Finding and Removing Features from Polyhedra
José Ribelles, Paul S. Heckbert, Michael Garland, Tom Stahovich, Vinit Srivastava
Geometric models of solids often contain small features that we would like to isolate and remove. Examples include bumps, holes, tabs, notches, and decorations. Feature removal can be desirable for numerous reasons, including economical meshing and finite element simulation, analysis of feature purpose, and compact shape representation. In this work, an algorithm is presented that inputs a polyhedral solid, identifies and ranks its candidate features, and outputs solid models of the feature and the original object with the feature removed. Ranking permits a user or higher level software to quickly find the most desirable features for the task at hand. Features are defined in terms of portions of the surface that are classified differently from the rest of the solid's surface with respect to one or more split planes. This approach to feature definition is more general than many previous methods, and generalizes naturally to quadric surfaces and other implicit surfaces.