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ABSTRACT

Structured scenes are usually composed of man-made ob-
jects, often with lack of texture, which makes stereo corre-
spondence more difficult. In this paper, we present a new
matching algorithm which directly gives a 3D representa-
tion of structured scenes, by computing region correspon-
dences and occlusions cooperatively. The new algorithm
controls the minimization of a function for each region in
several steps, in order to cooperatively guide the process to-
wards a global convergence. We analyze its theoretical com-
putational cost, and we present some experimental results to
validate the scope of this approach and the possibilities of a
generalization of the method to planar and other surfaces.

1. INTRODUCTION

In this paper, a new method for stereo vision is presented,
which aims to produce a 3D representation of a scene from
two views. The aim of this approach is to obtain a 3D
model of the environment, useful in several applications:
path planning of mobile robots and manipulator robots, 3D
modeling of scenes and objects for virtual reality applica-
tions, product presentations, etc.

We focus on structured scenes, mainly indoors, which
are composed of man-made objects. These scenes usually
contain planar surfaces, and are often poorly textured. Stereo
vision methods are capable of providing a depth map of the
scene, which is denser when surfaces are well-textured. In
order to obtain a useful 3D representation (i.e. a polygonal
mesh model), a range segmentation method must be applied
to the range information. In addition, both the stereo vision
method and the range data segmentation method have to
be capable of detecting and managing occlusions and depth
discontinuities.

In order to be able to recognize and match non-textured
areas in the images, our method is based on region match-
ing. The matching strategy consists of a cooperative scheme
where correspondences, occlusions and 3D reconstruction
are obtained in a single process. A representation of the 3D
surfaces of the scene is maintained and modified iteratively,
in order to minimize the differences between corresponding
regions. This strategy is liable to certain constraints on the
scene surfaces. In this paper, a simple case is studied in

order to verify the algorithm convergence, analyze the com-
putational cost and evaluate the usefulness of the results.
The main advantages of our method are: a) all the pixels are
assigned a depth, including the pixels which are occluded
in the other image, and b) a 3D model is obtained directly,
without the need for range data segmentation.

1.1. Background

1.1.1. Structure from stereo

Stereo vision techniques are usually classified [6, 12] into
two broad families.

Area-based methods exploit the radiometric resolution
of pixels through the use of windows and obtain satisfac-
tory results when scenes are composed of well-textured sur-
faces. These methods provide a dense disparity map, which
is their main advantage, together with the possibility of ob-
taining sub-pixel accuracy. Their main drawback is that they
implicitly assume that the surface is continuous and there-
fore, they have problems when discontinuities are present
on three-dimensional surfaces. Generally, depth data is trans-
formed into structured descriptors through range data seg-
mentation methods [18, 5].

Feature-based methods exploit high level features ob-
tained from the image, which are elements (edge pixels, lin-
ear edge segments, corners, curve segments, regions, etc.)
with distinctive attributes (position, orientation, curvature,
etc.) which are used to find correspondences. The main
drawback of these methods is that they provide a sparse dis-
parity map. The higher the feature level, the more robust the
correspondences, and the sparser the disparity map. A post-
process is needed in order to obtain surface descriptors from
the sparse information [18, 7] by means of an interpolation
method which should be able to detect the discontinuities.
Also hierarchical methods [11] have been developed to re-
duce the sparseness of the results. Only a few methods take
advantage of the matched features to obtain the 3D structure
directly [17, 4].

1.1.2. Occlusion detection

Geigeret al. [8] showed that occlusions can help in the cor-
respondence computation. It is possible to model occlu-



sions and depth discontinuities explicitly, so that they are
part of the problem to solve, and therefore, of the solution.
Thus, occlusions and depth discontinuities are not problems
to avoid, but a source of information to take into account.
Belhumeur [1] also stated that a detailed map of the geom-
etry of the scene (depth, orientation, etc.) should be main-
tained internally, so that all these elements cooperate in the
optimization of the correspondence.

Despite the importance of occlusion detection, only a
few methods integrate it into the matching process. Most of
these methods model occlusions as elements in the match-
ing space, and use a dynamic programming strategy to ob-
tain the solution [8, 9, 10, 1, 2]. These methods are area-
based techniques, which usually fail when the surface is ho-
mogeneous. Some smoothing constraint is needed to avoid
spurious matches at homogeneous regions and half-occluded
regions. The smoothing constraint should be suspended at
depth discontinuities and other salient features (i.e. steeply
sloping surfaces), which must be preserved to produce accu-
rate reconstructions. Many of the methods used to minimize
the complications with homogeneous regions smooth over
the salient features in the scene geometry. Belhumeur [1]
succeeded in relating salient features, occlusions and stereo
correspondence in a very thorough model which provides a
global solution. However, the search for the optimal solu-
tion is computationally very expensive.

