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Abstract

Space partitioning techniques are a useful means of organizing geometric models into data structures. Such data
structures provide easy and efficient access to a wide range of computer graphics and visualization applications like

Ž .real-time rendering of large data bases, collision detection, point classification, etc. Binary Space Partitioning BSP trees are
one of the most successful space partitioning techniques, since they allow both object modeling and classification in one
single structure. Also, due to the fact that complexity of 3D models is increasing far more rapidly than the performance of
graphics system, there is an increasing need for multiresolution modeling techniques. This paper presents a novel method
that extends BSP trees to provide such a representation. The models we present have the advantages of both BSP trees and
multiresolution representations. Nodes near the root of the BSP tree store coarser versions of the geometry, while leaf nodes

Žprovide finer details of the representation. The goal of this work is to build a single tree that provides a high number nearly
.a continuous range of representations of an object at different resolutions, with minimum redundancy. This model is

especially well suited for been used within Internet 3D graphics applications as it provides for efficient progressive
Ž .transmission and fast hardware independent rendering of tridimensional scenes. q 1998 Elsevier Science B.V. All rights

reserved.
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1. Introduction

One of the main problems of computer graphics
applications is how to render complex geometric
scenes at interactive rates. Traditional modeling tech-
niques are very inefficient when it comes to storing,
transferring, and rendering such complex models. A
recent solution to this problem stores for a single
object a small number of representations with differ-
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Ž .ent accuracy or level-of-detail LoD . Then, objects
further from the viewer are retrieved, transferred and
rendered at their coarsest LoD. Conversely, objects
near the viewer are retrieved, transferred and ren-
dered at their finest LoD.

Their main advantage is that only the necessary
geometric detail is used for rendering each object.
Furthermore, they provide for fast data access by
exploiting spatial indexing and hierarchical process-
ing. Speedup is then achieved by propagating infor-
mation across different LoDs. Despite of this advan-
tages, these models are not very well suited to be
used within network applications, as they do not
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provide for progressive transmission, and their spa-
tial cost is the sum of the spatial cost of each one of
the LoDs included in the model.

An evolution of LoD representation is called mul-
w xtiresolution representation 1 that supports the stor-

age of a large number of representations with differ-
ent accuracy in a single compact model. Multiresolu-
tion models are well suited for Internet applications,
as their spatial cost is low and they provide for
efficient progressive transmission. Resolution of each

w xrepresentation may be constant 2 and recently some
approaches with variable or view dependent resolu-

w xtion have been developed 3 .
Our goal is to construct an efficient model sup-

porting multiresolution representation with variable
resolution. To achieve it, we focus on certain model-
ing techniques, like space partitioning, that allow
more efficient representations than traditional tech-
niques. The best example is Binary Space Partition-

Ž . w xing BSP trees 4 where the partitioning planes are
chosen to be those defined by the polygons of the
model. This allows both easier manipulation and
faster rendering of the polygon data in the model.

This work combines the advantages of partition-
ing techniques and multiresolution representations by

Žintroducing multiresolution BSP trees MRBSP trees
.for short . Our representation is especially well suited

for been used within Internet 3D graphics applica-
tions for two reasons:
Ø It provides for fast hardware independent render-

w xing, due to its BSP tree organization 4 .
Ø Allows progressive transmission of models with

no extra cost, due to its multiresolution proper-
ties.
Tree nodes near the root provide coarser represen-

tation of the model, while nodes further down the
hierarchy provide more accurate LoD representations
of the model. This extension of BSP trees allows
efficient modeling and rendering of complex envi-
ronments, and we expect it to be widely used in
computer graphics applications.

Section 2 introduces the problem and objectives
of this paper. Section 3 describes some preliminary
issues that are necessary before going on to Section
Ž .4 Tree construction . Next there is Section 5 were

we explain the rendering method whose results are
shown in Section 6. Finally, Section 7 presents our
conclusions and several ideas for future work.

2. Multiresolution BSP trees

Storage of multiresolution models requires data
structures that allow retrieval of LoD representations
according to eye location and view orientation. Sev-
eral data structures have been proposed for this

w xpurpose in the literature: image pyramids 5 , volume
w x w xpyramids 6 , textures and reflectance 7 and polygo-

w xnal models. In 8 a survey on multiresolution models
can be found.

