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Abstract
This work presents a new approach to the multiresolution modeling of polygonal meshes. This approach is based
on the theoretically well-established fractal image compression techniques. A polygonal mesh is represented as
a fractal using an iterated function system (IFS). In this way, a level of detail can be obtained over a region of
the mesh by successively iterating the IFS. The main advantage is that it becomes possible to recover new levels
of detail that were not present in the original mesh, so that the quality is not lost as the observer approaches
the mesh. Another characteristic is that the same representation can be used over textures, and in this case the
algorithm is directly implemented over the GPU. The visualization time obtained allows this new approach to be
used in real-time interactive computer graphic applications.

1. Introduction

Figure 1: The first four decompression passes of the Phleg-
matic Dragon 3D model as a fractal.

Interactive visualization of large triangle meshes is a
common problem that is present in engineering (CAD
model visualization), architecture (virtual walkthroughs),
GIS (terrain model visualization), computer games, film
post-production, medicine and so on.

Multiresolution modeling has proven to be a powerful

tool for avoiding this problem, as shown by the large num-
ber of papers published on this research topic; these works
deal with issues ranging from terrain polygonal meshes
[Hop97, DWS∗97, HDJ05] to general polygonal meshes
[XV96, Pri00, EsAV99, FPM97, FMPP98, LE97, EMB01,
Paj01, GH97, KL01, KL03].

In this work a new approach to multiresolution modeling
of polygonal meshes is presented. This approach is based
on the theoretically well-established fractal image compres-
sion techniques. This new method codifies a multiresolution
model as a fractal using an iterated function system (IFS)
representation. The view dependent levels of detail are re-
covered by iterating over the IFS until the required resolu-
tion is reached. Since the models are codified as a fractal it
is possible to recovered a resolution with more detail than
that existing in the original model. This new detail is not an
artificial one as in previous works [?], but is based on the self
similarity of fractals. Moreover, the codified multiresolution
model sizes are smaller than the original polygonal model.

Unlike other multiresolution models that have previously
been published, our multiresolution model does not need a
simplification or a decimation algorithm to obtain the set of
levels of detail that the model stores.

The decoding algorithm can be easily coded as a GPU

c© The Eurographics Association 2010.



Ó. Belmonte, S. Sancho & J. Ribelles / Multiresolution Modeling Using Fractal Image Compression Techniques

pixel shader. The same algorithm used to represent the
polygonal mesh can therefore be used to represent a texture
having the same properties. In particular, new self-similar
detail can be added to the image if the observer approaches
the surface.

The rest of this paper is organized as follows. Previous
work on multiresolution modelling is reviewed in Section 2.
Section 3 presents the theoretical background to fractal im-
age compression and how this is used to build a multiresolu-
tion model over a height field model. The description of the
experiments and their results are given in Section 4. Finally,
conclusions and future work are discussed in Section 5.

2. Related Work

In [XV96] Xia et al. presented a view dependent multireso-
lution model for polygonal models based on a hierarchical-
vertex structure named merge trees developed by the authors.
Each merge tree is built bottom-up, from the high detail
mesh to a low detail mesh, using edge collapse. An edge
collapse establishes a parent-child relationship between the
two vertices of the edge, the vertex that remains being the
parent of the vertex that collapses over it.

In [Hop97], Hoppe presented a view dependent multireso-
lution terrain model also using edge collapses. Prince [Pri00]
extends the model to general polygonal models.

In [EsAV99], El-Sana presented a view dependent mul-
tiresolution model that uses topology simplification through
virtual-edge collapse. A virtual-edge connects two vertices
in which Voronoi cells share a Voronoi face and are not edges
of the model. In contrast to [XV96, Hop97], in this case im-
plicit dependencies are used, so fold-overs are more easily
checked as the multiresolution model is updated.

The multiresolution model presented by De Floriani et al.
[FPM97, FMPP98] uses a directed acyclic graph (DAG) as
the data structure to build a view dependent multiresolution
model. Each node of the graph stores local modifications,
which are typically vertex insertion or removal. A cut over
the DAG determines which triangles to visualize.

The hierarchical structure used by Luebke et al. [LE97]
is built using a generalization of the vertex collapse and split
over an octree. In each simplification step, all vertices within
an octree cell are replaced by a representative vertex. During
the visualization process, a cut over the tree is obtained and
it is incrementally updated by taking advantage of frame-to-
frame coherence.

