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Random walks have been proven useful in several appli-
cations in networks. Some variants of the basic random
walk have been devised pursuing a suitable trade-off
between better performance and limited cost. A self-
avoiding random walk (SAW) is one that tries not to revisit
nodes, therefore covering the network faster than a ran-
dom walk. Suggested as a network search mechanism,
the performance of the SAW has been analyzed using
essentially empirical studies. A strict analytical approach
is hard since, unlike the random walk, the SAW is not a
Markovian stochastic process. We propose an analytical
model to estimate the average search length of a SAW
when used to locate a resource in a network. The model
considers single or multiple instances of the resource
sought and the possible availability of one-hop replica-
tion in the network (nodes know about resources held
by their neighbors). The model characterizes networks
by their size and degree distribution, without assum-
ing a particular topology. It is, therefore, a mean-field
model, whose applicability to real networks is validated
by simulation. Experiments with sets of randomly built
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regular networks, Erdős–Rényi networks, and scale-free
networks of several sizes and degree averages, with and
without one-hop replication, show that model predictions
are very close to simulation results, and allow us to draw
conclusions about the applicability of SAWs to network
search. © 2011 Wiley Periodicals, Inc. NETWORKS, Vol. 000(00),
000–000 2011
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1. INTRODUCTION

A random walk in a network is a simple routing mech-
anism that chooses the next node in the route uniformly at
random among the neighbors of the current node. Although
naive, this mechanism proves useful especially in situa-
tions where there is no complete knowledge about the
network or where the network changes frequently, like the
Internet, the WWW, peer-to-peer (P2P) networks and wire-
less ad hoc networks. Some of the advantages derived
from its simplicity are that it needs little processing power
in the nodes and that it requires only local informa-
tion, avoiding the bandwidth overhead produced by the
exchange of routing information among nodes. Applica-
tions of random walks include routing, searching, network
sampling, network construction and network characteriza-
tion [2, 3, 8, 11, 14, 16, 17, 22, 23, 25–27, 35, 36, 40].

Random walks on graphs have been extensively analyzed
in Mathematics [19, 24, 31], where they are typically mod-
elled as Markov chains, leading to many interesting results
that include bounds on the cover time [4,7,15,20,30,42] (i.e.,
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the number of steps to visit all, or a fraction of, the nodes in the
graph), and bounds on the access time [9, 33] (the expected
number of steps to reach node j starting from node i). These
results are frequently based on the spectral properties of the
adjacency matrix of the graph and of the transition matrix of
the random walk. Random walks have also received much
attention from the Physics community, since they reflect the
dynamics of many natural systems including protein interac-
tions, polymer chains, communication networks, and social
networks.

The basic behavior of a random walk can be modified in
a number of ways to optimize its performance metrics on
networks. Costa and Travieso [13] study the network cover-
age of three types of random walks: traditional, preferential
to untracked links, and preferential to unvisited nodes. They
find that the latter is the best strategy in covering the network
nodes, in both random (Erdős–Rényi) networks and scale-
free networks. Yang [41] studies the search performance of
five random walk variations: no-back (NB), no-triangle-loop
(NTL), no-quadrangle-loop (NQL), self-avoiding (SA), and
high-degree-preferential self-avoiding (PSA). He finds that
all algorithms achieve similar performance in random net-
works, while the self-avoiding walk outperforms the others in
scale-free networks and small-world networks. Both results
suggest that a random walk that tries to not revisit nodes
is an interesting alternative to pure random walks for net-
work search. Our work focuses on using this type of walk
for searching for resources in a network. More concretely,
we define a walk that chooses the next node to be visited
uniformly at random among the unvisited neighbors of the
current node. If no unvisited neighbor exists, the next node is
chosen uniformly at random among all the neighbors of the
current node. The walk proceeds until it finds the resource
searched for. We will refer to such a walk as a self-avoiding
walk (SAW) in this article.

Our model of SAW is in fact akin to the true SAW defined
in [5] at short times, becoming a simple random walk at long
times. The true (or myopic) SAW is defined as the stochastic
process which chooses the next node to be visited among the
neighbors of the current node with probability proportional
to a negative exponential of the number of times visited. Our
definition of SAW differs from this one in that the next node is
chosen uniformly at random among the unvisited neighbors
or, if none, among all neighbors, regardless of how often they
have been visited in the past. This means that our SAW model
loses its self-avoiding properties at long times, while the true
SAW keeps them at all times.

The analysis of the self-avoiding walk with analytical tools
is hard since, unlike the pure random walk, it cannot be mod-
elled as a Markovian stochastic process. Therefore, many
questions on SAWs have not yet been answered in an ana-
lytical manner. In addition, using analytical results in some
real scenarios is impractical when the adjacency matrix of
the network is too large or simply unknown. In Mathematics,
a SAW is defined as a random walk restricted not to intersect
with itself. Note that this definition is more restrictive than
the one established above in networks, since such a walk

never revisits a node, having therefore finite length always.
We will refer to this type of walk as strict SAW, to avoid
confusion with the SAW we are interested in to search com-
plex networks. Available results on strict SAWs are compiled
in [39]. This work also includes results on a less restrictive
version called the weakly self-avoiding walk, in which inter-
sections are not disallowed but discouraged. In this type of
SAWs, the more intersections in a walk, the less probable it
is to occur. Our definition of SAW differs from the weakly
SAW in that it always tries to avoid already visited nodes.