Polygonal models are best suited for multiresolu-
tion representations. They are simpler and more ver-
satile than any other geometric representation. How-
ever, they require simplification, the process of ob-
taining coarser LoD representations from the original
full-detail model. Simplification is controlled by a
function that minimizes both the number of polygons
of the representation, and the error incurred by the
approximation. The main problem of simplification

w xalgorithms is the definition of this function. In 9 a
survey on simplification algorithms can be found.

The main contribution of our work is the use of
BSP trees to store the geometry of a multiresolution
model. The MRBSP tree structure allows for fast
retrieval of LoD representations, fast rendering and
progressive transmission by storing coarser LoDs
near the root of the tree, and finer LoDs near the
leaves of the tree. So, given an error threshold, the
tree can be pruned discarding those nodes whose
measured error is below the threshold. The represen-
tation is illustrated in Figs. 1 and 2.

Fig. 1. BSP trees for polygon representation. Top: polygon and
planes defining boundaries. Bottom: the associated BSP tree rep-
resentation.
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Fig. 2. MRBSP tree polygon representation. Top: polygon and
boundary planes. Left: MRBSP tree representation. Right: se-
quence of approximations.

Fig. 1 shows a conventional BSP tree used for
polygon representation. We can represent the poly-
gon in that figure by the alternative tree in Fig. 2.
The new tree is multiresolution since nodes a, b, c,
and d provide a coarse representation, while each of
the remaining nodes adds a certain amount of detail
to the object. Section 4 describes how to construct
such trees in 2D.

Given a polygon, we want to construct its BSP
tree representation by choosing partitioning planes
along its edges. The final representation should then
contain all the edges of the polygon, plus some
others that contribute to our multiresolution pur-
poses. Our objective is to choose planes, or, equiva-
lently, edges in such an order that adding them to the
representation increases the amount of detail. This is
achieved in two steps. First, we make an initial
approximation to the polygon. Then, we choose edges
in an order such that the amount of detail added by
each choice is maximized. Finally, the algorithm
concludes when all edges have been chosen.

In some cases we also choose to include planes
that do not correspond to specific edges. The most
common case is planes that decimate edges of the
original polygon, as the result of an approximation
process. Such cases will be described in Section 4.
Another case arises when modeling concave poly-
gons. Recall that BSP trees are best suited for model-

ing convex polygons. When a concave polygon is to
be represented it may be necessary to divide it into

w xless concave parts, as described in 10 . This requires
adding extra partitioning planes to the representation.

3. Preliminaries

To construct a MRBSP tree, its is necessary to
compute a sequence of approximations to the origi-
nal polygon. For each approximation we consider
two parameters: error incurred by the approximation,
and number of cuts in the original polygon. By cuts
we mean intersection points between edges of the
original polygon and edges of the approximation.
Whenever a new partitioning plane is added along an
approximation edge, some edges of the polygon may
need to be cut in half. Such cuts increase the number
of edges and thus the size of the MRBSP tree. Our
plane selection algorithm will try to minimize both
the error and the number of cuts in the representation
w x10 . The sequence of approximations will then be
stored in a data structure for later rendering.

3.1. Approximation computation

Among the approximations methods proposed in
w x10 we choose the scaling method. It is based on the
idea that objects further from the viewer look smaller
than objects closer to the viewer. This implies that
finer details of a given object disappear as it moves
away from the viewpoint, but its overall shape re-
mains unchanged. We can thus use this idea to
compute different LoD representations of an object.

The procedure consists of three steps. During the
first step we scale down the polygon by a given scale
factor. Then we scan convert each of its edges and
determine whether adjacent edges are collinear or
not. Finally, if two adjacent edges are collinear, we
substitute them with a new single edge. This proce-
dure is repeated for decreasing scale factors until
there are only three edges remaining or it is not
possible to remove collinear edges.

In order to determine whether two adjacent edges
are collinear, we first scan convert both edges sepa-
rately. Then we scan convert an imaginary edge
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joining the first vertex of the first edge with the last
vertex of the second edge. If the results of both scan
conversions coincide, then the new edge can substi-
tute for the two old edges.

