
FGW 1.0 Quick Reference

By Juan C. Ruiz Anton, ruiz@trad.uji.es

This document is the user manual for FGW, a natural language software tool that offers a window-
oriented user interface that allows the development and testing of syntactic realization grammars using
Dependency Grammar as the representation formalism (see Fraser 1994, Mel'čuk 1998). For a
particular language, the user must supply a generation grammar and a lexicon. The generation
grammar include rules for the expression of morphosyntax, as well as rules for linearization and
morphological synthesis. The lexicon file provides the grammatical, morphological and semantic
information for the words of the described language.

1. Architecture of FGW

The general procedure for syntactic realization used in the FGW system is outlined in the following
picture:

The starting point of the realization process is an abstract dependency tree (D-tree), in the form of a
semantic formula as (1) (corresponding to the English sentence I can have read the books), that is
usually introduced by the user via a special input window or a batch file.1

(1) Pres Pot Perf: read Agent=(I) Patient=(d pl: book)

The format of semantic formulas is described in detail in § 2.

1 For mopre details on D-Trees, see §19 a)

The semantic formula (1) describes a predication in which the predicate read has two arguments, an
agent (I) and a patient (book). Predicates may be associated with operators such as tense (Pres:
present), aspect (Perf: perfect), modality (Pot: potential) or number (pl: plural).

The predication (1) is equivalent to the D-tree below, in which operators have been rendered as
features of the form ATTRIBUTE=VALUE, while the predicates read, I and book appear as values of a
feature lex:

A D-Tree such as this one is displayed by FGW in the following way:

 --<1> MAIN: read
 |--<2> Agent: I
 |--<3> Patient: book

FEATURE MATRICES
================
<1>: [lex=read,tense=Pres,modality=Pot,aspect=Perf]
<2>: [lex=I]
<3>: [lex=book,definiteness=d, num=pl]

The process of syntactic realization consists of the application of successive cycles of rules that
modify this initial tree, by adding new features or new nodes, by changing the dependence of the
existing node, or by applying a linear order to its nodes.

a) Lexical Expansion:

In this phase, each feature matrix in the D-tree is expanded by adding to it all the features associated
in the lexicon to its lex (predicate). For the predicate read, for example, these features might be
cat=V (lexical category = verb), vclass=trans (transitive) and sem=action. See § 5 for more
information.

The result of this expansion is shown below, with the new features at the end of each feature matrix:

 --<1> MAIN: read
 |--<2> Agent: I
 |--<3> Patient: book

FEATURE MATRICES
================
<1>: [lex=read,tense=Pres,modality=Pot,aspect=Perf,cat=V,vclass=trans]
<2>: [lex=I,cat=PP,per=1,num=sg]
<3>: [lex=book,definiteness=d, num=pl,cat=N,per=3]

b) Expansion of the D-Tree:

This step in the derivation is responsible for the transformation of the abstract D-tree (as derived from
the previous phase of lexical expansion) into a fully-fledged surface D-tree, complete with auxiliary
words and all the information necessary for morphological generation and word ordering.

This is done with the help of a special type of rules called expression rules (v. § 10), that apply top-
down, starting from the top node of the D-Tree. These rules can make for a great deal of manipulation
in the D-trees, including:

· Addition of features

· Insertion of new nodes, either superordinate or subordinate to the current node

· Movement of nodes (from one dependent to another in the D-tree)

Only cumulative transformation of D-trees is permitted. Expression rules never delete or change the
value of the features in the nodes of the D-tree, with one unique exception: in certain restricted
circumstances it is possible to change the lexical category of a node (for example, in order to
transform a clause into a nominalization) (see recategorization in § 12.2 C).

In our example, expression rules are responsible for the insertion of new nodes for the auxiliares can
and have, and for the determiner the as a dependent of book, thus yielding an expanded D-Tree as the
following:

 --<5> MAIN: can
 |--<4> COMP: have
 | |--<1> COMP: read
 |--<2> Agent/Subject: I
 |--<3> Patient: book
 | |--<6> DET: the

FEATURE MATRICES
================
<1>:
[lex=read,vform=pastPart,aspect=Perf,cat=V,vclass=trans,domain=clause]
<2>: [lex=I,cat=PP,per=1,num=sg]
<3>: [lex=book,definiteness=d, num=pl,cat=N,per=3]
<4>: [lex=have,vform=base,cat=V,domain=clause,modality=Pot]
<5>: [lex=can,tense=Pres,cat=V,domain=clause,illoc=DECL]
<6>: [lex=the,cat=DET]

c) Morphological generation:

This step produces a surface form for each lexeme, taking into account the morphological and spelling
rules declared in the grammar file. In our example, [lex=book,num=pl] would produce books.

d) Linearization:

In this phase, the nodes of the D-tree are arranged in a linear sequence of words. This task is
performed by means of linear precedence rules (§ 13). These rules rely mainly on the functions
connecting the nodes with their governors, as well as on the information present in the matrices of the
nodes.

e) Sandhi:

After linearization of the D-tree, the great bulk of the syntactic realization process is completed. Some
minor phonological adjustments between the final words in the clause may be still needed. This is the
task of the sandhi rules. For example, a Sandhi rule of English would state that the combination of the
auxiliary do and the negative particle not yields don't.

2. Predications

A semantic formula represents a predication, i.e. an abstract object describing the semantic structure
of a sentence. As we have seen, these formulas are the starting point for the process of sentence
realization in FGW.

A predication describes a state of affairs centered around a predicate (denoting a particular action,
process or state), which is accompanied by a variable number of participant entities. For example, in
the sentence The woman found a ring in the garage, the predicate is expressed by the verb find, and
the participants are expressed by the nominal phrases the woman, a ring, and in the garage.

In terms of its content, the predication must include all that information that is necessary and
sufficient for deriving the surface form of the corresponding sentence.

Semantic formulas must adhere to the following format:

[Operator1 ... Operatorn :] Predicate [Participant1 ... Participantn]

For example, the English sentence The woman found a ring in the garage could be represented as the
following predication:

(1) DECL Past: find Ag = (D sg: woman) Pat = (d sg: ring) Loc = (D sg: garage)

Where Ag = Agent, Pat = Patient, Loc = Location, d = definite and sg = singular.

Basically, this example represents the content of the English sentence The woman found a ring in the
garage. Notice, in particular, the combination of the predicate find and the arguments Agent, Patient
and Location.

Let us look now at the main components of a predication: the operators, the predicate, and the
participants:

2.1 Operators

The operators represent different semantic or grammatical categories that are relevant to the content
of the predication. In this example, DECL and Past are operators, meaning respectively 'declarative'
and 'past tense'. All operators used in actual predications must have been explicitly declared by the
user.

Note that in this definition, we consider a grammatical category to be a closed class of semantic
distinctions that, in a particular language, are expressed grammatically (that is, by means of
inflectional morphemes or grammatical words, like determiners, prepositions or auxiliary verbs).
Usually, grammatical categories cover a restricted range of distinctions in a given domain, such as
number, tense, mood or aspect.

When a grammatical category is present in a language, one or another of the alternative forms must be
used in real cases. Thus, in the case of English, in which nouns are marked for number, one or the
other of the two alternative forms (singular or plural) must always be used; there is no possibility of
avoiding the choice, even when the number distinction appears to be conceptually irrelevant.

The grammatical categories of one language never exactly coincide with those of another. As Roman
Jakobson once wrote, languages differ essentially in what they must express, and not in what they
may express (Jakobson 1963). For example, there are languages that do not express tense, but aspect;
some other languages only differentiate between past and non-past tense; and a few languages
distinguish several degrees of past or future tense: near past, remote past, and so on.

2.2 Predicate

The predicate (find in our example) represents the semantic nucleus of the predication. Generally, it is
a lexical item (typically a verb, an adjective or a noun).

In some cases, the predicate may be a nominal. Thus, in semantic formulas, classifying and equational
predicate nominals may be dealt with as terms introduced by the label Pred, and. Cf. (2) and (3),
respectively:

(2) DECL Pres: Pred=(painter) Patient =(D prox sg:man)
(i.e. This man is a painter)

(3) DECL Pres: Pred=(D sg: father Poss=(I)) Patient =(John)
(i.e. John is my father)

2.3 Participants

The participants include both arguments and adjuncts, the difference being one of lexical
government: While arguments are participants required by the semantics of the predicate, adjuncts are
not. The phrases in the garage, the woman and a ring are the surface expression of the participants in
the example (1) above.

Formally, the participants fall in three types: single nominals, embedded predications and
coordinate elements. With independence of their type, participants must be introduced by a label
indicating its semantic function in the predication, and, optionally, also by its pragmatic and syntactic
functions. So, for example, the participants in predication (1) are marked with the semantic function of
Agent, Patient and Location (= Loc).

2.3.1 Nominals

Nominals are constructs that can be used to refer to an entity or entities in some world. Typically, they
are expressed linguistically as noun phrases. FGW distinguishes three types of nominals: simple
nominals, coordinate nominals and coreferential nominals.

A. Simple nominals

Simple nominals range from very simple items such as personal pronouns (you, he, they) and proper
names (Albert, Mary) to complex noun phrases (the strange man I saw yesterday in the park), that
contain operators and a set of semantic restrictors or delimiters.

In FGW, the format of simple nominals is very close to that of predications:

[Operator1 ... Operatorn :] [Index =] Predicate [Del1 ... Deln]

Note that the operators, the index and the delimiters (Del) are optional.

The operators represent all those grammatical elements which take the form of determiners,
quantifiers and semantically-based inflection (e.g. number, definiteness).

The Index is an exclusive identifier for the nominal. Indexes are represented by a letter x followed
by an integer: x1, x2, etc. Indexes are normally used when the nominal in which it appears is referred
to in another place of the predication (see example(8) below).

The predicate represents the semantic nucleus of the predication, typically a noun or a pronoun.

The delimiters are embedded nominals or predications, enclosed in parentheses and introduced by a
label indicating its semantic function.

Some examples may make these details clearer:

(4) d pl:child

The operators are d> (definite) and pl (plural). The predicate is child. This example corresponds in
English to the noun phrase the children.

(5) prox 3:dog

Here the operators are prox (proximal deixis) and 3 (a quantifier, meaning 'three items'). The
predicate is dog. In English: these three dogs.

(6) d sg:dog Poss=(you)

The point of this example is the delimiter Poss=(you). The label Poss refers to the semantic
function 'Possessor'; the embedded term has a pronominal predicate (you). The corresponding
English expression is your dog.