In [EMB01], Erikson et al. presented a multiresolution
model based on a hierarchy of levels of detail (HLODs).
Inner nodes of the hierarchy represent individual simplified
parts of the original polygonal model (LOD nodes) as groups
of these parts that are simplified together (HLODs nodes).
This model allows some limited edition by recalculating,

during the editing process, the parts of the hierarchy that
have been modified.

In [Paj01], Pajarola et al. presented a hierarchical mul-
tiresolution model based on a half-edge representation of
the polygonal mesh. The hierarchy is built using a modi-
fied version of Garland’s simplification algorithm based on
edge contractions [GH97], in such a way that the topology of
the mesh is not preserved during simplification. To minimize
the dependency between vertices in successive contractions,
candidate edges for simplification are selected in mesh zones
that are a long way away from each other.

In [KL01, KL03], Kim and Lee presented a new scheme
to build view dependent hierarchical multiresolution models
based on the dual space of the polygonal model, which the
authors called transitive mesh space of a progressive mesh.
A dual piece over the dual space is assigned to each ver-
tex in such a way that it does not intersect any other dual
piece. Edge contraction is used to build the hierarchy and
the dual piece of the vertex that remains after each contrac-
tion is the union of the dual pieces of the original vertices.
There is no dependency between the dual pieces of the hi-
erarchy which have no parent-child relationship and, hence,
very drastic changes can be obtained in the simplified mesh.

M. Duchaineau et al. [DWS∗97] presented the ROAMing
Terrain model. This view dependent multiresolution model
for terrain models originally used bintree triangulation as
data structure. Later, in [HDJ05] the structure was changed
to a diamond data one. The diamonds or triangles are dy-
namicaly updated using split and merge operations. To op-
timize these operations two priority queues are used.As the
model chages, split and merge operations are respectivelly
done over the diamonds or triangles in the queues.

3. Model Description

This section shows the basis of fractal image compression
as an IFS and how it is possible to build a multiresolution
model from a digital terrain model (2.5D). Then it is shown
how these ideas can be extended in the case of 3D models.

3.1. Fractal image compression

Fractal image compression is based on the fact that images,
like fractals, are redundant in the sense that they can be built
from transformed copies of themselves [Jac90]. In the same
way that a fractal can be represented by a set of Iterated
Function Systems an image can also be represented by a set
of IFS [Jac90, Bar88, Fis92, BMK95].

An IFS is a dynamic system W of n contractive transfor-
mations wi over a metric space. A 2D IFS maps the plane R2

over itself, and it converges as the system is iterated.

W (x) =
n⋃

i=1
wi(x) {wi : R2→ R2|i = 1, ...,n} (1)
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The map W serves our purposes as a fractal scheme that
codifies an image I in 2D as a set of contractive transforma-
tions over itself. The fixed point of W is an approximation to
the initial image I.

Encoding (compression): Fractal encoding of an image
I finds the set of transformations wi that generates the image
I as they are iterated. If the elements of R2 in the original
space are called domains D and the elements R2 in the desti-
nation space are named ranges R, then encoding consists in
finding the domain D that, when transformed, best fits each
range R in accordance with the metric that has been defined.
The fixed point theorem for contractive mappings imposes
that the set of transformations be contractive in such a way
that the iteration over the IFS converges to the image I. On
the other hand, images are not exactly auto-similar and so,
in order to obtain a better fit between domains and ranges,
brightness o and contrast s factors are introduced into each
transformation, taking s < 1. By so doing, the search pro-
cess must find the optimum o and s that transform D while
minimizing its difference with R under the defined metric.

An IFS allows us to choose the sizes and arrangements of
range R, and also the precision of the transformation param-
eters like R2 or the o and s factors. This makes it possible to
choose the size needed to store an IFS. Generally, this size
is less than the size of the original image I and some infor-
mation is lost. The encoded process is a lossy compression
process.