Olsen [16] integrated the detection of disparity disconti-
nuities and occluded areas in a feature-based method, by an-
alyzing the partial derivatives of the reconstructed disparity
surface. Reconstruction and correspondence are integrated
in a single process, with a coarse to fine strategy. However,
it is based on matching the edges of the images, which are
usually scarce in homogeneous surfaces.

1.1.3. Use of regions as the matching primitive

The benefits of using regions as the matching primitive are:

� They have a higher semantic level than the other fea-
tures. Their stability and descriptive capability reduce
the number of ambiguities, increment noise tolerance
and provide more reliable matches [14, 15].

� They represent homogeneous intensity areas with in-
tensity discontinuities at their boundaries. Because
depth discontinuities and occlusions are located at in-
tensity discontinuities in the image, regions represent
continuous depth areas, while depth discontinuities
should be allowed at their boundaries.

� A 3D model composed of planar surfaces is often
enough to represent structured scenes. The existing
methods that reconstruct the 3D surface from two re-
gions [17, 4] assume that each region is the projection
of a three-dimensional planar surface.

However, higher level features are more difficult to ex-
tract from the image. Due to noise, occlusions and lim-
itations of the segmentation techniques, important differ-
ences may appear between the regions obtained from both
images. This drawback makes the reconstruction of the
3D surface more difficult, if not impossible. For example,
Tarelet al. [17] used an invariant-based coherence test to re-
ject pairs of corresponding regions which are not well seg-
mented, and Chabbiet al. [4] required a trinocular system
to obtain triplets of 3D faces which are validated through
projective geometry principles.

1.2. Contributions

We propose to use regions as the matching primitive in or-
der to obtain the 3D structure of the scene directly, and to
avoid the drawback of using regions by segmenting only one
image, which we call thereference image.

The corresponding region of each region in the refer-
ence image is searched by minimizing the dissimilarity be-
tween them. Due to the unicity constraint and the existence
of occlusions, the minimization for one region is not inde-
pendent of the minimization for its adjacent regions. There-
fore, this is an-dimensional optimization problem, wheren
is the number of regions in the reference image.

This optimization problem can be expressed in terms of
variational calculus. However, to obtain an algorithm that
guarantees convergence it is necessary to assume some con-
straint on the shape of the 3D surfaces in the scene. An as-
sumption which is generally made is that each region is the
projection of a 3D planar surface [17, 4]. We propose a pre-
liminary approach to this method, which consists of a more
restrictive assumption: the 3D surface is planar and paral-
lel to the reference image. This approach allows an easier
study of the convergence, the cost, and the results of our
algorithm. An initial algorithm was presented in [13], with
satisfactory results. However, the accuracy of the results de-
creased when the minimization of some regions converged
much faster than others.

In this paper, we present a new algorithm that controls
the minimization of each region in several steps, in order
to cooperatively guide the process towards a global conver-
gence. In addition, we show that the order of the theoretical
computational cost in the worst case is similar to other area-
based methods. Finally, some results with synthetic and real
scenes are presented to validate the scope of this approach
and the possibilities of a generalization of the method to
other types of surfaces.

2. REGION MATCHING AND OCCLUSION
DETECTION

A 3D surface is associated to each regionR in the reference
image, which is constrained to a given shape, in our case a
plane characterized by its depth,Z(R). The corresponding
regionR0 of any regionR in the reference image consists of



the projection of its associated surface on the other image.
Therefore,R0 can be expressed as a function of regionR

and its depth.
The advantage of this approach is that the search for

correspondences can be expressed in terms of variational
calculus, where the unknowns are the parameters of the as-
sociated surfaces. Another advantage is that detection of
occlusions is straightforward: when two corresponding re-
gionsR0

1
; R

0

2
intersect, the intersected area is an occluded

area of one of the two associated surfaces, due to the unic-
ity constraint. The furthest region is partially occluded by
the nearest region.

2.1. Basic strategy

The strategy of this search is based on minimizing the dis-
similarity between corresponding regions, which can be com-
puted using any correlation technique, for example, the zero-
mean normalized cross-correlation (ZNCC). That is, the min-
imization of the following function for each region

F (R;Z(R)) = �CZNCC(R;R
0) (1)

whereR0 is a function ofR andZ(R). Therefore, given an
estimated depth for each region in the image, the function
to be minimized is:

E(Z) =

Z
R�I1

F (R;Z(R))dR (2)

According to the Euler equation, for any regionR in the ref-
erence image, the depthZ(R) that minimizes the function
is a solution of the following equation

C(R;R0)H(R0
; R

0)�H(R;R0) = 0 (3)

whereR0 is the region corresponding toR regarding the
current depthZ(R), C(R;R0) is the gray level correlation
between corresponding pixels inR andR 0, andH(P;Q) is
a measurement of the correlation between the gray level in
P and the partial derivative of the gray level with respect to
depth inQ (for more details, see [13]).