(7) d sg:dog Restr=(black)

This example includes a delimiter Restr=(black). The label Restr stands for the semantic
function 'Restrictor'. The embedded construct (black) is a reduced predication (i.e. a predication
without operators). In English, this corresponds to a noun phrase with an adjective complement: the
black dog.

(8) d sg x1=car Restr = (Past: buy A = (d sg:teacher) Patient = (REL:x1))

This is a rather complex example. The delimiter, again introduced by the semantic function Restrictor
(Restr), is a full-fledged predication, complete with operators and participants. Note the occurrence
of the index x1, which is coreferenced in the second argument of the embedded predication (an
example of coreferential nominal). This example corresponds in English to a noun phrase with a
relative clause: The car that the teacher bought.

B. Coordinate nominals

Predications may include coordinate nominals, introduced via the following format:

{ Term [Conj Term]* Conj Term }

This schema defines a set of at least two simple nominals, connected by conjunctions. These
conjunctions may be '&' or 'v' (and) and '^' (or). For example, the predication below would
correspond in English to the sentence Maria and the boy ran:

(9) DECL Past: run Agent={ (Maria) & (sg: boy) }.

C. Coreferential nominals

Coreferential nominals are used to represent linguistic expressions that have an antecedent in the same
predication, including reflexive and anaphoric personal pronouns, as well as relativized term positions
(in many languages expressed as relative pronouns).

These nominals comply with the following format:

Operator:Index

where the operator is normally ANA (anaphoric) or REL (relative), and the index must be co-indexed
with the index of another term in the same predication. For example, in (10) below, the construct
(ANA:x1) is a well-formed term, co-indexed with the first argument of the main predicate, (man).

(10)
DECL Pres: want Agent = (d sg: x1=man) Patient = (Pres: drink Agent =
(ANA:x1) Patient = (i: vodka))

(i.e. The man wants to drink vodka)

2.3.2 Embedded predications

Complete predications may be embedded in the position of a participant role (either argument or
adjunct). This is the way of representing complement clauses (ex. 10), relative clauses (ex. 8) and
adverbial clauses (ex. 11):

(11) DECL Past: eat Agent = (sg: x1=he) Cause=(Past: hungry Patient=
(ANA:x1))
(i.e. He ate because he was hungry)

2.4 Semantic and pragmatic functions

As we have seen, the participants are introduced in the predication by the semantic function that they
play with regard to the predicate. When relevant grammatical and pragmatic functions may be
included as well. For example, in the following predication, the first term is both marked as the
semantic function Agent and the grammatical function Subject:

(12) DECL Af Past: find Agent/Subject = (d sg: woman) Pat = (sg: ring)

In FGW, the semantic and the pragmatic functions that are considered relevant in the target language
are declared in the grammar file.

As for grammatical functions (e.g. subject and object) they are not regarded as a universal feature of
language. When they are considered relevant for the language being described, grammatical functions
must be also declared in the grammar file. They may be referred to in rules via the attribute gf.

2.5 Universality of predications

The form of predications is argued to be largely similar (but not necessarily equal) across languages.
Put differently: linguistic expressions of different languages may differ considerably in surface form;
their corresponding underlying predications can be practically identical.

In this view, differences between languages reside in the concrete language-dependent operators and
predicates that 'fill in' the formal predication structures for each language, and the expression rules
and linearization statements which determine the actual form in which final sentences are realized (cf.
Dik 1991).

As an illustration, examine the following examples from English and Yaqui (an Amerindian language
of the Uto-Aztecan family, spoken in areas of southern Arizona and northern Mexico):

(13) These children have been singing in the church.

(14) hu-me usi-m teopo-po bwika-k
this-PL child-PL church-LOC sing-PERF

A comparison of these examples reveals various differences in surface form. To begin with, Yaqui has
Subject-Adjunct-Verb order; moreover, the kind of location which English typically expresses with
the preposition in is expressed by a case suffix -po in Yaqui; definiteness is not grammatically coded.
Finally, the verb bwika expresses perfective aspect by means of a -k suffix, as against the use of an
auxiliary have in English.

In spite of all these differences, the underlying predications (15) and (16) are taken to be highly
similar; they could be, respectively:

(15) Pres Prog Perf: sing Agent = (prox D pl: child) Loc = (d sg: church)

(16) Perf: bwika Agent = (prox pl: usi) Loc = (sg: teopo)

Apart from the obvious lexical differences (such as sing = bwika, child = usi, etc.), the structural
differences between the underlying predications are minor: some operators (definiteness, tense,
progressive aspect) are specified in English, but are not present in Yaqui. The actual surface
differences between (15) and (16) will result from the rules (obviously different in each language)
which serve to map underlying predications onto linguistic expressions.

3. Data types

FGW uses the following data types:

STRING

Typical strings start with a letter and are followed by any number of letters, numbers or undescores
("_").

It is also possible to have strings including blanks and non-letter characters, as long as they are
written enclosed in a pair of quotes.

Strings are case-sensitive; that is, num and Num are different names.

Examples of valid strings:

num
agr1
Subj_Agreement
soufflé
Fuß
'in spite of'

In contrast, 1person is an invalid string, because it begins with a number.

INTEGER

A number.

FEATURE

An ATTRIBUTE=VALUE pair.

Example:

num=pl

VARIABLE

A string starting with a dollar sign ($).

Examples:

$num
$number_agreement

CONSTRAINTS

A group of one or more constraints on features.

See section below.

APATH

A path is a sequence of path elements (separated by slashes) that denote function labels in a D-Tree,
calculated from the current node:

 PATH-ELEMENT1 / ... / PATH-ELEMENTn

The last PATH-ELEMENT is always a feature attribute.

Examples:

Obj/num
GOV/Subj/case

A note on paths

There are four types of path elements: alternatives, multiples, variables and simple attributes.

· An alternative element describes a disjunction. Its format is (A | B | ... |C), where
A, B, C are strings.

· A multiple element describes a successive sequence of similar functions. There are two
formats allowed: *F for a sequence of zero or more functions F, and +F for a sequence of at
least one node with function F.

· A variable element is represented as a string beginning with $.

· A simple element (representing one simple function label), represented as a string.

· Simple attributes may refer to actual relational labels (semantic, pragmatic and grammatical
functions), as well as to a small set of metarelations such as GOV (that refers to the governor,
the node which the current node depends on, ANTECEDENT (the antecedent of a
pronominal/anaphoric node) and DEP (any dependent of the current node)

A path is always evaluated2 starting from the current node. For an illustration, consider the D-tree
portrayed graphically in fig. 2. If the current node is A, then the path Object/Object/num is
evaluated to pl. If the current node is B,then the path cannot be completed, subsequently failing.

2 On path evaluation, see § 10 d)

Fig. 2

In paths the label GOV refers to the governor of the corresponding node. For example, in fig. 2 the path
GOV/Subject/lex, starting from the node B, evaluates to she.

Constraints

Most FGW rules allow the inclusion of conditions that have to be met by the D-tree before their
application. These conditions are expressed via constraints. For example, rule (1) below states that
the subordination of the determiner the is constrained by the existence in the current node of the
feature definiteness=D:

(1) EXPRESSION Def_Article_insertion:
 IF definiteness=D:
 SUB Det = the.

Types of constraints

ATTRIB = FVAL

Succeeds if the current node includes a feature ATTRIB=VAL, such that the FVAL matches3 VAL.

Example: num=pl

ATTRIB = (FVAL1|...|FVALn)

Succeeds if the current node includes a feature ATTRIB=V, such that V must match one value FVALi of
the disjunctive set.

Example: tense=(Pres|Past)

CONSTRAINT1 , CONSTRAINT2

Succeeds if Both CONSTRAINT1 and CONSTRAINT2 succeed.

Example: gen=masc, num=sing

3 On feature matching, see § 19 b)

CONSTRAINT1 | CONSTRAINT2

Succeeds if either CONSTRAINT1 or CONSTRAINT2 succeeds.

Example: vform=Inf | class=Invar

NOT CONSTRAINT

Succeeds if the specified CONSTRAINT fails.

Example: NOT tense=Pres

ATTRIB = $

Succeeds if the current node includes a feature ATTRIB with any value.

The character '$' is called the anonymous variable.

Example: class=$

ATTRIB = VARIABLE

Succeeds if:

(a) If the VARIABLE is bound to a value VAL: the current node must includes a feature ATTRIB=V,
such that VAL matches V.

(b) If the VARIABLE is free: the current node must includes a feature ATTRIB=V, and VARIABLE is
then instantiated to V.

Example: num=$N

ATTRIB = PATH

Succeeds if the current node includes a feature ATTRIB=V, such that the result of evaluating the
specified PATH matches V (see § 19 d)).

Example: gen=ANTECEDENT/gen

PATH = FVAL

Succeeds if the result of evaluating the PATH matches the FVAL.

Example: Subj/gen=masc

PATH = VARIABLE

Succeeds if:

(a) If the VARIABLE is bound to a value VAL: the result of evaluating the specified PATH matches VAL.

(b) If the VARIABLE is free: the current node must includes a feature ATTRIB=V, and VARIABLE is
then instantiated to the result of evaluating the PATH.

Example: Subj/gen = $G

PATH1 = PATH2

Succeeds if the result of evaluating PATH1 matches the result of evaluating PATH2.

Example: Subj/binding = Poss/binding

ATTRIB != FVAL

Succeeds if the current node includes a feature ATTRIB=VAL, such that the FVAL does not match VAL.

Example: gen != masc

ATTRIB != (FVAL1|...|FVALn)

Succeeds if the current node includes a feature ATTRIB=V, such that V does not match any value
FVALi of the disjunctive set.

Example: vform != (Inf|Ger)

ATTRIB != PATH

Succeeds if the current node includes a feature ATTRIB=V,such that the result of evaluating PATH
does not match V.

Example: num != Subj/num

PATH != FVAL

Succeeds if the result of evaluating PATH does not match FVAL.

Example: Subj/num != masc

PATH != (FVAL1|...|FVALn)

Succeeds if the result of evaluating PATH does not match any value FVALi of the disjunctive set.

Example: Subj/sem != (action | process)

EXIST PATH

Succeeds if there is a node at the end of the PATH4.

Example: EXIST Subj

EXIST PATH [CONSTRAINTS]

Succeeds if there is a node at the end of the PATH in which the specified CONSTRAINTS are met.

Example: EXIST Subj[num=pl]

NOT ATTRIB

Succeeds if there is no ATTRIB feature in the current node.

This constraint is a notational variant of 'NOT ATTRIB=$'.

Example: NOT num

4 On path traversal, see 19 e).

INTEGER1 < INTEGER2

Succeeds if INTEGER1 is lower than INTEGER2.