Partitioning: An important issue, directly related with the
quality of the codified image, is how ranges are chosen. If we
impose that ranges cannot be superposed, then they can be
chosen over a grid of constant size. In this way, the quality
of the codified image is directly dependent on the grid size,
since the more transformation the IFS stores, the better the
quality of the codified image will be. Ranges can be chosen
adaptively, in such a way that the size of the grid can be
adjusted to the details of the image, taking larger sizes of
the grid in those regions of the image with little detail, and
a smaller grid size in those regions of the image with more
detail. Adaptive grids diminish the size of the codified image
while maintaining its quality. Quadtree, HV, and triangular
subdivisions are the most frequently used types of adaptive
partitioning [Fis92, BMK95].

Domain set: A domain of the image can be any region
of the image and all of its orientations and flips. The size
of the domains must be bigger than the size of the ranges in
order for an IFS to be contractive. On the other hand, one do-
main can superpose onto others. For the sake of simplicity,
domain sizes are chosen with double the size of the range
sizes, thus making it possible to perform an average sub-
sampling so that a domain can be compared with a range.
For a given image of size n ∗m and domain size t ∗ t there
are (n− t + 1) ∗ (m− t + 1) different domains. Contracting
and comparing each of these domains with each range in or-
der to find the domain that best fits a range has a very high

computational cost. To reduce computational time domains
can be chosen either over a regular grid or at random. But a
better strategy that is commonly used [BMK95] is to group
together those domains that look more like each other, and
compare each range only with the domains in the group that
resemble each other.

Decoding (decompression): The compressed image can
be recovered by simply iterating the IFS over a seed image.

I ' |W |= lim
x→∞

W on(x)

The result of decoding is independent of the seed image
as x→∞ but can cause the fractal to converge in more or
fewer iterations. The more the seed image looks like the de-
coded image, the faster the IFS converges. Decompression
can be performed in several ways: Recovery with fixed res-
olution: for obtaining a decompressed image of a specified
size. An IFS is iterated over a seed image, the decompressed
image will have the same size as the seed image. This is
the direct method and yields the best quality results of the
decompressed image I. Nevertheless, seed images of sizes
other than those of the encoded images can be used. IFS
iterates by subsampling the pixels of the images. Hence, a
decompressed image of arbitrary size can be obtained.

Recovery with continuous resolution: for recovering the
value of the image at a given point independently of the rest
of the image points. In this case, the iteration process must
be inverted, that is, by beginning with the real coordinate of
the final point we are interested in, the set of transformations
wi is found. This process is repeated a number of times and
for the s and o factors of all transformations wi involved. In
the end, the value of the seed image is taken and the trans-
formations are performed in an inverse order to the one in
which they were found. The final result is the value of the
IFS iterated only over the selected point.

Properties: An image codified as an IFS has the follow-
ing characteristics:

Selective quality: in the moment of building the IFS one
area of the image can have more priority than another and,
thus, regions of interest (ROI) are selected during the com-
pression of I. In order to use ROIs, some parts of the original
image can be split with a large number of ranges and also a
large number of domains are used while obtaining the trans-
formations wi. Thus, the ROIs will have a better resolution
while decompressing the image.

Infinite resolution: There is no limit in the size a fractal is
decompress. An image codified as a fractal can be decodified
at every resolution, much more, much less or at the same size
that the original one. The boundaries of the image codified
are in the range [0,1] and it is possible to recover information
of the image for any given point within this range. This gives
an added detail to the image as shown in Figure 2.

Continuous range of colour: although the original image
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Figure 2: Three examples of added detail on fractal de-
compression: top 2D model, center 2.5D model, bottom 3D
model. The image on the left is a global vision of the model.
In the middle there is a zoomed in region. The image on the
right is the fractal model decompression on this zoomed in
region.

had a finite number of colours only, the codified image as an
IFS has a continuous range of colours between [0,1]. This
property is very useful if the colour resolution in the image
representation needs to be changed.

Progressive refinement: The more iterations over the IFS
the more the quality of the image. The image obtained after
an iteration is the image seed taken to perform the next it-
eration. This way the iterative process can be stopped after
reaching some pre-specified error.

Selective refinement: Since the decompression process is
done one pixel every time, some regions of the image can be
decompress at high resolution than others.

Lossless compression: Fractal compression is a lossy
compression technique. Nevertheless, lossless or quasi-
lossless compression can be obtained. One method to obtain
lossless compression is to use an IFS variation with place-
dependent probabilities [Bar02]. Another method is to take
a regular partitioning of fixed size with range size of one
pixel. To retain the topological information in the compar-
ison range-domain, the original image I is supersampled in
such a way that ranges of size two and domains of size four
are obtained. This way one transformation by pixel must be
stored, increasing the compress image size.