Works from the mathematical point of view like the ones
referenced and others [21, 28, 38, 39], study SAWs in d-
dimensional lattices (Zd). Results include the behavior of the
number of SAWs with n-steps in the lattice and of the mean-
square displacement (the average distance between the end
and the origin of a walk). In complex networks, questions
have been addressed mostly through empirical approaches.
The previously cited works by Costa and Travieso [13], and
Yang [41] use numerical simulations. Mean access times
in lattices with embedded scale-free networks providing
long-range shortcuts have been obtained in [10]. In [18],
strict SAWs are studied in scale-free networks, obtaining
approximate analytical expressions for the mean number of
SAWs starting from a generic node, and for the average
maximum length of such walks over statistically indepen-
dent networks. Simulation results support their approximate
analytical calculations.

1.1. Contributions

This article studies SAW as a search mechanism in com-
munication networks. Our main contribution is an analytical
model that estimates the average search performance of
SAWs in complex networks with or without one-hop replica-
tion, and where a number of instances of the resource sought
are present. In a one-hop replication network, a node knows
about the resources held by its neighbors. Therefore, to find
a resource in such a network it suffices to visit a node that
holds it or any of its neighbors, whereas the walk must visit
a node that holds the resource if one-hop replication is not
available. One-hop replication is an interesting feature in
a communication network, since it contributes to reducing
search lengths at limited cost. It has been included as part of
search mechanisms in P2P networks [11, 12, 29, 35].

In particular, our model estimates the network coverage
attained at each hop of the walk and uses this to estimate
the average search length. Although our definition of a SAW
coincides with those of a walk preferential to unvisited nodes
in [13] and of a self-avoiding (SA) walk in [41], our work
differs from them in that we propose an analytical model to
predict network coverage and search performance, whereas
their evaluations are only based on simulation results. In
addition, [13] evaluates network coverage (not network
search).

We follow the approach that Rodero-Merino et al. [35]
apply to “pure” random walks in one-hop replication net-
works, i.e., we derive recurrence formulas that estimate
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model magnitudes as functions of their values at the pre-
vious hop. The model is based on networks determined only
by their size and degree distribution, with no particular topol-
ogy assumed. Therefore, it is, as the one in [35], a mean-field
model.

The accuracy of the model predictions has been assessed
using simulations. Three types of random networks have
been considered for our experiments: (1) regular networks,
where the degree is constant for all nodes, (2) Erdős-Rényi
(ER) networks, also called “random networks,” where there
is a fixed probability that a node is linked to any other
node in the network, and (3) scale-free networks, where
the degree distribution obeys a power-law behavior in the
node degree. Scale-free networks are of special interest
since many real communication networks exhibit power-law
degree distributions, including the Internet, the WWW, and
P2P networks [1, 6, 34, 37].

The networks in the experiments are built using the
random mechanism proposed by Newman et al. [32] for net-
works with arbitrary degree distributions. For each network
type, results are averaged over all searches performed in a net-
work, and then over all the networks built. We have found that
the model predictions are good approximations of the values
obtained this way. Therefore, the model proposed is useful to
predict average SAW search performance in large networks
built randomly, as is the case, for example, of unstructured
P2P resource-sharing systems.

Finally, we contribute some useful conclusions from the
comparison of the performance of a SAW and a pure ran-
dom walk for searching networks. As an example, it has
been found, in accordance with [13, 41], that the SAW out-
performs the pure random walk by obtaining shorter searches
on the average, especially in scale-free networks. However,
we have noticed that the performance gain is large in net-
works without one-hop replication, but it is sensibly smaller
for networks with one-hop replication. This is a consequence
of the observed fact that, in one-hop replication networks, an
average random walk covers nodes (i.e., visited nodes and
neighbors of them) almost as fast as an average SAW. This
means that the effect on average search length of one-hop
replication is nearly equivalent to that of trying not to revisit
nodes. This observation suggests that SAWs are an interest-
ing alternative to pure random walks for searching networks
without one-hop replication, which avoids the overhead of
updating information about the neighbors’ resources.

Summarizing, our work provides the following contribu-
tions:

• A mean-field model for predicting average network cover-
age and search lengths achieved by SAW in randomly built
networks characterized by their size and degree distribu-
tion. The model takes into account the existence of one-hop
replication and the multiplicity of instances of the resource
searched for.

• An extension of the previous RW model proposed in [35]
to support networks without one-hop replication and with
more than one instance of the resource searched for.

• A study of the search performance of SAW in networks
with one-hop replication. Simulations are used to validate
the model predictions. Results have been compared with
those of random walks in the same type of network and
with search performance of RW and SAW in networks
without one-hop replication.

• The observation that SAW achieves large reductions in
the average search length with respect to RW in net-
works without one-hop replication, while reductions are
moderate in networks with one-hop replication. These
reductions decrease as the average degree of the network
grows, except for scale-free networks without one-hop
replication, where the reductions increase with the average
degree.

The rest of the article is organized as follows: Section 2
presents our analytical model for the estimation of network
coverage and search lengths of self-avoiding walks. Section 3
analyzes the performance of the SAW in comparison with that
of a pure random walk in networks with and without one-
hop replication. Simulation results are provided to validate
the model derived in the previous section. Finally, Section 4
states our conclusions and outlines some future work lines.

2. THE ANALYTICAL MODEL

2.1. Definitions and Assumptions

Let G(V , E) be an undirected graph representing a com-
munication network where V is the set of its nodes and E is
the set of its links. The network is assumed to be connected
(i.e., there is some path connecting every pair of different
nodes in the network). The network is characterized solely
by the number of nodes (N) and by its degree distribution pk ,
where pk is the probability that a node chosen uniformly at
random has degree k. If nk denotes the number of k-degree
nodes in the network (i.e.,

∑
k nk = N), then pk = nk/N . An

attachment point is a point in a node where one of the two
ends of a link is attached. Therefore, each node has a number
of attachment points equal to its degree, and the total number
of attachment points in the network is S = ∑

k knk , which
is also twice the total number of links in the network. Auto-
links (links connecting a node to itself) and multilinks (more
than one link between two nodes) are disallowed [18, 35].