INTEGER1 > INTEGER2

Succeeds if INTEGER1 is greater than INTEGER2.

RANDOM < TARGET

Succeeds if TARGET (an integer in the range 1-10) is greater than a random number generated by
FGW.

Example: see below, note (3).

Notes:

1. Parentheses may be used to enclose groups of constraints, in order to avoid ambiguity, or
simply for the sake of clarity. For example:

asp=Prog | (asp=Perf, tense=(Pres|Past)) | (pol=Neg, NOT
tense=Pres)

2. Consider the two notations for the expression of negative constraints introduced so far:

(a) NOT A=V
(b) A!=V

If the current node contains a feature A=X, both notations produce the same result (i.e. both
succeed). But if the current node does not contain any feature with the attribute A, the notation
(a) succeeds, while the notation (b) fails, because it introduces a requirement of existence
('there is a feature A, whose value is not V') that is absent in notation (b) (that reads 'the
constraint A=V does not hold').

3. Random constraints may be used to capture certain linguistic phenomena that appear to be
determined by arbitrary (or poorly known) conditions. Alternatively, it can be also thought of
as a way of making some rules optional. For example, in Yaqui, imperatives are normally
marked in the morphology of verbs, but sometimes they are not. A way of implementing this
behavior in FGW is by means of the following expression rule:

 EXPRESSION Imperative:
 IF illoc=IMP, random > 7:
 mood := imp.

Note that the target of this particular random constraint isfairly high, thus reducing the
probability of failure for the constraint. A lower integer (for example, 3) would involve fewer
chances of success for the rule.

4. Writing Grammar Descriptions in FGW

A description of a language is distributed in two files: a lexicon file (containing all the information
specific of words and word classes) and a grammar file (containing feature declarations and
realization rules of different types). Optionally, an additional transfer file may be needed, in the

circumstances explained in § 7. All these are plain text files. FGW accepts extended ASCII, but not
Unicode (due to a limitation of the compiler).

The lexicon file has a .lex extension, and contains two types of data:

· Lexical entries (§ 5)

· Default feature statements (§ 6)

If a transfer file is required by the application, its name must be declared also in the lexicon
file, introduced by the headword TRANSFER, enclosed in quotes, and ended by a period. For
example:

TRANSFER 'en-Yaqui.trf'.

The transfer file (if any) includes different types of transfer declarations (§ 7).

The grammar file has a .grm extension. It may be regarded as divided in two parts: a first part
consisting of several types of feature declarations, and a second part containing the syntactic and
morphological rules that are used for the realization of surface sentences.

The first part includes the following classes of declarations:

· Language declaration (§ 8)

· Declaration of features and functions (§ 9)

· Feature-redundancy rules (§ 12)

The second part comprises rules for the manipulation of D-trees:

· Expression rules (§ 10) and cycles (§ 11)

· Linearization rules (§ 13)

· Morphological rules (§ 14)

· Spelling rules (§ 15)

· Sandhi rules (§ 16)

Some general stipulations on the format of the grammar file should be kept in mind:

· All the declarations and rules must end with a period.

· The declarations section must precede the rules section.

· Declarations can be written in any order within their section.

· The relative order of cycles, linearization rules and morphological blocks is significant. Rules
of this sort are applied in the order in which they occur in the file.

Comments:

All these files may include comments. They are prefixed by a percent sign ('%') and its scope extends
until the end of the line. For example:

% This is a comment

When not at the beginning of the line, comments should be separated by a blank from the remainder
of the text. Otherwise it could result in errors in compile time.

5. Lexical Entries

Format:

Headword : [Feature1, ..., Featuren].

Where Headword is a string referring to a predicate of the described language, and
[Feature1, ..., Featuren] is a matrix of the morphosyntactic and semantic features of this
word.

Notice that a lexical entry must be always ended with a period.

Note that:

· The feature list [Feature1, ..., Featuren] necessarily must contain two features
named cat and lex. Feature cat refers to the lexical category of the word, and lex stands
for the lexeme, which is normally the morphological root.

· The list of possible values for the feature cat may be declared by the user in the feature
declaration part of the grammar file.

Examples:

(1) a. wolf : [cat=N, lex=wolf, lexpl=wolv, sem=animate].

b. cantar : [cat=V, lex=cant, vclass=1, gloss=sing].

Example (1a) declares the feature matrix of the English noun wolf. The features cat, lex and sem
(semantics) are straightforward; the feature lexpl declares the root for the plural form. [NOTE: This
feature should be used in morphological rules as the basis for suffixation of –es, thus producing wolves instead of
*wolfes].

Example (1b) declares the feature matrix of the Spanish verb cantar. Notice that the feature lex refers
to the root of the verb, as opposed to the headword, that corresponds to the conventional dictionary
word, the infinitive form.

Types of features used in lexical entries:

A. ATTRIB = FVAL

The standard type of feature, with an atomic value (FVAL).

See the features in examples (1a) and (1b) above.

B. lex(CONSTRAINTS) = IrregLex

Irregularity feature: Declares an irregular lexeme (IrregLex) that replaces the standard lexeme
when the specified CONSTRAINTS are met in the feature matrix of the word.

The irregular lexeme form may be terminated with a hyphen, what means that it is a root, able to take
inflectional morphemes (see (2b) below). The absence of a hyphen indicates that the lexeme is a
suppletive form, unable to admit further morphemes. IrregLex may also be zero (represented as Ø).
This possibility may be used, for example, to deal with zero-copula in certain contexts (see example
(2c)):

(2) a. akwiya : [lex=akwiya, cat=N, gloss=goat, gen=fem, lex(pl=T)=awaki].
b. amar : [lex=amar, cat=V, gloss=say, lex(tns=Pres)=omer-].
c. hay : [lex=hay, cat=V, gloss=be, lex(tns=Pres)=Ø].

Example (2a) is a lexical entry for the word akwiya ('goat') in Hausa, an African language of Nigeria.
The last feature is an irregularity feature stating that the lexeme of this word should be awaki when
the noun is plural (pl=T).

Similarly, the lexical entry (2b) for Modern Hebrew amar ('to say') includes an irregularity feature by
which this feature has a root omer in present tense. This root may take affixes (as marked by the
hyphen after the lexeme).

Example (2c) (also for Modern Hebrew) introduces a reduced version of the lexical entry for the
copula. The relevant detail here is the feature lex(tns=Pres)=Ø, according to which the lexeme is
zero in the present-tense form, as in the sentence ha-mekonit hadasha, 'the car is new', literally 'the-
car (Ø) new'.

C. val = < SF1=M1, ..., SFn=Mn>

Declares a valency feature, as a set of valency specifications, each one being a pair SF=M, in which
SF is a identifier of semantic function (such as Agent or Location), and M is a standard feature matrix.

Valency features are applied immediately after lexical expansion (see § 1a). The result is that for
every feature specification of the form SF=M in the valency feature of a predicate P, the matrix of the
dependents of P matching the semantic function SF is overwritten with the features of M. For example,
the lexical entry for the German preposition während ('during') should state that its complement
(COMP) must be in genitive case (Gen). This may be expressed as val=<COMP=[case=Gen]> in:

(3) während : [lex=während, cat=P, gloss=during, val=<COMP=[case=Gen]>].

In order to understand how this feature works, suppose the following D-tree for the German sentence
Das habe ich während des Urlaubs gemacht ('I made it during my vacation').

 --<1> MAIN: machen
 |--<2> Agent: Ich
 |--<3> Patient: das
 |--<4> Duration: Urlaub

FEATURE MATRICES
================
<1>: [lex=machen,cat=V,tns=past,asp=Perf]
<2>: [lex=Ich,cat=PP,per=1,num=sg]
<3>: [lex=das,cat=N,num=sg]
<4>: [lex=Urlaub,cat=N,num=sg]

This D-tree portrays a relationship between three participants, Ich ('I'), das ('it') and Urlaub
('vacation'); this latter is labelled with the semantic function Duration (i.e. The span of time in which
the event is supposed to have had place).

The preposition während (with the information specified in (3)) is inserted into the D-tree as a result
of the application of an expression rule, triggered by the presence of the function Duration. The
resulting D-tree is shown in fig. 3 (some details have been simplified).

 --<1> MAIN: machen
 |--<2> Agent: Ich
 |--<3> Patient: das
 |--<5> Duration: während
 | |--<4> COMP: Urlaub

FEATURE MATRICES
================
<1>: [lex=machen,cat=V,tns=past,asp=Perf]
<2>: [lex=Ich,cat=PP,per=1,num=sg]
<3>: [lex=das,cat=N,num=sg]
<4>: [lex=Urlaub,cat=N,num=sg]
<5>: [lex=während,cat=P, val=<COMP=[case=Gen]>]

Once the word während has been inserted into the D-tree, the valency feature applies, with the result
of the feature case=Gen being added to the matrix of the COMP Urlaub. This ensures the actual
genitive marking in the final word form.

6. Default feature statements

Format:

DEFAULT CONSTRAINTS: ATR1=VAL1,...,ATRn=VALn

If the CONSTRAINTS are met in the feature matrix of a lexical entry, the specified features
ATR1=VAL1,...,ATRn=VALn are default-unified to the same matrix.

These rules specify default features for the lexical entries. Feature defaults typically represent the
value which is most frequent or least marked in the described language. For example, the feature
vclass (verb class) may often be assigned the default value transitive, since most verbs in many
languages are transitive; therefore, the feature vclass=transitive may be omitted from the
specification of particular lexical entries. In doing so, only a minority of non-transitive verbs need to
be specifically marked in the lexicon.

Operation:

Default feature statements are applied after lexical insertion: either in the replacement of the
predicates of the input formula, or in rule-governed insertion, as in the statements SUB, SUPER, MERGE
and HEAD.

Examples:

(4) a. DEFAULT (cat=N): per=3, sem=inanim.

b. DEFAULT (cat=V): vtype=trans,sem=action.

Example (4a) states that a word of category noun (cat=N) gets the features third-person (3) and
inanimate semantic-type (inanim) by default. This means that these features are only added if no

other feature of the same attribute is present in the feature matrix. The same is true for verbs (example
(4b)), in which default features are transitive type (trans) and action semantic-type.

7. The Transfer File

Ideally, the predicates of the initial D-tree ought to correspond to lexical items of the described
language; In occasions, however, they may be more conveniently represented by words of a
metalanguage, chosen by the user at their own choice (English, Esperanto, Latin, or whichever other).

The equivalences between the lexical units of this metalanguage and those of the target language must
be made explicit in a special text file called a transfer file. If a transfer file is used, this should be
made explicit in the lexicon file with a line of the form

TRANSFER FileName.