Let us callFz(R) the error computed by the previous
equation for each regionR.

Fz(R) = C(R;R0)H(R0
; R

0)�H(R;R0) (4)

If we plot Fz with respect to the region depth, we can ob-
serve a zero-crossing at each minimum of the proposed func-
tion, with positive values to the right and negative values to
the left of the zero-crossing. Therefore,Fz allows us to de-
cide whether depth must be incremented or decremented in
order to achieve the associated minimum, which allows the
design of an iterative algorithm that increments/decrements
the current depth towards the solution. It is important to
note that the initial depth should not be far from the so-
lution in order to avoid other local minima different from
the global solution. This is the reason why a multi-level
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Fig. 1. Multi-level scheme.

(coarse-to-fine) scheme is needed, where the depth map re-
sulting from each level of a pyramidal structure of the im-
ages is used to initialize the depth map of the next level (Fig.
1).

2.2. The role of occlusions

The matching algorithm at each level is an n-dimensional
optimization algorithm, where n is the number of regions
in the reference image. The existence of an occlusion may
introduce errors in the correlation measurement of a region.
Therefore, occluded areas must be detected and removed
from correlation computation. Consequently, the optimiza-
tion process for each region depends on the optimization
process for its adjacent regions, because if the depth of an
adjacent region varies, occlusions may appear or disappear,
and therefore Fz may vary.

In the proposed strategy, convergence is achieved by
performing small increments/decrements at each depth until
the minimum for each region is reached. These increments
must be small, in order to move slowly towards the solu-
tion. To fix the size of the depth increments, �z, can lead to
undesirable disparity increments greater than 1 pixel when
objects are close to the camera. We propose to fix discrete
disparity increments, �d, which should be less than 1 pixel.

2.3. Algorithm

The accuracy of the results depends on the selection of �d.
As �d decreases, the accuracy increases, but the computa-
tional cost increases too. A multi-resolution scheme, where
different decreasing �d are used, allows the computation to
be accelerated, while refining the converged results. Thus,
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Fig. 2. Matching process at each level.

the search for the minimum for each region in the reference
image is performed in several iterations (one per resolution)
(Fig. 2). Such a scheme can be applied in different ways:

1. A �d is associated to each region and convergence
is treated independently for each region at each res-
olution. When a region converges at each resolution,
its �d is reduced and the convergence process is re-
started.

This method does not guarantee the convergence of
the algorithm, given that interdependence of results
may lead to cycles in its behaviour.

2. A �d is associated to each region and convergence is
treated independently for each region at each resolu-
tion. When a region converges at each resolution, its
�d is reduced and the convergence continues in the
initial direction [13].

This method guarantees the convergence, but the ac-
curacy of the results decreases when one region con-
verges much faster than another. This is the case of re-
gions with occlusions that converge rapidly to a local
minimum. Although the occlusion can be obtained by
the correct convergence of the occluding region, the
depth is not corrected due to the convergence strategy.

3. A global �d is defined and the convergence is treated
globally at each resolution. When all the regions con-
verge at each resolution, the global�d is reduced and
the convergence algorithm is re-started.

This method guarantees the convergence, while the
approach to the global minimum is controlled in sev-
eral steps. In this paper, we show the results obtained
with this method and compare with the results ob-
tained with the previous method.

The matching algorithm at each optimization step con-
sists of the iteration of two operations (Fig: 3):

� Transform the second image into two maps: T con-
tains the corresponding points for each pixel in the
reference image, and S contains a classification of all
the pixels in I1: active, occluded or out of bounds.

� Increment (or decrement) depth depending on the pre-
vious steps and the comparison of the reference image
with T , taking into account only the active pixels in
S.

INCREMENT

I
1

I
2

step

Z

TRANSFORM

T S

R Z

k using stepOPTIMIZE level 

Fig. 3. Optimization at each level and each step.

The accuracy of occlusion detection (and therefore, of
depth results) can also be increased by the use of subpixel
occlusion detection, which consists of using u� v cells for
the computation of the classification of each pixel.

Finally, the algorithm described in this section can be
summarized as follows.