The proposed model does not take into account the topol-
ogy of G to characterize networks. This means that it is in fact
a mean-field model, whose accuracy is checked using simula-
tion experiments. Empirical results for sets of regular, ER and
scale-free networks built randomly show that model predic-
tions are good approximations for those classes of networks.
However, we believe it is possible to find classes of networks
for which the structure is more important than the degree dis-
tribution, and for which the mean-field model predictions are
not good approximations of real values.

The fact that the model does not consider network topol-
ogy is reflected in the formalism in that it is assumed that
given any attachment point of an arbitrary node i, the link
departing from it can take us to any other attachment point
(of a node j �= i) in the network with equal probability. This
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TABLE 1. Definitions of the auxiliary magnitudes of the model.

Magnitude Definition

Pk
w(h) Probability of the walk arriving at any node of degree k at hop h, with Pk

w(0) = pk .
Pk

w,anv Probability of the walk arriving at any node of degree k at any hop, conditioned on that all the neighbors of the previous node have
already been visited (“anv” = all neighbors visited).

Pk
w,nanv(h) Probability of the walk arriving at any node of degree k at hop h, conditioned on that at least one neighbor of the previous node has

not been visited yet (“nanv” = not all neighbors visited).
Pk

anv(h) Probability that all the neighbors of the node reached at hop h have already been visited by the walk (“anv” = all neighbors
visited), conditioned on that the degree of that node is k.

Panv(h) Probability that all the neighbors of the node (of any degree) reached at hop h have already been visited by the walk (“anv” = all
neighbors visited).

Pnv(h) Probability that a neighbor (any) of the node reached at hop h (excluding the previous node) has already been visited by the walk
(“nv” = neighbor visited).

condition, used also in the mean-field study in [35], is true
for networks built with the random mechanism proposed by
Newman [32].

We define a self-avoiding walk (SAW) as a random walk
governed by the rules: (R1) if all neighbors of the current node
have been already visited, choose the next node uniformly
at random among all neighbors (including the one the walk
came from), and (R2) if there is at least one unvisited neighbor
of the current node, choose the next node uniformly at random
among the unvisited neighbors.

We assume that the walk will search the network for a
particular resource, starting at a node chosen uniformly at
random from all network nodes (at hop h = 0). There are
R > 0 instances of the resource sought. This allows us to
model scenarios with multiplicity of resource instances such
as peer-to-peer (P2P) networks, where several peers contain
the same file [17]. We assume that these instances are held by
(different) nodes chosen uniformly at random. In networks
without one-hop replication, the search will finish when the
walk visits any node holding an instance of the resource. In
networks with one-hop replication, visiting a neighbor of any
node holding the resource will finish the search.

Our ultimate goal is to obtain an expression for the average
search length (denoted h), defined as the average number of
hops it takes to find an instance of the resource sought. This
magnitude depends on the number of different nodes that the
walk has visited (denoted V(h)) or covered (denoted C(h))
up to and including hop h. In turn, V(h) and C(h) depend on a
number of auxiliary magnitudes that capture the behavior of
the SAW. These magnitudes are defined in Table 1 and their
expressions are derived in the next paragraphs.

2.2. Visited Nodes

We start by estimating Pk
w(h), the probability of visiting

any node j of degree k at hop h, given that the walk is currently
at some node i. Two different cases need to be considered: (1)
all neighbors of i have already been visited, and (2) at least
one neighbor of i has not been visited yet, corresponding to
rules R1 and R2 of the SAW, respectively.

• Case 1: This probability is the ratio of “positive” attach-
ment points and possible attachment points. We consider

attachment points belonging to nodes of degree k to be
positive and all attachment points in the network to be
possible.1 The probability of visiting any node j of degree
k at hop h, conditioned on the fact that all neighbors of i
have already been visited is then:

Pk
w,anv = knk

S
= knk∑

j jnj
= kpk∑

j jpj
= kpk

k
, for h > 0,

Pk
w,anv(0) = pk . (1)

Here, we are using our assumption that a given attachment
point of i can take us to any attachment point in the network
with equal probability. We are also taking into account the
fact that the attachment point of i will be chosen uniformly
at random for hop h, as R1 states. Note that this probability
is not a function of the hop h (except for h = 0), since the
behavior is that of a random walk, whose next state depends
only on the current state and not on the past history of the
walk. For h = 0, the node is chosen uniformly at random
among all the nodes in the network, so the probability of
reaching a node of degree k is pk .

• Case 2: Positive cases are now only those attachment points
belonging to nonvisited nodes of degree k. Similarly, pos-
sible attachment points are now only those belonging to
all nonvisited nodes. Let us denote by Vk(h) the average
number of different nodes of each degree k visited by the
walk up to and including hop h. We obtain the number of
nonvisited nodes from the number of visited nodes at the
previous hop (Vk(h − 1)). Thus, the probability of visiting
any node j of degree k at hop h, conditioned on the fact
that not all neighbors of i have already been visited is:

Pk
w,nanv(h) = k(nk − Vk(h − 1))

S − ∑
j jV j(h − 1)

= k(pk − Vk (h−1)
N )

k − ∑
j j V j(h−1)

N

, for h > 0,

Pk
w,nanv(0) = pk . (2)

1To be fully precise, the attachment points of i should not be considered
either as possible or positive (in case the degree of i is k), since auto-links
are not allowed. However, that would introduce dependency on the degree
of i, cluttering the analysis. Results for large randomly generated regular,
ER and scale-free networks show that no significant error is introduced by
this simplification.
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This probability does depend on the hop h since the number
of visited nodes increases as the walk proceeds through the
network.