A transfer file is made up of the following types of entries:

A. Word1 = Word2 [+ M]

A metalanguage word Word1 correspond to the word Word2 in the described language. M is an
optional matrix of features that are overwritten over the whole matrix of the corresponding node after
lexical expansion.

Examples:

(a) nothing = ima.
(b) what = ima + [int=Q].

These examples are from Quechua, an Amerindian language spoken in Peru, Bolivia and Ecuador.
The first example (5a) states the equivalence between English nothing and Quechua ima (English is
used here as a convenient metalanguage). The second example puts forward a equivalence between
what and also ima, but in this occasion ima adds an interrogative feature (int=Q) to its feature
specification (as found in the lexicon file).

B. Word1 = Word2 Term1 ... Termn

A metalanguage word Word1 correspond to the word Word2 in the described language, together with
the dependents defined by the sequence of terms Term1 ... Termn. Each Termi is composed of a
semantic function and a term formula (see).

This entry is for cases in which the translation of the predicate introduces additional lexical elements
in the matrix. For example, in Estonian, the sense of 'to snow' is expressed by a verb sadama ('to fall')
that is obligatorily accompanied by a subject noun lume ('snow').

In FGW these complex cases of lexical expression may be dealt with my means of composite
correspondences, such as:

snowV = sadama U=(indef:lume).

This entry simply states that the metalanguage predicate snowV ('snow' as a verb) is translated by the
sequence of verb (sadama) plus a dependent with the semantic function U ('Undergoer') whose
predicate is lume. This dependent is also marked with an indefinite (indef) operator.

In practice, this means that a semantic formula as (a) below (corresponding to the sentence 'it snows
in winter') is processed as if it were (b) (with the other English-Estonian equivalences already done),
which expectedly is the right input predication in Estonian:

(a) DECL Pres: snowV Temp = (winter)
(b) DECL Pres: sadama U=(indef:lume) Temp = (talv)

C. W = { Mword1 : Rest1, Mwordn : Restn }

Where W, Mword and Rest are all strings.

Polysemy entries declare correspondences among a polysemic word of the metalanguage W and the
lexical items in the target language that cover the semantic domain of W. These lexical items are
represented as pairs Mwordi: Resti, where Mwordi is a metalanguage word, and Resti is a string
(ordinarily enclosed in quotes) that describes in plain language the selection of Mwordi.

For example, consider the following instance of a polysemic entries from Japanese:

(a) capital = { capital1:'Money resources', capital2:'City'}.
(b) capital1 = shihon.
(c) capital2 = shufu.

The polysemy entry (a) states that the equivalents of the metalanguage (English) word capital
corresponds in Japanese to (at least) two words: one for the meaning of 'money resources', labelled
capital1, and another for a city, labelled capital2. These are, respectively, shihon and shufu in
Japanese, as shown in (b)-(c).

The underlying predications may contain specific metalanguage words (such as capital2) or more
general ones (such as capital). When an input predication contains a polysemic word, FGW asks
the user to choose which of its senses should fit in that particular context of the predication. This is
made through a pop-up window (see figure below) in where the selection is assisted by the descriptive
statements for every distinct sense.

Once the selection is made, the processing goes along, replacing the polysemic word in the inpur
predication with the mores specific word chosen by the user.

8. Language Declaration

Format:

LANGUAGE: STRING.

Declares the name of the described language.

Example:

LANGUAGE: English.

9. Declaration of features and functions

Format:

ATTRIB: VAL1 ... VALn .

Description:

Enumerates a list of the values that a particular category (ATTRIB) can take in the described language.

VAL may be a string, an integer or a hierarchy of the form VAL=(VAL1 ... VALn). A hierarchy is a
formal representation of a network of values in which some values are subtypes of other values.
Hierarchical values can be recursive to an unlimited depth.

Hierarchical feature values are useful to simplify the formulation of constraints. A subtype always
matches its supertype (but not vice versa); therefore, given a hierarcal value A=(B C) a constraint
such as attrib=A succeeds on a matrix containing a feature attrib=B or attrib=C.

Examples:

tense = Pres Past Fut. The category tense has the values Pres
(present), Past and Fut (future).

voice = Act Pass. The category voice has two values: Act
(active) and Pass (passive).

case = nom gen dat comit instr loc. The category case has the values nom
(nominative), gen (genitive), dat (dative),
comit (comitative), instr (instrumental) and
loc (locative).

tense = Pres Past=(ImmPast RemPast)
 Fut.

An example of a hierarchical value. The category
tense includes the values Pres (present), Past
and Fut (future). In addition, Past may be
further subdivided in ImmPast (immediate past)
and RemPast (remote past).

cat = N V ADV ADJ=(A DET=(ART DEM Q))
 CJ PT.

An example of a recursive hierarchical value.
The category ADJ (adjectival) is further
subdivided in A (adjective) and DET
(determiner). This, in its turn, is subclassified
in ART (article), DEM (demonstrative) and Q
(quantifier).

Declaration of functions

The declaration of functions is formally very similar to the declaration of features, with one
difference: the attribute (ATTRIB) must be necessarily one of the following identifiers: sf (semantic
functions), pf (pragmatic functions) or gf (grammatical functions). Hierarchical values are also
possible. For example:

a. sf = Ag Pat Exp Restr Poss Loc=(In Inter Super Sub) Ben So Instr.

b. gf = Subj Obj.

c. pf = Topic Focus.

The declaration (a) assigns the following values for sf (the semantic function): Ag (Agent), Pat
(Patient), Exp (Experiencer), Restr (Restrictor), Poss (Possessor), Loc (Location) (with the subtypes
In, Inter, Super and Sub), Ben (Beneficiary), So (Source) and Instr (Instrument). In the same
vein, Topic and Focus are declared as values of pf (pragmatic function) in (b), and Subj (Subject)
and Obj (Object) as values of gf (grammatical function) in (c).

10. Expression rules

Format:

EXPRESSION NAME : STATEMENT1; ... ; STATEMENTn .

Result:

The sequence of statements are applied in strict order. An expression rule fails as soon as one of the
statements fails.

Description:

The task of expression rules is to extend the D-tree by introducing all the formal apparatus by which
semantic categories and functions are expressed in the surface form of sentences in a particular
language. These rules normally involve addition of features to the D-tree, as well as insertion of nodes
for auxiliary words, or relocation of nodes in cases of topicalization, interrogatives, etc.

Types of statements in expression rules:

FGW allows many types of statements to be used in expression rules. These types may be grouped in
the following classes:

· Conditional statements (§ 10.1)

· Feature-manipulating statements (§ 10.2)

· Node-inserting statements (§ 10.3)

· Node-moving statements (§ 10.4)

10.1 Conditional statements

A. IF CONSTRAINTS: STATEMENTS1 [ELSE: STATEMENTS2] [END]

If the CONSTRAINTS are met in the current node, then the STATEMENTS1 are applied; if the
CONSTRAINTS fail, the STATEMENTS2 are tried.

If any of the STATEMENTS sequence fails, or if no ELSE-section exists, the IF-statement succeeds
anyway.

Note that the ELSE-section of the rule is optional.

Example:

 IF gf = Obj, sem = animate: case := oblique
 ELSE: case := nominative

This example says that if the current node N has the grammatical function Object (gf=Obj) and is
semantically animate (sem = semantics), then the feature case=oblique is unified to the feature
matrix of the N; alternatively, the feature case=nominative is to be unified.

B. ON SELECTOR = {
 TRIGGER1:STATEMENTS1
 ...
 TRIGGERn:STATEMENTSn }

This is a kind of concise multiway IF-statement. The SELECTOR may be a string referring to a feature
attribute in the current D-tree, or a path expression, pointing to a feature attribute located elsewhere in
the D-tree. The TRIGGER may be a feature value, or a disjunction of feature values (in the form
(VALUE1 | ... | VALUEn). The anonymous variable '$' may be used as a value as a kind of
default case at the end of the TRIGGER:STATEMENTS sequence.

Example:

To illustrate this kind of statements, consider the following expression rule from Cantonese, that
subordinates a classifier in accordance with the semantic class of the noun:

 EXPRESSION Classifiers:
 IF (dem=$ | quant=INTEGER):
 ON class=
 { tool: SUB cls = bá
 machine: SUB cls = ga
 building: SUB cls = gâan
 cloth: SUB cls = gihn
 (animal|pair): SUB cls = jek
 flat: SUB cls = jêung
 cyl: SUB cls = jî
 long: SUB cls = tìuh
 round: SUB cls = lâp
 square: SUB cls = fûk
 $: SUB cls = go
 }.

This rule applies on nominal nodes including a demonstrative (note the anonymous variable attached
to the feature dem) or any numeral (quant=INTEGER). Then, according to the value of a class
feature, a particular classifier is selected.

This rule shows instances of the trigger as an attribute string (class). This is the right case when the
selector feature is located in the matrix of the current node. When the selector is supposedly found in
another node, a path description to that node may be used.

Quechua offers a good example of paths in the selector of ON-statements. In this language, a clitic may
be attached to the focus constituent of the clause, indicating the evidence that the speaker has about
the reality of the described event (grammaticality, this phenomenon pertains to the field of modality,
and it is called evidentiality). Suppose one category in Quechua called evidentiality, with three
possible values: Dir (if the evidence is prima facie, directly witnessed by the speaker), Ind (if the
evidence is indirect or reportative, for example for hearsay), and Conjc(if the evidence has a
conjectural basis). This situation may be described by an expression rule as the following:

 EXPRESSION Evidentiality:
 IF pf = Focus:
 ON GOV/evidentiality =
 { Ind: SUB Pr = si
 Dir: SUB Pr = mi
 Conjc: SUB Pr = cha
 }.

Consider the D-tree below, which underlies the Quechua sentence payqa t'antatan mikhushan ('He is
eating bread') (Faller 2002: 11):

--<1> MAIN: mikhu
 |--<2> Subject/Topic: pay
 |--<3> Object/Focus: t'anta

FEATURE MATRICES
================
<1>:
[lex=mikhu,cat=V,tns=Pres,asp=Progr,gloss=eat,evidentiality=Dir]
<2>: [lex=pay,per=3,num=sg]
<3>: [lex=t'anta,cat=N,gloss=bread]

Note that this rule applies in the domain of the Focus node, which is the locus for the subordination of
the clitic, whereas evidentiality is a category of the proposition. Thus, the selection of the evidentiality
feature must be made in the governor (GOV) node.

10.2 Feature-manipulating statements

A. PATH := VAL

Strict Unification: It unifies the feature specified by the equation PATH=VAL with the feature matrix
of the current node.

