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Universal Stability Results for Low Rate Adversaries
in Packet Switched Networks

Juan Echagüe, Vicent Cholvi, and Antonio Fernández

Abstract—In this work, we consider a generalized version of the
adversarial model and study the universal stability (stability in any
network) of scheduling policies under low load rates. We show that
any work-conserving policy is universally stable at any load rate

(1 ), where is the largest number of links crossed by any
packet. We also show that system-wide time priority policies are
universally stable at any load rate (1 ( 1)).

Index Terms—Adversarial model, packet scheduling policies,
packet-switched networks, stability.

I. INTRODUCTION

I N THE LAST few years, much of the analysis of worst case
behavior of connectionless networks and scheduling poli-

cies has been done by using an “adversarial” approach [1]–[6].
Under this model, time is seen as discrete, and the time evolu-
tion of a packet-switching network is seen as a game between
a bounded adversary and a queue policy. At each time step
the adversary injects a set of packets in some of the nodes of
the network. The adversary is free to choose both the source
and the destination node of any injected packet. Furthermore,
it also specifies the sequence of links (the route) that each in-
dividual packet must traverse. Its only restriction (hence the
term “bounded”) is that it can not fully load any link. Packets
are transmitted between adjacent nodes so that the scheduling
policy decides at every step which packets have to cross each
link. A packet will be absorbed after traversing its route.

Under this adversarial model, one crucial issue when charac-
terizing the performance of networks and policies is that ofsta-
bility. Being consistent with the standard use of the term (see for
instance [1]–[6]), we say that a network isstableunder a given
scheduling policy if for any bounded adversary the backlog at
any node (i.e., the number of bits “in transit”) is bounded (by
a value that does not depend on the time). It is known [2] that
when no link is fully loaded, network stability (bounded back-
logs) also means deterministically bounded delays, sustainable
with finite buffers without packet loss, the main objective of de-
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terministic analysis. We also say that a scheduling policy isuni-
versally stableif all networks are stable under it.

We emphasize that this is a connectionless model; however,
all our stability results are also applicable to connection oriented
networks [2] (the converse direction does not hold). We have
extended the classical adversarial models from Borodinet al.[1]
and Andrewset al. [2] to introduce different link capacities and
packet lengths. Consequently, our model subsumes the classical
connection oriented models [7], [8].

We model our network as a set of nodes interconnected by di-
rected point-to-point links. Each node contains a server for each
outgoing link and we allow different service rates (link band-
widths). Hence will denote the service rate of server,
measured in bits per unit of time. We also associate a propaga-
tion delay to each link . Each server schedules the packets
that must cross the link using a nonpreemptive scheduling policy
(maybe different at each server). To make our results stronger,
we do not allow cut-through at the nodes, i.e., a packet must
be received completely in one node before it can be sent out
through any outgoing link of the node.

We use a generalized version of the model of adversary of An-
drewset al. [2], which is commonly used in the literature. This
adversary is defined (as theirs) by a pair of parameters ,
where is a natural number and is . In
our model we do not restrict the number of packets injected by
the adversary, but the number of bits (bits are still grouped into
packets that appear at their ingress node instantaneously). The
parameter (usually calledburstiness) models the short bursts
of bits we can inject into the network. The parameter(called
theload rate) is the sustainable proportion of the link bandwidth

at which bits that require to cross linkcan be injected, for
all . If we denote by the total number of bits that the ad-
versary injects during any time interval of lengththat traverses
the link associated with server, the adversary must satisfy that

(for all ).

A. Previous Work

The adversarial approach was initially proposed by Borodin
et al.[1]. In [2], Andrewset al.provide a list of universally stable
packet scheduling policies under a slightly more general ad-
versarial model. They showed that policies likeFarthest-to-Go
(FTG),Nearest-to-Source(NTS),Shortest-in-System(SIS) and
Longest-in-System(LIS) are universally stable. In contrast, they
showed that packet scheduling policies likeFirst-in-First-Out
(FIFO), Last-in-First-Out (LIFO), Nearest-to-Go(NTG) and
Farthest-from-Source(FFS) are not universally stable. Further-
more, LIFO, NTG and FFS can be made unstable at arbitrarily
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low load rates [1]. However, the situation has been far more
complex for FIFO. Andrewset al. [2] proved that FIFO is
unstable when the load rate is at least 0.85. This bound was
reduced to 0.8357 by Díazet al. [3], to 0.749 by Koukopoulos
et al. [4] and to 0.5 by Lokteret al. [6]. Finally, independently,
Bhattacharjee and Goel [5] and Koukopouloset al. [9] seem
to have different but similar results that show that FIFO can
be unstable at arbitrarily low constant load rates (see [9] for a
comparison of both results).

Taking a different approach, Lokteret al. [6] also proved that
anywork conserving(also known as greedy: those that always
schedule packets if there is anyone in the queue) scheduling
policy is stable if the load rate is no bigger than (where

is the largest number of links crossed by any packet). They also
reduced that bound to for time priority scheduling policies
(i.e., policies under which, a packet arriving at a buffer at time

has priority over any other packet that is injected after time).
In this work we use the termsystem-wide time priorityto denote
these policies. FIFO and LIS are examples of system-wide time
priority scheduling policies.

