ≥ 0 (4)
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where a1(x) is the maximum value for a from the set of
couples (a ≥ 0, b ≥ 0) that solve (5):

α1(b + a + x) − α1(a + x) + α2(b) − R(a + b) = 0 (5)

Then, α∗
1 is the best arrival curve for the output flow B1(t)

that can be found under these assumptions.
We call scenario to any arbitrary collection of func-

tions, (Ai(t))1≤i≤I , that are wide-sense increasing and non-
negative, and that satisfy (3). For convenience, when neces-
sary, we use a super-index to identify a scenario.

Whereas all scenarios at the input of the FIFO server that
are in accordance with the arrival function given by (3) can,
by definition, occur (hereafter called feasible), it remains to be
seen whether the same happens for the scenarios at the output
of the FIFO server (i.e., if all scenarios that are in accordance
with the arrival function given by (4) are feasible). The main
contribution of this communication is the formal proof that
this is not the case.

III. FEASIBLE SCENARIOS

Before we proceed with our main result, we introduce a
preliminary lemma regarding the form of a1.

Lemma 3.1: For all x, x′ such that 0 ≤ x′ ≤ x then
a1(x) ≤ a1(x′).

Proof: Consider some arbitrary but fixed time interval
[s, t]. Given a scenario β, we use the notation sβ = vβ(s) and
denote as s′β the start of the busy period1 which last, at least,
until sβ .

Denote x = t − s and consider the following scenario β:

1) Aβ
1 (t)−Aβ

1 (sβ) = α1(t−sβ) and for any other scenario
γ such that Aγ

1(t)−Aγ
1(sγ) = α1(t−sγ) then sβ ≤ sγ .

2) Flow 1 injects bits in a greedy fashion2 in time interval
[sβ , t] and injects α1(t− s′β)− α1(t− sβ) bits in time
interval [s′β , sβ).

3) Flow 2 injects α1(sβ−s′β) bits in time interval [s′β , sβ)
and stops injecting bits after time instant sβ .

It has been also shown in [8] that a1(x) = s − sβ . Let us
now take a value of x′ = t′ − s such that 0 ≤ x′ ≤ x. Define
the scenario γ such that:

1) Flow 1 injects bits in a greedy fashion in time interval
[sβ , t′] and injects α1(t′−s′β)−α1(t′−sβ) bits in time
interval [s′β , sβ).

2) Flow 2 behaves as in scenario β.

Clearly scenario γ is a valid scenario in accordance with
the constraint curve for the arrival function.

Since α1 is concave then the number of bits injected in the
interval [s′β ,m] (for all m : s′β ≤ m ≤ t′) will be greater (or
equal) in scenario γ than in scenario β. Therefore, sγ will be
lower than (or equal to) sβ and consequently a1(x) ≤ a1(x′).

Fig. 1 provides a numerical application that shows the value
of a1(x).

1A busy period is a period where the server buffer in non–empty.
2We say than in scenario β flow 1 injects bits in a greedy fashion in time

interval [s, t] if ∀m : s ≤ m ≤ t (Aβ
1 (m) − Aβ

1 (s) = α1(m − s)) (resp.
for flow 2). We also extend this definition to the output functions.
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Fig. 1. Input flow 1 has arrival curve α1(x) = min{10x, 15 + 3x} and
input flow 2 has arrival curve α2(x) = min{8x, 10 + 3x}. The server rate
is 7. As it can be seen, the value of a1(x) never grows with x and, for
sufficiently large x, it remains constant.

The following theorem shows us that when a FIFO server is
considered, not all valid scenarios (at the output) in accordance
with the worst case arrival curve can occur (contrary to what
happens at the input).

Theorem 3.1: Consider a FIFO server serving two flows
(with the assumptions in Section II). Then, at the output, not
all valid scenarios in accordance with the worst case arrival
curve are feasible.

Proof: By counter–example. Let us focus on a system
where R = 10, α1(x) = min{4x, 11 + 3.5x} and α2(x) =
min{7x, 1 + 6x} (which corresponds to the variable bit rate
case, or T-SPEC, used by the IETF [13], [14]). Denote as
x1 the point where α1 changes the value of its linearity
(numerically, x1 = 22). This implies that the length of the
maximum time interval during which flow 1 can continuously
inject bits at the highest rate is x1.