Note:

In FGW, unification is a procedure that adds a feature into a feature matrix, provided that this matrix
does not contain conflicting information.

Given a feature ATTR=V and a matrix M, several situations are possible:

a. If M already contains a feature ATTR=V, then M remains unchanged.

b. If M contains a feature ATTR=X, such that X is different to V, then unifiaction fails.

c. Otherwise, ATTR=V is added to M.

Unification of A=V to B works differently depending on the nature of A=V:

a. A is an atomic attribute: It fails whenever the unificable feature A=V is incompatible with a
feature already present in B.

b. A is a path. The path is first evaluated, and the result of this evaluation is unified to B.

c. V is a variable. If the variable may be instantiated (because it has been declared within the
same statement) is value is unified to B; otherwise, B remains unchanged.

Examples:

 EXPRESSION Object_Sentence:
 IF gf = Obj:
 nominalization := complement;
 case := acc.

In certain languages (Quechua, Tamil, among others), object sentences are expressed in the form of a
nominalization in accusative case. This may be described via an expression rule such as
Object_Sentence. It states that if the grammatical function of the current node is object (fg=Obj),
then the features nominalization=complement and case=acc are unified to the matrix of the
node.

 EXPRESSION Null_Subj:
 IF EXIST Subj[cat = PP, NOT pf]:
 Subj/Null := TRUE.

This rule may handle null subjects in a number of languages. It says that if the current node governs a
Subj node(subject) with lexical category PP (personal pronoun) and with no pragmatic function (pf)
specified, then the feature Null=TRUE is unified to the matrix of this dependent Subj node. The
feature Null=TRUE should be the responsible of the zero-expression of the involved pronouns in the
morphological component (see).

B. PATH &= VAL

Default unification: it adds the feature specified by the equation PATH=VAL to the feature matrix of
the current node.

Unlike strict unification, default unification succeeds if the specified feature cannot be added into the
matrix of the current node. Compare the following examples (where '+' stands for 'unifies'):

a. Strict unification:

gen := fem + [cat=N,num=pl] => [cat=N,num=pl,gen=fem]

gen := fem + [cat=N,gen=masc,num=pl] => FAILS

 b. Default unification:

 gen &= fem + [cat=N,num=pl] => [cat=N,num=pl,gen=fem]

gen &= fem + [cat=N,gen=masc,num=pl] => [cat=N,gen=masc,num=pl]

C. RECAT Function AS NewCategory (Recategorization)

This statement changes the value of the cat (category) feature of the node identified by the specified
Function to NewCategory. Function may be the function label of a dependent node, as well as
HEAD (if the recategorization applies on the current node). The old category is kept in the feature
matrix as a feature of attribute bascat (= base category).

This statement always succeeds, except if the feature matrix does not contain a cat feature.

Consider the example:

EXPRESSION Recateg_V:
 IF cat=V, tense=(Pres|Past), NOT illoc=IMP:
 RECAT HEAD AS PCP.

This rule recategorizes a verb node as a participle (PCP) when the tense is present or past, and the
illocution (illoc) is not imperative (IMP). Note that in this case recategorization can be necessary
because the verbal participle may be inflected like an adjective (with gender and number agreement,
for example), instead of like a verb.

D. ASSIGN GF SF1 [... | SFn]

States which semantic feature or features (SF) (and in which order) are elegible to fill the specified
grammatical function GF.

Consider the following examples:

EXPRESSION Subj_Assignment:
IF Pat/pf=GivTop:

ASSIGN subj Pat;
voice := Passive

ELSE: ASSIGN Subj Ag | Exp | Pat.

This rule states that the Subj (subject) function is assigned to the Pat (patient) if it has the GivTop
(Given Topic) pragmatic function; in addition, a feature voice=Passive is unified to the current
matrix. Otherwise, Subj is assigned to the dependent having the first possible semantic function in
the set Ag (Agent), Exp (Experiencer) or Pat (Patient).

 EXPRESSION Obj_Assignment:
 ASSIGN Obj Pat.

This rule, in its turn, states that the Obj function (Object) is assigned to Patients (if any exists).

10.3 Node-inserting statements

A. SUB F = W [+ FeatureList]

Inserts a new node W in the D-tree as a dependent of the current node with function F.

If the D-tree already contains a dependent node with function F, the procedure does not inserts the
node, but still succeeds.

The statement fails if the word W is not found in the lexicon.

In any other case the statement succeeds, by inserting the subordinate node W. The semantic function
of the inserted node will be F, and its feature matrix is is the the lexical entry of the word W,
eventually unified with the optional FeatureList, and finally expanded by the application of default
feature statements (v. § 6).

Example:

EXPRESSION Article:
 IF def=d:
 SUB Determiner = the.

This rule inserts a node the as a dependent with Determiner function of the current (definite) node.

Consider the lexical entry for the, and the D-tree below (for the sentence I saw the dogs):

the : [lex=the, cat=Art].

--<1> MAIN: see
 |--<2> Agent: I
 |--<3> Patient: dog

FEATURE MATRICES
================
<1>: [lex=see,cat=V,tns=Past]
<2>: [lex=I,cat=Pro]
<3>: [lex=dog,cat=N,def=d,num=pl]

The application of rule Article should produce the D-tree below, through the subordination of the
Determiner node:

--<1> MAIN: see
 |--<2> Agent: I
 |--<3> Patient: dog
 | | <4> Determiner: the

FEATURE MATRICES
================
<1>: [lex=see,cat=V,tns=Past]
<2>: [lex=I,cat=Pro]
<3>: [lex=dog,cat=N,def=d,num=pl]
<4>: [lex=the,cat=Art]

B. SUPER W [+ FeatureList] [, DepInfo]

Inserts a new node W in the D-tree, as the governor of the current node N. The former superordinate of
N becomes the governor of the inserted node.

The relation between the current node and its new governor may be determined in the rule by means
of the optional DepInfo section. If no function is proposed, FGW uses the function COMP
(complement) by default.

DepInfo may have the following formats:

a. DEP AS Function [+ NFeatureList]

b. DEP + NFeatureList

The format (a) is used to declare a function different to the pre-defined function COMP.

Both formats also allow to declare a list of features (NFeatureList) to be unified with the feature
matrix of the original current node N.

Operation:

If the word W is not in the lexicon, SUPER still succeeds, but the D-tree remains unchanged.

Otherwise, the lexical entry of W is unified with the optional FeatureList (if declared), and
expanded by the application of the corresponding default feature statements. This new node is inserted
as the governor, and becomes the new current node.

In addition, the valency feature of the inserted node is eventually applied on its dependent (that is, the
former current node N), and the optional NFeatureList is then unified with the resulting matrix of N.

Notes:

A typical use of SUPER is for the insertion of prepositions, conjunctions and auxiliary verbs. For
instance, in Modern Persian, purpose clauses are encoded by the preposition tâ, while the subordinate
clause appear in subjunctive mood. This may be easily described by the following expression rule:

 EXPRESSION Purpose_SF:
 IF sf=Purpose:
 SUPER tâ, DEP + [vform=Subjv].

The rule superordinates a node tâ, and unifies the feature vform=Subjv (subjunctive) on the matrix
of the current node.

To see this rule in action, consider the D-tree in fig. 9, that represents the semantic content of the
Persian sentence bâ mâshin safar kard tâ zud berasad ('s/he travelled by car in order to arrive
sooner'). Note that the feature structure is rather simplified for ease of presentation.

Fig. 9: D-tree before application of rule Purpose_SF

Let us suppose that the current node is rasidan, identified by β. (the word berasad in the surface
sentence is a subjunctive third-person singular form). It is connected to its governor (α) by the
semantic function Purpose. Other details of the D-tree are not relevant to this discussion. Since the
constraint sf=Purpose matches the configuration of the current node, the rule Purpose_SF applies,
and the node tâ is inserted, subordinate to α but superordinate to β. In addition, the feature
vform=Subjv is unified with the feature matrix of β. This transformed D-tree is shown in fig. 10:

Fig. 10: D-tree after application of rule Purpose_SF

C. MERGE W [+ FeatureList] [, DepInfo]

This statement is similar to SUPER (see above for syntax details) in that it adds a new node in the D-
tree as superordinate of the current node. The difference is that whereas in SUPER the current node
keeps all its dependent after the insertion, in MERGE the dependents of the current node are all made
dependents of the new node.

Operation:

Consider a current node N:

· If W is not in the lexicon, MERGE still succeeds, but the D-tree remains unchanged.

· Otherwise, the lexical entry of N is unified with the optional FeatureList (if declared),
and expanded by the application of the corresponding default feature statements. This new
node is inserted as the superordinate of N, and replaces it as the current node. The index of the
merged node (N) is also changed, to make it dependent of W.

In addition, the valency feature of the inserted node is eventually applied on N (now its
dependent).

Note:

The name MERGE intends to suggest the idea that the current node and the new superordinate node are
somehow 'fused' together in a complex but syntactically rigid construction, in which interleaved
elements are not normally allowed. This construction has been called clause union or clause
reduction by some scholars (cf. Noonan 1985:74, Aissen and Perlmutter 1983.

Consider, for example, the situation of the clause union construction formed by an auxiliary verb plus
a participle in Spanish. In this language the construction is close-knit, in the sense that in-between
elements (such as adverbs) are never found. The situation is very different from that of English, or
even more drastically, German:

(25) a. Pedro sin duda ha leído el libro

b. Peter has undoubtedly read the book.

c. Peter hat zweifellos das Buch gelesen.

In a similar vein, the Spanish construction works as a group in subject-verb inversion:

(26) a. ¿Ha leído Pedro el libro?

b. Has Peter read the book?

c. Hat Peter das Buch gelesen?

The facts seem to indicate that the Spanish construction is a kind of compound verb, that shares a
same set of dependents. In FGW terminology, Spanish ha and leído are merged, whereas the English
or German construction is syntactically very different in that the auxiliary is a node superordinate to
the participial verb, the subject is a dependent of the auxiliary, and the object is a dependent of the
participle.

Use of variables in SUPER and MERGE:

The argument of the insertion statements SUPER and MERGE may be a variable, assuming it is bound
in the same statement. This is a convenient way of introducing valence-governed words in a D-tree.
Consider rule GovernedPrep:

 EXPRESSION GovernedPrep:
 IF prep=$P:
 SUPER $P.

An expression rule of this sort combines well with valency features, such as the following,in the entry
of the English verb look:

look : [lex=look, cat=V, val=<Patient=[prep=at]>].

Note that the valency feature (val) of look includes one valency specification for the Patient
argument, with the feature prep=at. This is a way of declaring that the patient of look is introduced
by the preposition at.