Using Equations (1) and (2), and taking into account that
Panv(h − 1) and (1 − Panv(h − 1)) are the probabilities that
the SAW follows R1 and R2 at hop h, respectively, we have
that Pk

w(h) can now be obtained as:

Pk
w(h) = Pk

w,anv · Panv(h − 1)

+ Pk
w,nanv(h) · (1 − Panv(h − 1)), for h > 0,

Pk
w(0) = pk . (3)

On the other hand, Panv(h) depends on the number of
neighbors of the node reached at hop h (i.e., its degree), and
can be obtained from the probabilities that all neighbors of
the node have already been visited conditioned on the fact
that the degree of that node is k:

Panv(h) =
∑

k

Pk
anv(h) · Pk

w(h). (4)

At this point, we note that:

Pk
anv(h) = (Pnv(h))k−1. (5)

The node from which the walk came from is excluded from
the calculation (thus the exponent k−1), since it is certain that
this node has already been visited. We are implicitly assuming
here that each of the neighbors of the node are visited or not
independently from the others. This approximation has been
shown to be accurate in the types of network we consider [35].

The probability of a neighbor having been visited depends
in turn on the degree of that neighbor, since nodes with higher
degree have higher chance of being visited. This probability
is thus calculated as:

Pnv(h) =
∑

k

Pk
w,anv

Vk(h − 2)

nk
, for h > 1,

Pnv(0) = 0, (6)

Pnv(1) = 0.

Pk
w,anv plays here the role of the probability that the neigh-

bor is of degree k (the probability of visiting a node of degree k
from the current node when it is chosen uniformly at random),
while the fraction within the summation gives the probability
of a neighbor of degree k being already visited as the ratio of
positive nodes and possible nodes. Here, Vk(h − 2) is used
instead of Vk(h) to exclude the node reached at hop h (in
case its degree is k) and the node the walk came from (in
case its degree is k). The latter is certain to have been visited
already as stated earlier, and thus does not participate in the
calculation of Pk

anv(h).

Vk(h) can now be estimated using the following recursive
expression:

Vk(h) = Vk(h − 1)

+ Pk
w,nanv(h) · (1 − Panv(h − 1)), for h > 0,

Vk(0) = pk , (7)

since a new node of degree k is visited at hop h with proba-
bility Pk

w,nanv(h) given that the routing algorithm follows R2,
which in turn happens with probability (1−Panv(h−1)). The
average total number of different nodes visited by the walk
up to and including hop h is then:

V(h) =
∑

k

Vk(h). (8)

2.3. Covered Nodes

This magnitude estimates the average number of nodes
covered by the walk up to and including hop h, denoted by
C(h). A node is covered by the SAW when the walk visits
that node or any one of its neighbors. The number of nodes
covered by the walk allows the estimation of average search
length in one-hop replication networks in the last step of our
analysis, since to find a resource in such a network it suffices
to cover (not to visit) the node that holds it.

We first estimate Ck(h), the average number of different
nodes of degree k covered by the walk up to and including
hop h, to obtain C(h).

For networks with a given degree distribution, the average
number of nodes of degree k that a walk covers at each hop
clearly depends on the routing algorithm used. An expression
for C(h) was obtained in [35] for a pure random walk in the
same types of network as those considered in our work. It is
expressed in terms of the average number of visited nodes
of each degree (Vk(h)) and the degree distribution of the
network, where Vk(h) contains the effect of the routing algo-
rithm. Therefore, that expression is still valid if we change
the random walk into a SAW provided that we use the expres-
sions for Vk(h) derived above for the SAW. Thus, the average
number of covered nodes of degree k can be written as:

Ck(h) = Ck(h − 1) +
(

k
(
nk − Ck(h − 1)

)
S − ∑

j j · Vj(h − 1)

)

×
∑

j

(Vj(h) − Vj(h − 1))(j − 1), for h > 0,

Ck(0) = Vk(0) + kPk
w,anv. (9)

Finally, the average number of covered nodes is obtained
as:

C(h) =
∑

k

Ck(h). (10)
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2.4. Search Length

The average search length is obtained from the probabil-
ity of finishing the search at hop h (Pfin(h)), that is in turn
obtained from the probability of being successful in finding
the resource at hop h (Psuc(h)):

h =
∞∑

h=0

h · Pfin(h), (11)

where

Pfin(h) = Psuc(h)

h−1∏
i=0

(1 − Psuc(i)), for h > 0,

Pfin(0) = R

N
. (12)

Recall that there are R instances of the resource, placed in
different nodes. Now, Psuc(h) depends on whether or not the
networks considered are one-hop replication networks. For
networks without replication, Psuc(h) can be estimated as the
relation between the number of new nodes visited at hop h
and the number of nodes that are still unvisited at that hop,
taking into account the number of resource instances:

Psuc(h) = R
V(h) − V(h − 1)

N − V(h − 1)
, for h > 0,

Psuc(0) = R

N
. (13)

For one-hop replication networks, Psuc(h) can be similarly
estimated as the relation between the number of new nodes
covered at hop h and the number of nodes that are still
uncovered at that hop:

Psuc(h) = R
C(h) − C(h − 1)

N − C(h − 1)
, for h > 0,

Psuc(0) = R

N
. (14)

From Equations (11), (13), and (14) we can finally write
the average search length in networks with no replication
(hnr) and in one-hop replication networks (h1hr), respectively,
as:

hnr =
∞∑

h=1

h

[
R

V(h) − V(h − 1)

N − V(h − 1)
·
(

1 − R
V(0)

N

)

·
h−1∏
i=1

(
1 − R

V(i) − V(i − 1)

N − V(i − 1)

)]
, (15)

and

h1hr =
∞∑

h=1

h

[
R

C(h) − C(h − 1)

N − C(h − 1)
·
(

1 − R
C(0)

N

)

·
h−1∏
i=1

(
1 − R

C(i) − C(i − 1)

N − C(i − 1)

)]
. (16)

Note that both hnr and h1hr depend only on the network
parameters, namely N , pk , and R.

3. PERFORMANCE EVALUATION

In this section, we assess the accuracy of the SAW model
comparing its predictions against simulation results. At the
same time, we compare the performance of SAWs and pure
random walks (RW) for searching complex networks. Exper-
iments have been performed for three types of randomly built
networks: regular networks, Erdős-Rényi networks (referred
to as ER random networks or just random networks) and
scale-free (power-law) networks. Network size has been set
to N = 104 nodes in the base experiment, and three average
degrees have been used (k = 10, 20, 30) to observe the effect
of network connectivity.

ER random networks with degree averages k = 10, 20, 30
have been obtained with link probabilities p = 0.001, 0.002,
and 0.003, respectively. Scale-free networks follow a power-
law degree distribution (p(k) ∝ k−γ ) with γ values of
2.7030, 1.9958, and 1.781, adjusted to obtain feasible net-
works with average degrees k = 10, 20, 30, respectively. For
this type of network, a minimum degree of 5 has been set
to avoid disconnected networks due to the high numbers of
low degree nodes. The degree distributions thus obtained are
then used to feed the SAW and random walk models,2 and
to construct the networks for simulations using Newman’s
method. This method guarantees that each attachment point
is linked to any other attachment point in the network with
equal probability, which is an assumption of the model as
stated in Section 2.1.

To be able to fairly compare the predictions of the mean-
field models with the experimental results, simulations have
been run for a representative number of different networks
(102) with that degree distribution, and for a representative
number of walks (103) for each of those networks, resulting
in a total of 105 simulation runs for each experiment. Magni-
tudes are measured for each walk and values averaged over
all walks in that network to obtain the network average. Net-
work averages are in turn averaged over all networks to obtain
the final average values to be compared with those estimated
by the models. Variations of network averages compared to
final average values have also been studied, finding that aver-
age values for individual networks are close to final network
average values. Results for minimum, average, and maximum
values, along with the standard deviation, are shown for the
average search length later in this section.

We begin by showing results for two auxiliary magnitudes:
the probability that all neighbors of a node have already been
visited and the probability of visiting a node of degree k.
These results will be shown for ER random networks only,
as an illustration of the behavior of the SAW. Next, we show
results for the average number of nodes visited (V(h)) and

2For the pure random walk, we have used the analytical model in one-
hop replication networks proposed in [35], with modifications to include
networks without one-hop replication and several instances of resources.
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FIG. 1. Auxiliary magnitudes of the SAW model in ER random networks with k = 10.

covered (C(h)) by the walks, which are determined by the pre-
vious probabilities. Finally, results for average search lengths
(h) are shown.

3.1. Auxiliary Magnitudes

Figure 1a shows Panv(h), the probability that all the neigh-
bors of a node (of any degree) reached at hop h have already
been visited, in ER random networks with k = 10. It is an
interesting starting point, since this probability can also be
interpreted as the probability that the SAW actually succeeds
in avoiding already visited nodes, or else it falls back to the
RW behavior.

This figure clearly shows three different regions or phases,
which correspond to different behaviors of the SAW. The
probability that all neighbors of the node have already been
visited is very low up to around 7,500 hops, which is 75% the
size of the network. Therefore, the SAW will visit a new node
in every hop with high probability in this region. Then, the
probability that all neighbors have already been visited grows
rapidly in the central region of the graph (roughly between
7,500 and 12,500 hops). This is a phase of transition between
the SAW behavior and the RW behavior. For numbers of hops
greater than 12,500, the probability grows asymptotically to
1. In this region the SAW behaves very much like a RW, since
it is almost certain that all neighbors of the nodes reached have
already been visited.

This figure also shows that the model predicts results
with a reasonable accuracy. The more significant deviations
between model and simulation results occur in the central
region of the graph (transition phase). For smaller number
of hops, the model is pessimistic, that is, it predicts higher
probabilities that all neighbors are visited than the simulation
does. This is inverted for greater number of hops. This will
yield pessimistic estimations of the average number of vis-
ited and covered nodes, as will be shown in later subsections.
Therefore, the model presented in Section 2 is a conservative
model of the real SAW behavior.