Colour image compression: Fractal image compression
techniques can be easily extended to images with more than
one colour component. Fractal colour image compression

means to codified independently each colour component of
the image. In the same way, colour image decompression
means to decodify all colour components of the image. The
YIQ colour space (luminance, hue, saturation) is advisable
when using colour images [BMK95], because the human eye
in not particularly sensitive to colour information, but more
sensitive to brightness. In this way, it is possible to compress
with a high ratio the I and Q canals without loss of quality.
The IFS of the I and Q canals used to be reduced to a half or
a quarter of the original image size, and they are compressed
with a bitrate lower than that of the Y canal, so the bitrate of
the overall colour image is reduced.

3.2. Fractal compression applied to elevation maps

Digital elevation models (DEM) are used to represent regu-
lar grid-sampled data of terrains. A DEM elevation map al-
lows access to an elevation value using a pair of coordinates.
These coordinates allows the height data to be arranged as a
two-dimensional array. Each height of the DEM can be in-
terpreted as a grayscale level. Thus, the DEM is similar to a
grayscale image.

Compression: In order to set up the ranges we used a
quadtree-based adaptive partitioning. The user chooses the
maximum number of transformations for an IFS represen-
tation. Should this maximum number not be reached, the
node that gives rise to the greatest error in approximation
is splited, its transformation is erased from the list and a new
transformation is added for each of its four child nodes. To
speed up the process of minimizing the error transformation,
the domains are grouped together by appearance in order
to search between only the domains with a similar one. In
our case, the appearance criterion is based on the domain’s
brightness arrangement. This works by subsampling the en-
tire domain to a 2x2 size, classifying the new arrangement of
values from lower to higher, and grouping the domain with
the ones that share the same arrangement.

The metric we have chosen to compute the distance be-
tween two images xi, j and yi, j with size t ∗u is the rms met-
ric, which is defined by the following equation:

drms(x,y) = ||x− y||2 =

√√√√ 1
t ∗u

t,u

i, j=1
(xi, j− yi, j)2

with this metric, the search for the contrast si and bright-
ness oi that minimizes the difference is reduced to solve a
least squares problem [BMK95]. For the terrain, we used a
lossy compression with a small lossy factor to preserve much
of the original elevation map appearance. The compression
is an off-line process, and compression times for different
elevation maps are shown in Table 1. Finally, the elevation
model compression can also be adjusted with ROI zones.

Decompression: The terrain rendering algorithm is the
one that defines what points we need elevation for. A general
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bintree-based algorithm was used. This algorithm generates
a regular triangle hierarchy. However, any algorithm of any
type of structure can be used.

There are two options in order to obtain the elevation for
each triangle vertex. The first is to decompress the whole
of the fractal DEM with discrete extraction of the IFS. In
this case, we recommend subdividing the initial DEM and
compressing each piece as a separate fractal. In this way, de-
compressing one point will not have a global decompression
cost on the DEM. But it will only be expected to decom-
press the piece of DEM in which the point lies. In addition
to this, a small version of the original elevation map can be
stored with the IFS with no compression at all. Thus, the
decompression will be faster if the seed for each point is
taken directly from its projection onto this thumbnail. How-
ever, a continuous extraction of the IFS will adjust much
better to the terrain representation necessities. Furthermore,
the value of every point would be extracted independently
and there is also the possibility of extracting values for coor-
dinates where the DEM had no information due to the infi-
nite resolution of the IFS. This would be very advisable for
representing algorithms of the TIN terrain type. We will use
decompression of continuous resolution because it is the one
that best fits the properties of selective decompression, pro-
gressive refinement and added detail. Moreover, we will not
store any thumbnails to work as the initial seed. The seed for
each coordinate will be the midpoint between the minimum
and the maximum elevation because this value will approxi-
mate equally to every possible elevation.

View dependent multiresolution models compute their ap-
proximation to the terrain according to vision parameters.
Fractal DEM decompression can also take into account vi-
sion parameters to perform selective decompression. Trian-
gle culling, terrain clipping, camera distance or screen pro-
jection of triangles can be used for a guided decompression
(see Figure 3). The quality of a fractal DEM coordinate de-
compression will be determined by these parameters.