D. COPY (ATTRIB1 ATTRIBn)

This statement copies a set of features (identified by their attributes) from the former current node to a
superordinate node. Thus, it is normally used in the same rules in which insertion statements (via
SUPER or MERGE) appear. Features that are prefixed with a hyphen are deleted from their original node
after been copied.

Note:

As an illustration, consider the following rule, that inserts a copula in predicate adjective clauses:

 EXPRESSION Copula_Insertion:
 IF cat=A:
 SUPER super;
 COPY (domain -tense -illocution -polarity).

The percolation statement in Copula_Insertion is necessary to complete the copula node with all
the features that might be necessary for further expression rules (such as illocution or polarity),
as well as for morphological processing (tense).

E. HEAD W [+ FeatureList]

This statement inserts the word W in an lexically empty node (i.e. a node with no lex feature),
optionally overwriting it with the specified FeatureList.

Operation:

W may be a bound (instantiated) variable.

FeatureList may also contain variables and evaluation paths (see Hebrew rule below).

The matrix of W is retrieved from the lexicon, and its category defaults are calculated; after that, it is
overwritten by FeatureList, and the result matrix overwrites, in its turn, the matrix of the current
node.

It fails if:

· The current node is not lexically empty (i.e. it has a lex feature).

· W is not in the lexicon.

Note:

Lexically empty nodes are allowed only in a few restricted cases:

a. In clauses containing a Pred function, such as:

DECL Pres: Pred=(i sg: town Restr=(big)) U/Top=(Cracow)
i.e. 'Cracow is a big city'

b. In bound terms, of the form Operator:Variable:

ANA:x1
REL:x1

c. In terms with an empty head, represented by a zero (also Ø):

d sg: 0 Restr=(big)

Examples:

 EXPRESSION Reflexives:
 IF binding=REFL:
 HEAD zix.

This rule (from Yidish) inserts the pronoun zix as the expression of any reflexive term (represented by
the feature binding=REFL).

 EXPRESSION Rel_Pronoun:
 IF binding=REL, gf=Obj:
 HEAD hu +[gen=ANTECEDENT/gen, num=ANTECEDENT/num].

This rule (from Hebrew) expresses an object relative term by means of hu (a personal pronoun). In
addition, the features gen (gender)and num (number) are evaluated on the antecedent of the relative,
and their values are then added to the matrix of the word (overwriting any conflicting feature already
existing in it).

10.4 Node-moving statements

A. RAISE PATH

The node N identified by the PATH is extracted from its position in the D-tree, and is subordinated
directly under the current node. N keeps its own semantic, pragmatic and grammatical functions.

If N bears a grammatical function, an anaphoric copy of it is left in its original position in the D-Tree,
with the matrix [binding=ANA,COINDEX=α], where α is the index of the antecedent node.

This always succeeds, even in the case that the node determined by the path does not exist.

Examples:

EXPRESSION Potential:
 IF mod=Pot:
 SUPER tavânestan;
 RAISE COMP/Subj;
 COPY num per tns asp illoc -pol).

This rule (from Persian) superordinates a node tavânestan in a clause node marked with the feature of
potential modality (mod=Pot),and then raises the Subj (subject) of the COMP node, also copying the
features of number (num), person (per), tense (tns), aspect (asp) and illocution (illoc), and
moving the feature of polarity (pol).5

5 On feature copying and moving, see §10.3 e).

EXPRESSION Subj_Raising:
 IF NOT Subj:
 RAISE +COMP/Subj.

This rule raises the subject at the end of a sequence of COMP nodes. This typically occurs with
auxiliary verbs.

B. MOVE TO (CONSTRAINTS) [THRU BARRIERS]

Where BARRIERS is a sequence of functions of the form (FUNC1 | ... FUNCn).

The current node is extracted from its position in the D-tree, to be made a dependent of the first node
that meets the specified CONSTRAINTS (its landing node). The displaced node keeps its semantic and
pragmatic functions, but adopts the grammatical function EXTRA (extraposed) in its new location. An
anaphoric copy of the displaced node is left in its original position in the D-Tree.

The landing node may be the governor itself, if it meets the constraints. Otherwise, the procedure
applies recursively, following the chain of governors upwards.

If BARRIERS are declared, the landing node must be labelled with one of the specified functions.

The statement fails if the current node is lexically empty (i.e. it has no lex feature), or no landing
node may be found in the D-Tree.

Example:

EXPRESSION Topic_Extraposition:
 IF pf=Top:
 MOVE TO (sf=MAIN).

This rule moves a dependent with the pragmatic function Top (Topic) upwards to become a dependent
of the top node (i.e. the node that includes the feature sf=MAIN, assigned automatically by FGW to
the top node of a D-Tree).

C. LOWER F CONSTRAINTS TO PATH

A dependent of the current node with function F that meet the specified CONSTRAINTS is displaced as
a dependent of the node specified by the PATH.

Unlike RAISE and MOVE statements, no anaphoric copy of the displaced node is kept in its original
position.

If no node can be lowered, the procedure does not fail, leaving the D-Tree unchanged.

Example:

EXPRESSION Copula_Insertion:
 IF tense=$, cat=A:
 MERGE be, DEP AS Attr;
 LOWER Deg TO Attr.

This rule merges a copula be in tensed adjective-headed nodes, and more significatively for the
current discussion, lowers any degree dependent (introduced by a semantic function Deg) as a
dependent of the adjective, not of the new copula governor.

As an example, suppose the following initial D-Tree:

--MAIN-[1] sick
 |--U/Top-[2] he
 |--Deg [3] very

Suppose that node [1] includes, at least, the feature tense=Past, together with the lexical features of
sick (among them, cat=A). Therefore, rule Copula_Insertion applies, merging a node be. The
intermediate result is as follows:

--MAIN-[4] be
 |--Attr [1] sick
 |--U/Top-[2] he
 |--Deg [3] very

Subsequently, lowering of the Deg node puts the node [3] as a dependent of the node [1]:

--MAIN-[4] be
 |--Attr [1] sick
 | |--Deg [3] very
 |--U/Top-[2] he

11. Cycles (of expression rules)

Expression rules are organized in cycles. A cycle is a sequence of rules that apply (in the specified
order) in the current node whenever certain conditions are met.

The format of cycles is as follows:

CYCLE (CONDITIONS): ERS1 ... ERSn.

Where each ERS is either a expression rule name, or a disjunctive set of expression rule names,
expressed as (Name1 | ... | Namen).

In a disjunctive set, only one expression rule may be applied in each node. These are tried in left-to-
right order; once one rule succeeds and produces a side-effect in the D-Tree (for example, by adding a
features or new nodes), the remaining rules in the disjunctive set are discarded.

Consider the following example:

CYCLE (cat=N):
Definiteness
Possessive
(Subj_Marking | Obj_Marking | SemRole_Marking).

According to this cycle, in every nominal node (cat=N) the Definiteness rule is applied first;
then the Possessive rule, followed by a disjunction of three rules: Subj_Marking, Obj_Marking
or SemRole_Marking. In disjunctions, rules are applied left to right; once a rule succeeds, the
remaining rules to its right are discarded.

12. Feature-Redundancy rules

Format:

IF CONSTRAINTS: UNIF-STATEMENT1; ...; UNIF-STATEMENTn.

Feature-redundancy rules declare cases of dependence between features in a D-tree, in the sense that
the occurrence of certain features (declared in CONSTRAINTS) normally requires adding certain
features to the matrix of the current node. This is made by the use of the statements for default
unification and strict unification.

Examples:

a. IF cat = (N | ADV): domain := nominal.

b. IF domain=nominal, quant = (1 | indef): num &= sg.

c. IF domain=nominal, quant = $: num &= pl.

These rules state that:

· Rule (a): if the current node in the D-tree contains a feature cat that is either N (noun) or
ADV (adverb), then a feature domain=clause is unified to the node.

· Rule (b): if the current node includes the feature domain=nominal, as well as a feature
quant (i.e. quantification) with either the value value 1 or indef, then an additional
feature num=sg (singular) is default-unified to the current matrix. Note that if it already
includes a num feature, this matrix remains unchanged.

· Rule (c): if the current node has the feature domain=nominal, and a feature quant with
any value (that is the meaning of the anonymous variable '$'), then the default-unified
feature is num=pl.

Notice two additional properties of feature-redundancy rules:

· Relative order is significant: one statement may add features that can appear as constraints in
subsequent statements. This is the case of the feature domain in rule (a) vs. rules (b)-(c).

· The properties of unification as a computational operation may be used advantageously to
simplify the formulation of these rules. For example, if rule (b) applies successfully, then rule
(c) will necessarily fail, since both rules introduce opposite values of the feature num).
Therefore, the constraints of rule (c) do not need to be excessively detailed, since in any case
the wrong results will be ruled out by the unification procedure.

Feature-redundancy rules operate in the first phase of the process of realization, just after lexical
expansion (v. § 1a) They are applied in the very same order in which appear in the grammar file.
Accordingly, the application of a particular declaration may always change the context for the
application of the subsequent feature-redundancy rules.

13. Linearization rules

The linearization phase task is to arrange the nodes of the D-tree in a sequence of words. It is
performed by means of separate linear precedence rules. These rules rely mainly on the functions

connecting the nodes with their governors, as well as on the information present in the matrices of the
nodes.

These linearization rules may be classified in two types, according to the syntactic nature of the nodes
they refer to. First, rules that order dependents with regard to their governors (GOV-DEP rules). In
this sense, a dependent may appear before or after the governor. We may talk about the dependents
that precede the governor as occupying the pre-field, in contrast with dependent that follow the
governor, namely occupying the post-field.

A second kind of linearization rules are those that order the siblings (co-dependents) in every field
(Sibling rules).

Linearization rules comply with the following format:

LP NAME : NODE-SPEC1 < NODE-SPEC2.

Where NAME is a string, and each NODE-SPEC is a node specification, composed of a function label
and an optional list of constraints in brackets. The function label may be any grammatical, semantic or
pragmatic function, or one of the metafunctions GOV (governor), DEP (any dependent), ARG (any
argument), ADJUNCT, or SIB (a sibling). In GOV-DEP rules, one of the node specifications must
include the GOV metafunction.

A such rule declares that the node that satisfies NODE-SPEC1 is ordered before all the nodes satisfying
NODE-SPEC2.

Examples:

(a) LP AdvV: NEG < GOV.

= A negative particle (NEG) procedes its governor.

(b) LP QV: DEP[int=Q] < GOV.

= An interrogative dependent precedes its governor.