Figure 1b shows Pk
w(h), the probability of visiting a node

of degree k at hop h. This magnitude is interesting because

it shows, like the previous one, the different phases of the
algorithm. In addition, Pk

w(h) is the base to estimate the aver-
age number of visited and covered nodes, which in turn are
used to estimate the average search length. Curves are pre-
sented for three representative degrees: the average degree
(k = k = 10), a degree above the average (k = 15), and
a degree below the average (k = 5). The first thing to note
about this graph is that the probabilities for each degree start
(low h) and finish (high h) at the same values. Indeed, when
very few nodes are visited, the probability of reaching a node
of a given degree is very similar to that probability of the
RW model, since the next hop is chosen uniformly at ran-
dom among the (nonvisited) neighbors of the node. Likewise,
when almost all nodes have been visited, the probability of
visiting a node of some degree is very similar to that of the
RW, since the next hop is chosen uniformly at random among
the (already visited) neighbors of the node. The probability
of arriving at a node of degree k at any hop (Pk

A) in the RW
model [35] is the same as the probability of visiting a node
of degree k at any hop if all the neighbors of the current node
have already been visited (Pk

w,anv) in the SAW model. Recall
from Subsection 2.2 that this probability is not a function of
h, since RW is a memory-less algorithm. Therefore, in the
SAW model Pk

w(h) starts at Pk
w,anv = kpk

k
for low h and tends

to the same value for high h.
In the first section of the graph (up to about 7,500 hops),

the SAW visits a new node at each hop with high probability.
Since nodes with higher degrees are visited faster, the prob-
ability of visiting more new nodes of those degrees decrease
as h increases. This effect can be seen in Figure 1b in the
curve for k = 15. Nodes with lower degrees are visited more
slowly, so the probability of visiting more new nodes of those
degrees increases with h. This effect can also be seen in curves
for k = 5 and k = 10.

In the second region of the graph (between 7,500 and
12,500 hops), the transition phase in Figure 1a, the probabil-
ity that all neighbors have been already visited grows rapidly.
This will make the probability of reaching nodes of higher
degrees grow to recover the level of Pk

w,anv in the third region
of the graph (h > 12, 500). On the other hand, the probability
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FIG. 2. Average number of visited nodes of all degrees (V(h)).

of reaching nodes of lower degrees falls again to the level
of Pk

w,anv.

3.2. Visited Nodes

Figure 2a shows the average number of visited nodes as
a function of the number of hops taken by the walk (V(h))
for the three types of networks with k = 10. As expected,
curves for RW grow more slowly than curves for SAW, since
the latter ones try to avoid revisiting nodes thus visiting new
nodes faster than the former ones. In fact, we notice that SAW
achieves a straight line with slope 1 in the first phase of the
algorithm, that is, it visits a new node at each hop with a high
probability up to a number of hops about 75% of the network
size. From then on, new nodes are visited more slowly in the
second phase until the whole network is covered in the third
phase. The graph also shows that at least 99% of the network
has been visited by the SAW when only (approximately) 75%
has been visited by the RW.

Both SAW and RW curves are higher for regular networks.
Curves for ER random networks are slightly lower and curves
for scale-free networks are still farther down. This is an effect
of the different degree distributions of the three types of net-
works. In regular networks, all nodes are visited with the same

probability, since all of them have the same degree. In random
and scale-free networks a number of different degrees are
present in the network. Nodes with smaller degrees are vis-
ited with smaller probability than nodes with larger degrees.
It is harder for both SAW and RW to visit nodes with small
degrees, resulting in a higher number of revisited nodes and
thus in a slower rate of visiting new nodes. This effect is
greater in scale-free networks due to the shape of power-
law distributions: a large number of small degree nodes and
a few nodes with a very high degree (the long tail of the
distribution).

Now, we compare the average number of visited nodes
in networks with average degrees k = 10 and k = 20 in
Figure 2b–d. For regular and ER random networks, curves
for k = 20 are always higher than those for k = 10 for both
SAW and RW. Since nodes in higher average degree networks
tend to have higher degrees, it is easier to visit new nodes
either randomly (RW) or trying to avoid already visited nodes
(SAW), and thus the faster rate of visiting new nodes. How-
ever, the effect is reversed for scale-free networks: curves for
k = 20 are lower than those for k = 10. This can be explained
again by the shape of the power-law degree distribution. A
higher average degree network has more very high degree
nodes than a lower average degree network. Therefore, walks
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FIG. 3. Average number of covered nodes of all degrees (C(h)).

keep visiting these nodes with higher probability, making it
more difficult to visit low degree nodes. It can also be seen
that the difference is larger for RW than for SAW, since the
latter tries to avoid high degree nodes once they have been
visited for the first time, increasing the probability of visiting
new nodes.

To further investigate this behavior in the case of SAW,
we have checked the probability that all neighbors of a node
have been already visited, since this is also the probability
that the next node will not be a new one. In networks with
higher average degree, this probability is indeed higher up to
a number of hops close to the network size. This accounts
for the growing divergence between curves for k = 10 and
k = 20 in Figure 2d. For subsequent hops, the probability of
all neighbors being visited is higher in networks with lower
average degree, explaining the convergence of the curves as
they grow towards a number of visited nodes equal to the
network size. The behavior of the probability of all neighbors
being visited for SAW in regular and ER random networks
has been checked to be opposite to that of scale-free networks,
consistent with the observed opposite behavior of the number
of visited nodes.

3.3. Covered Nodes

Figure 3a shows the average number of covered nodes as
a function of the number of hops taken by the walk (C(h))
for networks of the three types with k = 10. Although SAW
always achieves better rates than RW as expected, the dif-
ference here is much smaller than for the average number of
visited nodes (Fig. 2a). Although RW visits fewer new nodes
than SAW, it covers almost the same number of nodes; more
work needs to be done to find out why this is so. This effect
reduces the difference in the performance of both algorithms
when applied to searching networks with one-hop replication,
as will be shown later in this section.