IFS-based DEMs can progressively refine their heights.
Beginning with the seed, and thanks to the IFS iteration algo-
rithm, it is possible to compute a more precise refinement of
the decompression using the actual elevation. This has been
impossible until now with a common DEM and implies the
capacity of a time controlled decompression. Now it is pos-
sible to decompress in a limited time and use the result in a
later decompression. This property will be greatly appreci-
ated in cases where the response of the terrain representation
is required in real time.

In most terrain representation methods, noise is com-
monly added to points that exceed the maximum DEM reso-
lution. The new fractal DEM does not have this problem due
to the fact that fractals do not have resolution limits. Its use
will, by definition, give even higher resolutions than the ones
the DEM originally has. As shown in Figure 2, this gives an

Figure 3: Fractal terrain with viewport culling and selective
decompression based on the camera distance to each vertex.

added detail that is far better suited to the original terrain
than only adding a random noise.

GPU texture decompression: Thanks to the new pro-
grammable GPU, terrain texture can also be a result of IFS
decompression.With the present limitations this IFS will
have a regular structure with the same width and height in
order to make the pixel shader feasible.

The pixel shader can receive the IFS description by en-
coding this in texture elements. In order to simplify, the IFS
description is split into information groups and each texel
of a texture will imply one range of the regular IFS. With
process, four different textures are created. The first texture
is named texDOMPOS and has information about the po-
sition of the domain in image coordinates. The second one
is named texSO and defines the brightness o and contrast s
values of each range. The third texture, texORI, is the last
one with IFS information and encodes the domain’s orien-
tation. Finally, we recommend the creation of a fourth tex-
ture for shader enhancing reasons. This texture is an 8x4
matrix which encodes orientation matrixes for each possi-
ble domain’s orientation. It is also important to note that in
many cases integer range textures must be recoded to real
range ones. This is because graphic programmable shaders
define texel values for their textures in the range [0...1] for
generalization purposes.

In addition to textures, certain variables will also need to
be defined for the shader. The first two variables are depen-
dent on the size of the IFS. These are transx, containing the
number of ranges per side, and its inversed value, invtransx.
Another variable will be the number of iterations of the de-
compression system of the IFS and it is called iterations. The
last one will be seed, obviously consisting of the seed that the
decompression begins with. The pixel shader implements the
inverse decompression algorithm for real coordinates.
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3.3. Fractal compression of polygonal meshes

This section explains how to extend the fractal image com-
pression technique to polygonal 3D meshes. To do so, a
volumetric representation of the mesh [Jon95] known as a
distance field is computed to be used in its place. A dis-
tance field is equivalent to a grayscale 3D image in the same
way an elevation map was defined as a grayscale 2D im-
age in Section 3.2. This 3D image can be compressed and
represented with an 3D IFS (IFS3D from now on). Once
the IFS3D has been computed, the multiresolution repre-
sentations can be obtained as approximations to the original
distance field. These approximations are simply decompres-
sions of the IFS3D. Finally, a polygonal mesh can be recon-
structed from the decompression of the distance field using
the marching cubes [LC87] reconstruction algorithm.

From 3D mesh to 3D image: Commonly, a mesh is
equivalent to a polygonal model (almost always a triangle
model) in 3D. However, our method is not yet prepared to
work directly on polygons. To be able to work with the mesh
as a fractal, first it must be transformed into a 3D image.

The 3D image representation of the original mesh will be
its distance field. A distance field is a 3D matrix (3D image)
that is wrapped onto the mesh and stores the value of the
distance between the mesh surface and the center of each
voxel. The value of the distance is calculated in such a way
that when the voxel is completely out of the mesh the value
of the distance is equivalent to the maximum. On the other
hand, when it is completely inside it will be equivalent to
the minimum. And when the center of the voxel is placed
on the surface itself the value will be zero. In our case, we
codify the distance field as an signed byte precision 3D array
in such a way that the values range between -128 and 127.

To construct the distance field we use an octree hierarchic
structure. In this way, only the voxels which intersects the
surface of the mesh are refined to the point of becoming the
leaves of the tree. On the other hand, when a node does not
intersect with the surface, the voxel that it represents and all
its descendants voxels possesses the same distance.