(c) LP P1V: LP ARG: ARG[NOT pos=Focus] < ADJUNCT.

= Non-focal arguments precede adjuncts.

Operation:

Linear precedence rules are ranked: every rule takes precedence over the remaining rules declared
below in the grammar file. This feature allows to arrange rules according to their specificity: first the
more particular ones; the more general at the end.

In English, For example, governors typically precede their dependents, but some dependents precede
their governors, as is the case of determiners, subjects, and others. This may be described as in:

% Specific Rules
LP DetN: Det < GOV.
LP SubjV: Suvj < GOV.

% General rule
LP DefR: GOV < DEP.

14. Morphological rules

The task of morphological rules is to describe the formal modifications involved in the productive
inflection of words. Each morphological operation apply on the lexeme L of a word, so as to form a
new lexeme L' that reflects the modification (such as the addition of an affix) produced by the
inflection.

These formal modifications operated on the lexemes include, inter alia:

· Suffixation: as in English cat + Plural → cats

· Prefixation: as in Swahili tabu 'book' + Singular → vitabu

· Infixation: as in Tagalog sulat 'write' + Past → sumulat

· Reduplication of the lexeme: as in Nahuatl cih 'hare' + Plural → ciicih

· Modification of the lexeme: as in Arabic ktb 'write' + Past → katab

Before attaching a prefix or a suffix, spelling rules (§ 15) are applied between the lexeme and the
affix.

Morphological operations are organized in blocks, according to the proposal by Anderson (1992).
Each block contain a disjunctive set of operations (called M-operations), that are tried in strict order.
As soon as an M-operation succeeds, the block finishes its application, and the processing goes on
with the next block.

The format of blocks is the following:

BLOCK Name CONSTRAINTS:M-OPERATION1 ... M-OPERATIONn.

Such that if the specified CONSTRAINTS meet in the matrix of a word W, the sequence of
morphological operations M-OPERATION1 ... M-OPERATIONn is applied until one of them
succeeds, what produces a morphological inflection of the lexeme of W.

The format of M-operations is:

A. CONSTRAINTS::INFLECTION

If the CONSTRAINTS are met in the matrix of the current word W, then the specified inflection is
applied onto the lexeme of W.

B. OTHERWISE::INFLECTION

The specified inflection is applied as a kind of default operation.

NOTE: This only can be the last statement in a block.

C. CONSTRAINTS::EXIT

An exclusion statement: Statements of this kind implement negative contexts in which a block (or
part of it) cannot be applied. If the associated constraints are met, the current block is abandonned.

FGW accepts the following types for INFLECTION:

Prefixation

Format: Af- (Variant: PREFIX Af)

The affix Af is prefixed to the lexeme of the current word.

Suffixation

Format: -Af (Variant: SUFFIX Af)

The affix Af is suffixed to the lexeme of the current word.

Infixation

Format: -Af- (Variant: INFIX Af)

The affix Af is infixed to the lexeme of the current word (see examples below).

Syncretism (replacement of stem)

Format: STEM F

The lexeme of the current word is replaced by the value of the feature whose attribute is F.

NOTE: The affixes (Af) in the above inflection types are normally strings, but they may be also
variables, provided they are bound in the condition part of the M-operation statement (see example
below).

Operation:

For every word W in a D-Tree, the general procedure of morphological synthesis is as follows:

· If the feature matrix of W contains an irregularity feature (v. §5 B) whose constraints are
satisfiable on the matrix itself, the lexeme feature (lex) of the word is replaced by the
declared irregular form. If this form is suppletive, the morphological synthesis terminates;
otherwise, the procedure goes on with the new lexeme. This scheme implements the principle
of lexical priority of Dik's Functional Grammar.

· The blocks of rules are applied on the matrix of W in strict order.

· The M-operations within the same block are mutually exclusive. They are tried in the same
order in which they occur in the block, but as soon as the first operation succeeds, the other
operations within the same block, regardless of whether they are applicable or not, are
discarded from applying. The block is then finished, and the next block is tried.

· The morphological operations interact in a cyclic manner with the spelling rules, with
phonological or graphemic adjustment following each morphological operation.

· If no block is applied, the lexeme of W remains unchanged.

Note that the relative order of the blocks in the grammar file reflects the relative order of their
corresponding morphemes in relation with the base. That is, the fact that a word has the form
stem+affix1+affix2 is reflected in the grammar file by placing the block of rules that attaches
the affix1 before the block that introduces the affix2.

Examples:

This an example of a whole block:

 BLOCK Agr (cat=V,vform=(prs|ptf|ptps|yap)):
 illoc=IMP | NOT finite | invar=t :: EXIT
 per=p1,num=sg :: -man
 per=p2,num=sg :: -san
 per=p3 :: -Di
 per=p1,num=pl :: -miz
 per=p2,num=pl :: -siz.

This block (called Agr) describes agreement inflection for a certain group of verb forms in Uzbek: as
indicated by the overall group of constraints, verbs whose form is either present (prs), future (ptf),
perfect (ptps) or present-progressive (yap).

Notice that the first statement is an exclusion statement: the block is not applied if the current verb is
imperative, not finite, or invariable (i.e. it includes the lexical feature invar=t). The rest of the
statements are operations of suffixation.

Exclusion statements can appear in any position within the block. When it is the first statement in a
block, it works as a global restriction; when it occurs in the middle of the block, it works as a
restriction for only the following section of it.

Now, some examples of different M-operations:

(a) Prefixation:

 cat=V, pol=Neg :: = na-

This statement (from Persian) says that negative polarity (pol=Neg) is marked in verbs by the prefix
na-.

(b) Syncretism:

 cat=N, num=pl :: STEM lexpl

This statement (from Hausa) replaces the standard lexeme of a plural noun with the value of the
feature lexpl (if any). For example, for the word kogi ('river') it must be koguna, as shown in the
following lexical entry:

 kogi : [lex=kogi,cat=N,gloss=river,lexpl=koguna]

Use of variables in inflection:

 cat=N, num=pl, pl=$A :: SUFFIX $A

This statement (from Yidish) attaches a suffix that is obtained from the value of the feature pl. This is
a lexical feature, found in lexical entris for nouns, such as the following:

 arbet : [lex=arbet,cat=N,gloss=work,gen=fem,pl=n].
 barne : [lex=barne,cat=N,gloss=pear,gen=fem,pl=s].
 bild : [lex=bild,cat=N,gloss=image,gen=neu,pl=er].

(c) Infixation:

 cat=V, focus=Actor, tns!=Fut :: INFIX um

According to this statement (from Tagalog), the verb receives an infix -um- if the focus constituent is
the Actor and the tense is not future.

The right treatment of infixation is a little tricky. In order to operate properly, FGW has to know
where the infix is supposed to be attached. This is made by inserting the place-holder character '%'
in the lexeme of the words that are possible hosts for infixation. For example, the entry for Tagalog
punta 'go' could be:

 go : [cat=V,gloss=go,lex='p%u%nta',Red=pu].

Note the use of quotes in order to demarcate the lexeme string when it contains non-alphanumeric
characters. The utility of the feature Red=su will be explained below.

Place-holders are consumed from left to right. If a rule inserts an infix, this is put in the place of the
first place-holder ('%'). If other rule needs to insert a new infix, it will be placed in the next place-
holder (if any), and so on. Consequently, the treatment of infixation depends heavily on the relative
order of the morphological blocks.

Reduplication (and even internal modification) may be simulated in FGW by the use of infixes and
place-holders. Consider reduplication. In Tagalog, many verbs reduplicate the first syllable of their
lexeme in most cases of present or future tense. This may be described by the M-operation below:

 cat=V, tns!=Past, Red=$A :: INFIX $A

This rule gets the value of the feature Red (reduplication) in the form of a variable, and treats it as an
infix.

15. Spelling rules

Spelling rules state the changes of graphemic or phonologic nature that are produced in the
concatenation of two strings X and Y (X+Y), normally a lexeme and an affix.

These rules conform to the following format:

MP Name: [ContextLeft] A/B + [ContextRight]

The substring A at the end of the first element of a concatenation is replaced with the substring B when
immediately following the specified left context and immediately preceding the specified right
context.

MP Name: [ContextLeft] + A/B [ContextRight]

The substring A at the beginning of the second element of a concatenation is replaced with the
substring B when immediately following the specified left context and immediately preceding the
specified right context.

Notice that:

· The sign + refers to the morpheme boundary in the concatenation, and needs to occur
immediately before or after the A/B pair (thus signalling whether the change occurs in the
first or the second element of the concatenation.

· A and B may be a character or a substring.

· The trigger form A may be expressed also as 0 (zero). This facility is used to implement
epenthesis (see examples below).

· The replacee form B may be expressed also as zero. This facility is used to implement
deletion of the trigger (see examples below).

· The context forms include characters, substrings, disjunctive sets, and abbreviations.

· Context forms may be repeated to a undefined extension prefixing them with an asterisk.

Disjunctive sets are groups of characters or substrings that may occur in a context position. They
have to be enclosed in curly brackets, as shown in the examples below.

Abbreviations are an easy and compact way to refer to disjunctive sets that are used repeatedly in the
formulation of spelling rules; normally they correspond to phonological natural classes, such as
vowels, labial consonants, sibilants, etc. Abbreviations must be previously declared, introduced with
the keyword AB, as the following examples illustrate:

 AB Voc: {a e i o u}.
 AB Sib: {s z sh zh ch}.

Different examples of spelling rules may illustrate the points discussed above:

(a) MP V_Del: Voc + V/0.
(b) MP D_Assim: {p t k s sh ch f x} + D/t.
(c) MP D_Def: + D/d.
(d) MP vIns: o 0/v + {o e a}.

Rules (a)-(ac) are from Uzbek, and rule (d) is from Punjabi.

Rule (a) says that the morphophoneme V is deleted after a vowel (Voc is an abbreviature, defined as
above). For instance in Uzbek, the possessive first-person singular suffix is -Vm. The concatenation
olma ('apple') + Vm produces olmam ('my apple').

Rule (b) exemplifies a case of assimilation: the morphophoneme D is realized as t just after a
unvoiced consonant (here represented by the disjunctive set {p t k s sh ch f x}. For
example, eshik ('door') + Da (locative) produces eshikta ('at the door').

Rule (c) is an example of a default feature (without any context). it states that the morphophoneme D
realized as d. Note that this rule only makes sense if placed after all the other possible rules that
handle D.

Rule (d) adds an epenthetic v between a morpheme ended by -o and a morpheme beginning with a
front vowel (expressed here by the disjunctive set {o e a}). For example, in Punjabi ho ('be') + e
produces hove.