Take a scenario, denoted β∗
1 , in which flow 1 is greedy in

time interval [s, s+x1] at the output. Clearly, by definition of
the arrival curve (see (3)), β∗

1 is a valid scenario. Assume, by
way of contradiction, that it is also feasible. Let us consider
what happens at two given time instants at the input of the
FIFO server:

• Time instant s+x1: By solving (5) we have that a1(x1) =
0.5. Therefore, Rx1 > α1(x1 + a1(x1)).
Consequently, by observing the form of α∗

1 (see (4)),
flow 1 must inject α1(x1 + a1(x1)) bits during time
interval [s − a1(x1), s + x1]. Since the length of such a
time interval is lower than x1 then, during that period
flow 1 must use all its burst. Fig. 2a illustrates this
situation.

• Time instant s + x0 with x0 = 21.091: By solving (5)
we have that a1(x0) = 0.909 (note that x0 < x1 and
a1(x1) < a1(x0), which satisfies Lemma 3.1). Therefore,
Rx0 > α1(x0 + a1(x0)).
Consequently, by observing the form of α∗

1 (see (4)),
flow 1 must inject α1(x0 + a1(x0)) bits during time
interval [s − a1(x0), s + x0]. Since the length of such a
time interval is equal to x1 (note that a1(x0)+x0 = x1)
then, during that period flow 1 must inject at its highest
rate. Fig. 2B illustrates this situation.
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Fig. 2. Example that illustrates the proof of Theorem 3.1: a) situation for
time s + x1; b) situation for time s + x0.

As a consequence of the above mentioned requirements,
flow 1 cannot use all its burst during time interval [s −
a1(x1), s+x1] and inject at its highest rate during time interval
[s − a1(x0), s + x0] at the same time.

Therefore, β∗
1 cannot be greedy during time interval [s, s+

x1], thus contradicting the hypothesis that it is feasible.

This apparent paradox can be explained if we take into ac-
count that, in order the output function to reach the maximum
value for a particular x, we must have a specific scenario at the
input. And that scenario can be incompatible with the scenario
needed to reach the maximum value for another different value
of x.

As a matter of fact, if we take into account (by Theorem 2.1)
that

sup
β,t,x

(Bβ
1 (t + x) − Bβ

1 (t)) = α∗
1(x)

Theorem 3.1 seems to suggest that the β at which the sup is
obtained depends on t and x. This conjecture is strengthened
by the fact that it is possible for a flow i to be α-smooth
(being sub–additive) with Ai(t0) = α(t0) for some time t0,
but Ai(t) < α(t) for all t < t0. For example, by time–
reversing a greedy flow (see Chapter 3 in [14]), we can obtain
an α-smooth flow which is not greedy.

On the other hand, Theorem 3.1 shows that B1 is con-
strained, not only by α1, but also by some other constraints.
Clearly, any feasible scenario will also fulfill that the require-
ments that the aggregate of the two flows at the output must be
bounded by the aggregate of the two flows at the input. One
may then ask if this new constraint is enough to characterize
the whole set of feasible scenarios. Unfortunately, as the next
Corollary shows, this is not the case.

Corollary 1: Consider a FIFO system serving two flows
(with the assumptions in Section II). Define α∗

0(x) =
min{Rx,α1(x) + α2(x)} for all x ≥ 0. Then, at the output,

not all valid scenarios in which flow 1 is in accordance with
α∗

1(x), flow 2 is in accordance with α∗
2(x) and the aggregate

of the two flows is in accordance with α∗
0(x) are necessarily

feasible.
The proof is immediate since the scenario β used in the proof
of Theorem 3.1 fulfills the above mentioned constraints and,
as has been shown, is not feasible.

IV. CONCLUSIONS

In the previous section it has been shown that the scenarios
at the output of a FIFO server are, in general, more restric-
tive that those at the input. Whereas this result may seem
straightforward (although a posteriori), we provided a formal
evidence, which explains the well-known inefficiency involved
in finding performance bounds by iteratively applying output
burstiness bounds [14], [15].
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