Figure 3b–d compare the average number of covered
nodes in networks with average degrees k = 10 and k = 20.
In regular and ER random networks, curves for k = 20 are
higher than those for k = 10, the same as observed for the
average number of visited nodes in Figure 2b and c. In scale-
free networks, the curve for k = 20 is also higher than that
for k = 10, in contrast with what was observed for the aver-
age number of visited nodes (Fig. 2d). Although visiting new
nodes in scale-free networks is harder for those with higher
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TABLE 2. Reduction of the average search length achieved by SAW with
respect to that of RW.

Reduction of h (%)

Network type One-hop repl. k = 10 k = 20 k = 30

Regular No 54.46 52.57 51.57
Yes 20.32 10.10 6.95

ER random No 57.92 54.60 52.89
Yes 22.47 10.40 7.17

Scale-free No 64.67 71.82 74.16
Yes 26.07 21.31 19.88

average degree, it is easier to cover them because with high
probability they are neighbors of the (more numerous) high
degree nodes.

3.4. Search Length

This section shows results for the average search length (h)
achieved by SAW and RW in the three types of networks, with
and without one-hop replication. Recall from the definition
of the model (Section 2.4) that h is obtained from the average
number of visited nodes (V(h)) for networks without one-hop
replication, while it is obtained from the average number of
covered nodes (C(h)) for networks with one-hop replication.
We begin by comparing results for a single instance of the
resource in the three types of networks. Then, we study the
dependency of h on the number of instances of the resource
in Section 3.5.

Figure 4 shows the average search length for SAW and
RW in the three types of networks, with average degrees
k = 10, 20, 30, with and without one-hop replication. Model
predictions (bars) are in good agreement with simulation
results (points). The SAW model registers errors with respect
to the simulations smaller than 1.2%, 1.6%, and 4.9% in reg-
ular, ER random and scale-free networks, respectively. More
detail of these deviations are given in Table 3 in Section 3.4.4.

3.4.1. Dependency on the One-Hop Replication Feature.
If we first pay attention to the absolute values of h achieved
by SAW in networks with k = 10, we notice that it is a
little over half the network size in networks without one-hop
replication, while it is around 10% the network size when
the network has this feature. The former value agrees with
Figure 2a, where we observe that the SAW visits a new node
at each hop most of the time, since the node that holds the
instance of the resource sought has been randomly chosen.
Likewise, the latter value agrees with Figure 3a, where we
observe that the number of nodes covered by the SAW at hop
h = 1, 000 is about half of the network size.

These graphs show two trivial results: h is smaller for
SAW than for RW in the three types of networks; it is also
smaller in networks with one-hop replication than in net-
works without this feature. It is more interesting to quantify
the reduction in the average search length achieved by SAW
with respect to RW for each network type. This information
is presented in Table 2, where the reduction in h is given as
(hRW −hSAW)/hRW ·100(%). For networks without one-hop
replication, the reduction is above 50%, whereas for networks
with this feature the reduction is smaller (above 20%). This
result is consistent with what we obtained in the two pre-
vious subsections for the average numbers of visited and
covered nodes. There (see Figs. 2a and 3a), we observed that
there was a significant difference in curves of V(h) for SAW
and RW, while curves for C(h) were almost coincident. This
explains the smaller reductions of h in networks with one-hop
replication.

3.4.2. Dependency on the Network Type. Going back to
Figure 4, if we pay attention to the comparison among the
three types of networks, we observe that both SAW and RW
show different effects in networks with and without one-
hop replication. In networks without one-hop replication, the
algorithms achieve values of h in increasing order for regular,
ER random and scale-free networks. The largest increment
is registered for RW in scale-free networks. This is due to
the existence of a large number of small degree nodes in

FIG. 4. Average search length (h) with a single resource instance.
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FIG. 5. Average search length (h) as a function of network size.

scale-free networks. These nodes are more difficult to visit by
the walks, especially by RW, yielding larger search lengths.
This negative effect is almost totally compensated by SAW,
since it tries to avoid already visited nodes, incrementing
the probability of visiting low degree nodes. A consequence
of this is the fact that SAW gets the largest reduction of h
compared to RW in scale-free networks, as seen from Table 2.

In networks with one-hop replication, values of h are simi-
lar for regular and ER random networks. Scale-free networks
present smaller values, as opposed to what happened in net-
works without one-hop replication. This is explained by the
presence of very large degree nodes in scale-free networks.
Although these nodes are few, they are visited with high prob-
ability, allowing many nodes to be covered without being
visited, leading to reduced search lengths. This feature also
yields larger reductions of h in scale-free networks, as verified
from Table 2.

3.4.3. Dependency on the Average Degree. We focus
again on Figure 4 to analyze the dependency of h on the
average degree of the networks. For regular and ER random
networks, a larger k yields a smaller h, for both RW and SAW.
For the former, the decrement is explained by the fact that the
higher the degree of a node, the more probable it is to visit
an unvisited neighbor of that node in the next hop. For the
latter, the reduction comes from the fact that the probability
that all the neighbors of a node have already been visited is
lower if the degree of the node is higher. In networks with-
out one-hop replication, the reduction in h when the average
degree increases is small for RW and irrelevant for SAW.
The reduction of h achieved by SAW with respect to RW
slowly decreases with k (Table 2). In networks with one-hop
replication, however, h is reduced by about one half when k is
changed from 10 to 20, and about one third when k is changed
from 20 to 30, both for RW and SAW. The higher degree of
the nodes allows walks to cover nodes faster, since nodes
know about more neighbors. The reduction of h achieved by
SAW with respect to RW decreases faster with k in this case
than in networks without one-hop replication (Table 2).