Operation:

Spelling rules are applied in the very same order in which they are declared in the grammar file.
Usually, the first rules are more specific, whereas the last rule is always the most general or default
case. Consider the rules (a-b) above, and the explanations given there.

16. Sandhi rules

Sandhi rules carry out phonological modifications between the final words in the clause. Some
examples are the cases of so-called contraction (do + not > don't) and cliticization (Spanish: da + me
+ lo > dÃ¡melo 'give me that').

These rules rules have the format:

SANDHI: Word1 + Word2 = CONTRACTION.

For example:

 SANDHI: do + not = 'don\'t'.
 SANDHI: de + el = del.

Double quotes are used in the first example because of the use of the quote (that is escaped with the
backslash in order to tell the compiler that it does not indicates the end of the string.

17. Setting spypoints

FGW also offers the possibility of placing spy-points within the expression rules. They consist of the
keyworsd SPY followed by a string (its identifier). For example, SPY here. They are proper
statements, and must be separated with by a semicolon of the surrounding constraints. Their effect is
to show the D-Tree corresponding to the point of derivation in which it is encountered. Used sensibly,
spy-points are a useful tool to find out if a rule fails because of one particular constraint, or not.

18. The User Interface

The user interface of FGW distributes the main functions over a the following menus:

File Menu:

Load Grammar File

(Also accessible by clicking the icon on the toolbar.)

This command loads the contents of a grammar file into memory.

If an error is detected, a message shows up in the output window, and the approximate location of the
error is displayed. A common error is to omit the period that should be written after each declaration
or rule.

Load Lexicon

(Also accessible by clicking the icon on the toolbar.)

This command loads the contents of a lexicon file into memory.

Load Test suite

(Also accessible by clicking the icon on the toolbar.)

This command loads a suite file of test predications into memory, that may be subsequently generated,
one by one (by means of the option Choose Test Predication in the Generator menu), or
in batch mode (by the option Process Test Suite in the same menu).

Test suite files should have the '.tst' extension. Note that as text files, they must be edited with an
appropriate text-editor (such as the Windows Notepad).

A test suite file contains a set of test items, to be used mostly for checking the operation of a
developing grammatical description.

Each test item is a sequence of four distinct lines:

· The first line is a separator, expressed by two hyphens ('--').

· The second line is the 'translation' of the predication in a language familiar to the user.

· the third line is a predication, formulated in FGW notation.

· the last line is a string with the expected produced form. This is used in order to check out if
the process of realization has succeeded.

The file may contain single-line comments. They may appear only between after the separator line,
and are signalled by a prefix '%' in the first column of the line.

Here is an example of a test item:

--
% Comment
The child is playing
DECL NonPerf: playV A/Top=(sg: child)
usi yewe

Save data in VIP files

This option dumps all statements, rules and lexicon in memory into a file, using Visual prolog (VIP)
internal format.

This option is only for debugging purposes; it is not useful for the novice user.

Exit

This command terminates the execution of FGW.

Generator Menu:

Input Clause

(Also accessible by clicking the icon on the toolbar.)

This command allows the user to test the grammar of the target language, by introducing an
underlying predication. FGW generates a sentence encoding this meaning in that language, provided
that the corresponding grammar and lexicon files have been previously loaded.

This command activates a dialog window as shown below, where the predication can be written, or
pasted by the combination of the keys Shift + Ins.

Retry Last Clause

(Also accessible by clicking the icon on the toolbar.)

Thos option opens a window containing the last input predication, that can be modified or transformed
before trying it back again.

Choose test Predication

(Also accessible by clicking the icon on the toolbar.)

This option allows the user to select one underlying predication from a previously loaded test suite
file, and produce its surface realization in the target language.

Lexicon Statistics

This option displays some information on the number of different lexical categories used in the entries
of a loaded lexicon file.

Trace Mode

(Also accessible by clicking the icon on the toolbar).

This option opens a check box that allows the user to identify which rules will be applied in the
derivation, and also inspect the details of different intermediate matrices produced during the
derivation. Several or all of these options may be selected simultaneously.

· Linearization Rules: This shows which linearization rules have been applied for the
lienarization of the nodes of the D-Tree. It displays information as the following:

1 / 2 by rule #DEF
2 / 4 by rule #Top

These lines say (a) that the node 1 is ordered in front of the node 2 by the application of the
lienarization rule DEF, and (b) that the node 2 precedes the node 4 by virtue of the rule Top.

· Morphology Rules: This option shows the name of the blocks that have been applied during
the phase of morphological synthesis.

· Initial D-tree: This option displays the D-Tree after lexical expansion. (The only difference
with the input predication is that the metalinguistic predicates have been translated into the
target language.)

· D-Tree before morphology: This option displays the D-Tree after the application of the
insertion rules, immediately before the linearization phase.

· Final D-Tree: This option displays the D-Tree after the application of the placement rules,
and before the application of the rules of morphological synthesis.

D-Trees are displayed in text mode, as the following example shows:

 -- MAIN: var (be_located)
 |-- U/Top: resturon (restaurant)
 |-- Loc: yoni (near)
 | |-- Restr: köl (lake)

FEATURE MATRICES:
================
: [pol=Af, domain=clause, lex=var, cat=V, gloss=be_located, vclass=intr,
illoc=DECL, tns=Pres]
: [domain=term, ntype=com, per=3, lex=resturon, cat=N, gloss=restaurant,
def=d, num=sg]
: [domain=term, per=p3, lex=yoni, cat=N, gloss=near, ntype=adv]
: [domain=term, ntype=com, per=3, lex=köl, cat=N, gloss=lake, def=d, num=sg]

Each node is identified by a number, in brackets; after it, the functions that connect the node to its
governor, followed by the lexeme (and evenetually the gloss) of the corresponding node. Note also
that dependency is marked by indentation.

The feature matrices of each node are listed just below the D-Tree, identified by their node number.

Trace Tree

(Also accessible by clicking the icon on the toolbar).

This option toggles the trace mode in or off. When in trace mode, FGW shows information about the
side-effects of expression rules.

Consider the following example:

1 ------------------------------
Promotion of U (Subj_Assignment)
Unification (Tense)
Unification (SV_Agreement)

2 ------------------------------
No expression rules applied!

3 ------------------------------
Unification (PossN_Agreement)

4 ------------------------------
No expression rules applied!

For each node (identified by its number) the modifications performed by expression rules on the D-
Tree are listed; for example the message Promotion of U (Subj_Assignment) above after
reports the promotion of the current node (1) to Subject status, performed by the Subj_Assignment
rule.

The number that appear in the display of this option is the same used in D-Trees, as obtained in Trace
Mode.

Test Suites Menu:

Process Test Suite

This option allows the user to generate all the predications contained in a test suite file, provided they
are loaded already into memory. The results are saved in a text file called after the language name (as
declared in the grammar file), prefixed with the prefix Test-. For example, if the name of the
language is 'English', the production of a test suite will be saved in a file called Test-
English.txt).

Error Report

Produce Hand-out

Editor Menu:

Set editor

This option allows the user to set the path to its preferred text editor.

Launch editor

This option launchs a text editor, provided it has been previously set.

19. Some Terminology

a) Dependency Tree (D-Tree)

A Dependency Tree is a representation of the structure of a sentence as a network of nodes, in which
there are nodes for individual words but no nodes for phrases. The nodes are all connected by
relations of semantic and syntactic or pragmatic nature. For example, in the sentence The Congress
passed the new law , the nouns Congress and law depend on the verb pass (as Agent and Patient,
respectively), and the adjective new depends on law (as a Modifier), but there is no explicit node for
the noun phrase constituted by the noun law and the adjective new. These relationships may be
displayed graphically by means of dependency trees (D-trees) as the following:

b) Feature Matching

A feature F=V1 in a D-Tree and a constraint F=V2 match if:

· V1 and V2 are identical strings;

· V2 is a disjunction of the form (A|B|C),such that V1 is one of its possible values;

· V2 is an anonymous variable (ex. num=$)

· V1 is a subtype of V2,as stated in the feature declarations of the grammar file.

c) Feature Matrix

A set of features, normally displayed in list format:

[domain=term, sem=inanim, ntype=com, per=3, lex=moshina, cat=N,
gloss=car, def=d, num=sg]

d) Path Evaluation

For a path E1/.../En-1/En, the sequence of features E1/.../En-1 is followed until its end. Then, the
feature En=VALUE is looked for; if it is found, the evaluation results to VALUE; otherwise, a delayed
feature is created. Delayed features are evaluated at the end of the application of all cycles of
expression rules.

The evaluation of a path fails if the final node cannot be located.

e) Path Traversal

This procedure returns the index of a node in the D-Tree that is linked to the current node by a given
relation.

A path element may be of the following types:

· A disjunction, expressed as (F1 | ... | Fn).

· A multiple function (expressed *F): zero or more instances of the required function.

· A plus function (expressed +F): one or more instances of the required function; at least one.

· DEP: any dependent of the dependent node.

· A variable (a name prefixed by '$'): matches any dependent of the current node.

· GOV: the governor of the current node.

· PRED: the semantic predicate of the current node (if any). Otherwise, the PRED is the node
itself . The semantic predicate is a semantic function that must be declared in advance.

· MAIN: The highest node of the D-Tree.

· ANTECEDENT: if the current node is anaphoric (i.e. it has a binding feature with a
Coref=ID feature), the antecedent is other node in the D-Tree that has the feature
Index=ID.

· an atomic function (F): it must match any of the relations (semantic, pragmatic or
grammatical) of the current node.

References

ANDERSON, Stephen R. (1992). A-Morphous Morphology. Cambridge University Press

AISSEN, J. and David PERLMUTTER (1983) Clause reduction in Spanish. In D. Perlmutter (ed.) Studies in
Relational Grammar 1, University of Chicago Press.

DIK, Simon C. (1991) "Functional Grammar". Chapter 7 in F. G. Droste & J. E. Joseph (eds.)
Linguistic Theory and Grammatical Description. Benjamins. pp. 247-274.

FRASER, Norman (1994). Dependency Grammar. In R. Asher (ed.) Encyclopædia of Language and
Linguistics. 860-4: Pergamon.

JAKOBSON, R. (1963). On linguistic aspects of translation. In Reuben A. Brower (ed.) On translation,
Harvard University, Press; Also in R. Jakobson 1971 Selected Writings vol. II.

MEL'ČUK, I. A. (1988). Dependency syntax : theory and practice. Albany: State University Press of
New York.

NOONAN, Michael (1985) Complementation. In T. Shopen (ed.) Language typology and syntactic
description. Vol. II, Cambridge University Press, 42-140.