The distance between the central point of the voxel and
the surface of the mesh is computed as the minimal distance
between this central point and any triangle of the object. It
is possible to use a generic distance algorithm between 3D
point and 3D triangle to solve this problem. The same al-
gorithm will serve to know if the central point of the voxel
is inside or outside the mesh. If the normal on the triangle
of minimal distance is facing toward the central point of the
voxel it is said that the point is inside the mesh and a posi-
tive distance is assigned to it. In the opposite case it is said
that the point is out of the mesh and a negative distance is
assigned to it.

Fractal compression of 3D Image: The fractal compres-
sion of 3D images is a direct update of the case with 2D
images. Although visually it is difficult to conceive an im-

age in 3D, it is mathematically as feasible to apply the IFS
method to 3D as to those in 2D.

To work in 3D first it will be necessary to consider the
new ranges and domains that also happen to be in 3D. An-
other important change is the complexity of its homoge-
neous transformations that range from eight different pos-
sible orientations to 32. This implies that the set of possible
domains increases in a critical way. Moreover, it is neces-
sary to change the algorithm that minimizes the difference
between ranges and domains. This is due to the fact that the
number of pixels that they both contains changes. Otherwise,
the compression process is carried out in the same way as
in Section 3.1 and an IFS3D is obtained that is capable of
compressing the distance field generated from the original
polygonal mesh.

We have used an octree hierarchy so that to obtain the
IFS3D it is only necessary to process those voxels that inter-
sects the mesh. The number of transformations to be codified
will depend on the necessities in each case. Nevertheless,
considering ranges of a minimal size of two is enough for
the mesh to have a visually acceptable quality. In contrast, if
we require the mesh to have no loss in quality it will be nec-
essary to use the lossless methods and this will considerably
increase the final size of the compressed mesh. With regard
to the domains to be borne in mind, as always the rule is: the
more, the better. We advise considering all the possible ones
although the compression time increases a lot. In order to
avoid affecting the compression time in excess, dominions
grouped by similarity can be used.

Decompression: The decompression of an IFS3D can be
performed like in the 2D case in discrete or continuous co-
ordinates and the result is again a distance field. Thus, when
decompressing we can perform a discrete extraction adapted
to 3D and obtain an approach to the initial total mesh with
the resolution that is needed. Alternatively, we can define a
new center, size and number of voxels; and extract a new
distance field that it completely different to the original. In
order to calculate its distance values, the IFS3D continue ex-
traction will be used. Therefore, thanks to the fractal decom-
pression fractal a distance field can be decompressed from
the IFS3D with the resolution (see Figure 2) and in the spa-
tial position of the space that is desired.

From 3D image to polygonal mesh: Transforming a
fractal decompressed 3D image into a polygonal mesh is
very simple. All that has to be done is to reconstruct the tri-
angles using marching cubes and treat the decompressed im-
age as a distance field. Each triangle will be obtained from
the marching cubes algorithm and thanks to the distance val-
ues contained in the voxels. The vertices will be adjusted to
the original mesh surface by linearly interpolating the dis-
tance values of adjacent voxels.
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Table 1: Compression results of different sample fractals
with a set of parameters.

Model & params Time Psnr Ratio

Lenna const range2 14.000s 49.79db 0.81:1
Lenna quad 5000 11.750s 37.74db 2.56:1
Terrain const range2 373.172s 67.92db 0.79:1
Terrain quad 20000 283.578s 49.63db 2.49:1
Eagle const range2 257.765s 50.15db 2.10:1
Eagle quad 40000 228.469s 47.67db 3.33:1
Bunny const range2 14.844s 39.74db 6.93:1
Bunny quad 5000 42.875s 39.71db 13.87:1
Dragon const range2 578.828s 42.70db 9.36:1
Dragon quad 20000 2187.797s 42.55db 26.63:1

4. Results

In order to test the new method, an experimental implemen-
tation of the described algorithms has been made. It has been
used C++ with OpenGL and GLSL. All the test were exe-
cuted on a single PC with a single AMD Sempron 2200 to
1.5 GHz processor with 512 MB of RAM and a NVIDIA
GeForce 6200. All the executables are compiled with the
GNU C/C++ Compiler.