On the other hand and by considering session oriented net-
works (i.e., networks where all packets belong to some ses-
sion and packets from the same session follow the same route),
Charny and Le Boudec [10] proved that FIFO is stable if

. This result was also obtained by Zhang and Duan
[11] using a different proof technique. Charny and Le Boudec
also showed that any improvement of this bound (beyond the
equality case) has to consider some network parameter or the
number of sessions, since for anylarge enough, any

, and any constant they found a (large) network
and adversarial injections such that no packet crosses more than

links but the maximum delay is larger than. The stability
result in [10] was extended in [12] to (possibly non FIFO) sched-
ulers of the Guaranteed Rate type. Finally, Tassiulas and Geor-
giadis [13] have shown that an unidirectional ring is stable for

.

B. Our Results

In this paper we generalize the technique used by Zhang and
Duan [11] to apply it to both work conserving and system-wide
time priority scheduling policies. We show that work conserving
scheduling policies are stable if the load rate is lower than.
Furthermore, we also show that any system-wide time priority
scheduling policy is stable if the load rate is lower than .
Given the results of Charny and Le Boudec [10] for FIFO (which
is system-wide time priority) mentioned above, to improve this
latter bound (if possible) we need to consider some additional
parameters.

Observe that these results improve those of Lokteret al. [6]
and that they are valid in heterogeneous networks, i.e. networks
where hosts run simultaneously different scheduling policies, as
long as those scheduling policies fulfill the above mentioned re-
quirements. Note also that, whereas Lokteret al.use the adver-
sarial model of Borodinet al. [1], here we use that of Andrews
et al. [2], which, as it has been shown by Rosén [14], is a little
more general.

The rest of the letter is organized as follows. In Sections II
and III we provide, respectively, the stability conditions for
work conserving and system-wide time priority packet sched-
uling policies. The conclusions are provided in Section IV.

II. STABILITY CONDITIONS FORWORK CONSERVINGPOLICY

In this section we obtain an expression of the longest time
a packet can wait at the queue of any server (link) with any
work conserving policy. This expression is then used to derive
an upper bound on the load rateto guarantee stability.

In what follows, we denote as the number of links that a
packet has to cross, and define . We denote
and as the service rate and propagation delay, respectively,
of the th server for packet. We also denote by and the
time instants that packetarrives and departs,1 respectively, at
its th server, where . Hence, packet crosses itsth
link in time step and arrives at its st server queue at time
step . Finally, we denote by the time interval
packet takes to cross itsth link, i.e. . Let

.
Observation 1: Any packet arrives at the queue of itsth

server in at most time after being injected, i.e.
.

The next theorem provides a bound on the load rate that guar-
antees network stability under any work conserving scheduling
policy.

Theorem 2.1.:Any network in which all servers use a work
conserving packet scheduling policy and packets are injected
by a adversary is stable if . Furthermore,
the worst-case end-to-end delay is bounded above by

.
Proof: The proof has two parts. First, we prove that if
then (which implies stability). Second, we prove

that, if the first part is true, then is also bounded above by
.

Part (1): We base our proof in finding the conditions that
make . Let be a packet that attains at itsth server the
maximum . Let be the last time no later than that no
packet was scheduled by the server. (That happened because
the queue was empty, since the policy is work conserving.)
Hence, we have that the interval is a busy period for
the th server (i.e., during that interval theth server buffer is
nonempty).

Define as the set formed by all packets served by theth
server during the interval and let be the oldest packet
in (i.e., ). Hence, by definition of ,
all packets in must have been injected during the interval
[ , ]. (Remember that packets are injected instantaneously
at their ingress nodes.)

Based on the above mentioned scenario and on the defini-
tion of the adversarial model, will be bounded by the
maximum number of bits injected during the interval [, ]
minus the bits served (by theth server) during the interval
( , ).

1A packet is considered to have arrived at a scheduler only when its last bit
has been received, and it to have departed when its last bit has been serviced.
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Let us assume that theth link for is the th link for . Then

The fifth step follows from the fact that , the
sixth step follows from Observation 1 and the fact that ,
and the seventh step follows since .

Then, if we obtain that ,
with . This implies that .

Part (2): The proof is very similar to that in Theorem 1 in
[10] and uses the time-stopping method. Consider a packet
that traverses a path with hops, where . For any time

, consider the virtual system made of the original network,
where all sources are stopped at time. This network satisfies
the assumption of Part (1), since there is only a finite number of
bits at the input. Call the worst case end-to-end delay of
packet for the virtual network indexed by. From the above
derivation we see that for all .
Letting tend to shows that the worst case delay remains
bounded above by .

III. STABILITY CONDITIONS FORSYSTEM-WIDE TIME

PRIORITY PACKET SCHEDULERS

The next theorem provides a bound on the load rate that guar-
antees network stability under any system-wide time priority
scheduling policy.

Theorem 3.1.:Any network in which all servers use a
system-wide time priority packet scheduling policy and packets
are injected by a adversary is stable if .
Furthermore, the worst-case end-to-end delayis bounded
above by .

Proof: The proof here is similar to the proof of Theorem
2.1.

Part (1): The main difference is that now, will be
bounded by the maximum number of packets injected during
[ , ] (instead of [ , ], since the policy is system-wide
time priority) minus the packets served during the busy period
interval ( , ).

Making some algebra we found that if we
obtain that , with
. This implies that .

Part (2): By using the same reasoning as in Part (2) in The-
orem Theorem 2.1.

IV. CONCLUSIONS

In this work, we have given a bound of on the
load rate below which all work-conserving scheduling policies
are stable in any network. We obtain a slightly better bound of

for system-wide time priority policies. Both
bounds depend on the length of the longest packet route. Two
main questions remain open. The first one is whether our bound
in the case of work conserving policies is tight (note that, by
result of Charny and Le Boudec in [10], it seems clear that our
bound is tight in the case of system-wide time priority policies).
The second one is to improve our bounds by considering some
network parameters other than.
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