The impact of the average degree in scale-free networks
with one-hop replication is similar to that described for regu-
lar and ER random networks. However, the effect is reversed
in networks without one-hop replication, where h increases
for larger k, both for RW and SAW. For RW, the average
search length increases about 30% when k is changed from
10 to 20, and about 10% when k is changed from 20 to 30.
The increment is less significant in SAW (under 5%). This
increment is again due to the larger number of high degree
nodes (visited with high probability) in a network with higher
k. This behavior makes SAW achieve a reduction of k with
respect to RW that is growing with the average degree of the
network, reaching 74% for k = 30 (Table 2).

3.4.4. Dependency on the Network Size. Finally, we ana-
lyze the dependency of the average search length on the
size of the network. Simulation experiments for networks
of N = 1, 000 and N = 20, 000 nodes have been added to
the base experiments for N = 10, 000 nodes presented so far.
Figure 5 show the average search length obtained for regular,
ER and scale-free networks as a function of their size. The
average degree of all networks is k = 10.

It is observed that the average search length is linear in
the network size. As for the previous experiments, model
predictions are in good agreement with simulation results.
The magnitude of deviations depends on the network type,

TABLE 3. Relative errors of average search lengths predicted by the model
with respect to simulation results, for networks with k = 10.

h model prediction errors (%)

Network type One-hop repl. N = 1000 N = 10, 000 N = 20, 000

Regular No 0.88 1.17 1.35
Yes 0.38 0.09 0.15

ER random No 1.29 1.57 1.51
Yes 0.53 0.06 0.44

Scale-free No 2.72 3.20 3.07
Yes 1.37 0.09 0.36
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FIG. 6. Average search length for several resource instances in networks with k = 10, 20.

on the presence of the one-hop replication feature and on
the network size. Table 3 presents these deviations relative to
average search lengths registered in simulations.

3.5. Several Instances of the Resource

We now look at the dependency of the average search
length on the number of instances of the resource sought

present in the network (R). Figure 6a–c show this depen-
dency for the three types of networks, without one-hop
replication, and for average degrees k = 10, 20. Sepa-
rately, to be able to adjust the scale of the y-axis adequately,
Figure 6d–f show this dependency for networks with one-hop
replication.

We observe that the reduction in h is large for the first
additional resource instances, asymptotically tending to 0 as

12 NETWORKS—2011—DOI 10.1002/net



FIG. 7. Relative deviations of network averages for search lengths in ER random networks with k = 10.

R grows towards the network size. (In particular, we have
checked that for SAW in networks without one-hop repli-
cation, this dependency is h ≈ N/(R + 1).) In networks
without one-hop replication, the difference in the average
search length achieved by SAW and RW quickly diminishes
with the number of resource instances. A similar behavior
can be observed in networks with one-hop replication and
with average degrees 10 and 20.

In these experiments, SAW searches outperform RW
searches in networks without one-hop replication regardless
of their average degree. This is not true for networks with one-
hop replication, where an increase in k has a large impact on
the rate at which the network is covered. This results in a
better performance of RW in networks with k = 20 than that
of SAW in networks with k = 10.

3.6. Variations of Network Averages

As stated in Section 2, our model of the SAW is a mean-
field analysis that produces a estimation of the average search
length in networks with a given size and degree distribution.
Of course, individual walks on a given network can yield
large deviations from the predicted average value. To ensure
the usefulness of the model when applied to an individual

network (with the given degree distribution), the question that
arises is now whether the choice of that particular topology
can produce significant deviations. To answer this question,
Figure 7 (for ER random networks) and Figure 8 (for scale-
free networks) show deviations of network averages with
respect to the value averaged over all networks (the aver-
age search length, h). In particular, graphs show the standard
deviation and the deviations of the maximum and minimum
values of network averages with respect to h. All deviations
are given relative to h. Recall from the description of the simu-
lations (Section 3) that network averages are values averaged
over the 103 walks performed in each of the 102 individual
networks. From these results it can be stated that the aver-
age search length predicted by the model for a given size and
degree distribution can be taken as a reasonably good approx-
imation for any (randomly built) regular, ER or scale-free
network with that size and degree distribution.

4. CONCLUSIONS

We have proposed a mean-field model to estimate the aver-
age search length in randomly built networks with a given size
and degree distribution. The model considers the possible use
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FIG. 8. Relative deviations of network averages for search lengths in scale-free networks with k = 10.

of one-hop replication and the existence of multiple resource
instances. We have empirically evaluated the model by gen-
erating networks of three types (regular, ER random and
scale-free) and simulating searches in them. We have found
that the estimates are very accurate. When using SAW in net-
works with one-hop replication, the average search length
decreases with the increase in average degree for the three
types of networks. In networks without one-hop replication,
however, the impact of average degree on the average search
length is small, with slight decrements for ER random and
regular networks and slight increments for scale-free net-
works. Regarding the behavior with respect to multiplicity
of resource instances, the average search length is roughly
inversely proportional to the number of instances.

We have also simulated RW, with and without one-hop
replication and with multiple resource instances. The con-
clusion is that SAW has a much smaller average search
length when one-hop replication is not available, especially
in scale-free networks, where the reduction increases as the
average degree of the network grows. In networks with one-
hop replication, reductions of average search length are only
significant for low average degrees, decreasing as the average
degree grows. The behavior with respect to the number of
resource instances is similar to that of SAW.

An interesting future line to continue this work is to eval-
uate the search performance of variations of the SAW, using
different probability distributions for choosing the neighbor
to visit next, e.g., based on combinations of its degree and of
the number of times it has previously been visited or covered.
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