Table 1 provides compression results for 2D, 2.5D and
3D IFS fractals. The compression parameters of the sam-
ples have been chosen between the most characteristic ones.
They correspond to a constant regular structure with ranges
of size 2 and 1 (quasi-lossless), and a structure in quadtree
form with fixed number of transformations according to the
size of each image. The domains set is the bottle neck of
the algorithm and affects in such a way that the more great
is its number the more time costs the compression but the
more quality is obtained. In all cases a domains set of fixed
jump of 4 will be used because it has a good relation be-
tween resulting quality and time used in the compression. It
can be deduced that as long as the number of transformations
is raising, the quality of the fractal raises also and its ratio
of compression descends. Obtaining even ratios that surpass
the initial size of the file to compress. However, this does
not imply that they are due to reject because the new format
contributes to the image with fractal qualities that can jus-
tify their increase of size. Also it is convenient to indicate
that when compressing distance fields greater compressions
usually occurs because their great zones with identical val-
ues. This zones are those that lay completely inside or com-
pletely outside the original mesh.

Once the fractals from the previous table are compressed,
Table 2 shows the results of their total decompression time
in different situations. The quadtree-based fractal with more
transformations is used as sample for each model. All the de-
compression tests have been made iterating the IFS until an
mean absolute error of less than 0.002 is reached between

Table 2: Decompression times of a set of fractals with dis-
crete and continuous methods and zooms of 50% and 200%.

Model & params Zoom Discrete Real

Lenna quad 10000 50% 0.078s 0.062s
Lenna quad 10000 200% 0.484s 0.969s
Terrain quad 40000 50% 0.218s 0.344s
Terrain quad 40000 200% 2.078s 4.945s
Eagle quad 80000 50% 0.656s 0.687s
Eagle quad 80000 200% 8.343s 9.794s
Bunny quad 10000 50% 0.047s 0.016s
Bunny quad 10000 200% 2.766s 0.984s
Dragon quad 40000 50% 0.343s 0.125s
Dragon quad 40000 200% 17.281s 7.125s

an iteration and the next one. This, rarely needs more than
10 iterations of the IFS. The used methods have been both
the discrete method and the real coordinates one. The chosen
zooms have been 50% and 200% in reference to the fractal
original size. The decompression in real coordinates presents
a computational weight that is greater than the discrete one.
However, in the distance fields the opposite happens because
of the big internal and external zones of the mesh. With
the continuous method these zones are instantly discarded
whereas in the discrete method transformations are executed
with them in all the iterations of the IFS.

It is dificult to show the results that the new method has in
the representation of meshes. Even more when the charac-
teristics of ROI, infinite resolution, progressive decompres-
sion or selective decompression in real time environments
are used. We have implemented them all and can affirm that
besides to work, they endow with flexibility the method to
adjust it to any necessity. The fractal extraction is not as fast
as some of the present multiresolution methods are. Never-
theless, the changes can get to be more than substantial in
the appearance (see Figure 2).

Performance tests of fractal decompression shader have
also been made. Nowadays, the GPU has some implementa-
tion and execution limitations. Even so, the shader decom-
pression works in real-time at full screen (1024x768) in re-
stricted environments.

5. Conclusions

This work presents a new multiresolution model entirely
based on the fractal image compression techniques. A polyg-
onal mesh is codified as an IFS over a continuous domain.
The model is progressively decodified (decompressed) by
iterating the IFS. The codified model can be decodified at
whatever level of detail and size, even levels of detail of
higher resolution than those in the original model can be ob-
tained. Finally, lossless compression is always possible but

c© The Eurographics Association 2010.



Ó. Belmonte, S. Sancho & J. Ribelles / Multiresolution Modeling Using Fractal Image Compression Techniques

this way the size of the codified model is higher that the orig-
inal one.

To improve the continuous recovery taking into account
the subsampling with neighbours that the IFS needs is a task
for future research. Another planned improvement is to di-
rectly obtain the fractal representation without using any dis-
tance field. We also plan to investigate paging the geome-
try and the textures of the model for very dense polygonal
meshes, and the model streaming as well. As further investi-
gation, we plan to add the time dimension to the codification
process, in such a way that an animated mesh could be rep-
resented as a fourth-dimensional fractal. Finally, to compare
the performance of our model with the performance of mod-
els with similar characteristics is a planned work as well.
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