Init Z of top level
for each level k from top to bottom in the pyramid do
f MATCH level k g
for each �d from coarsest to finest resolution do
f OPTIMIZE level k with step �d g
while not all-regions-converge do
S; T  Transform I1; I2; R; Z

Z  Increment I1; T; S; Z;�d
end while

end for
if k is not the bottom level then

Init Z of next level using Z of current level
end if

end for

2.4. Analysis of the computational cost

The computational cost in the worst case, assuming that �d
is reduced by dividing it by 2, is O( D

�dmin
NMuv), where



N�M is the size of the images, u�v is the number of sub-
pixel sections for occlusion detection, D is the size of the
disparities range, and �dmin is the minimum �d required.
That is, the product of the number of pixels at the selected
subpixel occlusion resolution (NMuv, which is the cost of
each iteration of the inner loop) by the number of disparities
at the selected subpixel disparity resolution ( D

�dmin
, which

is the total number of iterations of the inner loop). However,
it is important to note that we calculated the theoretical cost
by assuming that there exists one region that traverses the
whole depth interval at every iteration of the inner loop, in-
cluding the last iteration of the outer loop, which is the most
expensive one. This is not true in practice, where the first
iteration of the outer loop performs more iterations of the in-
ner loop than subsequent iterations. The first iteration of the
outer loop is an approach stage, while the rest of iterations
are refining steps which usually require very few iterations.

Generally, the cost of area-based methods is similar to
or higher than this, depending on whether they provide lo-
cal or global optimization. Methods based on correlation
windows are O(DNMnm), where n � m is the size of
the correlation window. This cost is similar to the previ-
ous one, provided that the �dmin term represents the sub-
pixel accuracy. Methods based on dynamic programming
are usuallyO(NMD

2) when based on pixel differences, or
O(NMD

2
nm)when based on correlation windows, except

for [9], which isO(3NMDnm), but control points must be
added in order to be able to detect occlusions [10].

3. EXPERIMENTAL RESULTS

Experiments with synthetic images with ground truth depth
show that the accuracy of the results is increased with re-
spect to the previous algorithm [13]. In figure 4, an exam-
ple of a pyramid with depths ranging from 82 to 117 cm is
shown. The mean relative error of the obtained depth map,
without considering the background region, is 0.62% with
u = 5, while it was 2.31% with the previous algorithm and
3.78% when occlusions were not detected.

Darker areas in depth maps are nearer points. White ar-
eas in occlusion maps are active points, while points whose
corresponding pixel is occluded are drawn in dark, and points
whose corresponding pixel is out of the image limits are
shown in gray.

In figure 5, another example allows for the comparison
of the obtained depth map with previous results. There are
some regions that obtain an erroneous depth but, in gen-
eral, depth obtained with the new algorithm changes more
smoothly from left to right than the previous results. For
example, the depth of both parking meters and the bush in
the background are achieved more accurately. Some erro-
neous depths are due to errors in the regions obtained from
the segmentation method, which merge areas with different
depth. The rest of erroneous regions are thin vertical regions
which are assigned inexistent occlusions in the results due

Fig. 4. An example of synthetic images. Top left: reference
image; top right: ground truth depth map; bottom left: re-
sulting depth map; and bottom right: occlusion map. Darker
areas in depth maps are nearer points.

to the parallelism assumed in the constraint.

Experiments with real images of structured scenes show
that a complete representation of the scene is obtained (Fig.
6 and 7). As expected, some surfaces, like the floor or the
table, can not be modeled with the assumed constraint. In
spite of this drawback, the results are satisfactory enough
and encourage us to generalize the method to other types of
surfaces.

4. CONCLUSIONS

We have presented a new matching algorithm capable of di-
rectly providing a 3D model of a structured scene from two
views, where depth discontinuities are not smoothed over,
and occlusions and correspondences are computed cooper-
atively. The accuracy of the results has been increased by
controlling the convergence of the optimization algorithm.
The order of the computational cost is similar to other area-
based techniques.

The usefulness of the results is limited by the assumed
constraint. An assumption of a scene made of planar sur-
faces of any orientation would be enough for several ap-
plications. Further work is being carried out in order to
generalize the method to these surfaces and second order
surfaces. Another line of research is the use of left-right
consistence to improve the initial gray level segmentation
into a more consistent segmentation based not only on gray
level but also on range information.



Fig. 5. Example “parking meter” from the JISCT test
set [3]. Top: reference image; bottom left and right: depth
maps obtained from the previous and new algorithms, re-
spectively.
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[17] J.-P. Tarel and J.-M. Vézien. A generic approach for
planar patches stereo reconstruction. In Proc. 11th
Scandinavian Conf. on Image Analysis, pages 1061–
1070, Norway, 1995.

[18] D. Terzopoulos. Reconstruction of visual surfaces:
Variational principles and finite element representa-
tions. Technical Report A. I. Memo 671, MIT, 1982.



Fig. 6. Real stereo pair of images, despacho. From left to right and top to bottom: stereo pair of images, segmentation by
region merging, depth map, disparity map, occlusion map and two views of the scene model.



Fig. 7. Real stereo pair of images, libros. From left to right and top to bottom: stereo pair of images, segmentation by region
merging, depth map, disparity map, occlusion map and two views of the scene model.