3.2. Approximation error

Whenever an approximation is made, it is impor-
tant to evaluate the quality of the new representation
by giving a quantitative estimate of its approxima-
tion error. Unfortunately, there are no good error
measures, since error depends on visual perception.
Usually, measures based on distances, either L or2

L , are used depending on the application. These`

measures may be local, global or based in other
w xnon-spatial criteria 8 .

w xOur own method, as presented in 10 , is a global
method based on areas instead of distances. It is
motivated by the fact that area-based error evaluation
provides better visual results than distance-based er-
rors.

We use an error function that computes the area
error as the area difference between the polygon S
and the approximation triangle R, as shown by Fig.
3. That error function is:

D̂ R ,S sArea RyS qArea SyR .Ž . Ž . Ž .

3.3. Data structures

Our representation is based on a tree structure,
where each node stores the plane equation and a list
of edges along that plane as well as the customary

Fig. 3. Approximation error.

Fig. 4. Node structure.

Ž .pointers to its parent and children front and back .
Because of the multiresolution feature, it is necessary
to store the various edges as seen from different
distances along each node’s plane. Also we provide a
method to showrhide appropriate edges given a
viewing distance. To make this possible, we associ-
ate to the list of edges a list of error ranges that
indicates when each edge is visible. These ranges
allow us to decide which edges to render at any
given time as will be described in Section 5.

Specifically, we use the following structures:
Ø Vertex: two fields for the x and y coordinates.
Ø Edge: pointers to its endpoints and lower and

upper error bounds where the edge is visible.
Ø Approximation: contains a pointer to the list of

vertices of the approximation. Also, it stores the
approximation error.

Ø Vertex sequence: pointer to list of vertices that are
in the same region of the MRBSP tree. It also
stores a pointer to the node that has generated it
and the value of its area.

Ž .Ø Node structure: Fig. 4
Ž .Ø Plane equation: A and B ysAxqB

Ø Lowest error for which this node is visible.
Ø Highest error for which this node is visible.
Ø List of edges in the node.
Ø Pointer to parent node.
Ø Pointer to front-child node.
Ø Pointer to back-child node.

4. Tree construction

To add the multiresolution feature to a BSP tree
Ž .MRBSP tree , different representations of a single
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w xobject must be handled. 11 presents a solution
where, given a set of LoD representations of an
object, a different tree is constructed for each repre-
sentation. Then all of these trees are merged into a
single one. This solution has several disadvantages:
Ø Each representation is stored independently, so,

there are data redundancies that reduce the amount
of storage available for the different LoDs.

Ø The low number of LoDs allowed causes popping
effects between consecutive LoD, and a poor
chance of adapting resolution to viewer distance.
Our goal is to build a single tree that contains a

continuum of representations of an object with dif-
ferent resolutions and minimum redundancy. The
number of representations is given by size of the
MRBSP tree. For the two-dimensional case, trees are

Ž . w xof size O nlog n 12 where n is the number of
edges. This provides with a high possibility of adapt-
ing the resolution to the different observation condi-
tions. Because changes between resolutions are
smooth, it also reduces the popping effect.

The procedure to construct the MRBSP tree is the
following: First, using the approximation method
presented in Section 3, we compute an initial approx-

Ž .imation usually a triangle of the original object.
The approximation process can be stopped when the
approximation error is bigger than a certain value,

Žregardless of the number of sides. This error Ini-
.tial_error is computed as described in Section 3.

Then, a new tree is created with a number of
nodes equal to number of sides of the initial approxi-
mation. Each of these nodes contains one edge and
its corresponding plane coefficients. Initially, the

Žrange where each of these edges are visible error
. w xrange is set to 0.0–1.0 . This means that these

edges will be displayed always, but this range will be
changed as described later. To determine the error
range for subsequent edges we use the parameter
Current_error, computed as:

Initial_error
Current_errors .

Polygon_Area

Before proceeding with tree construction, should
planes already inserted in the tree cut any of the
edges of the original polygon, then new vertices are
added at the intersection points in the vertex list.
Next, the vertex list is classified into sequences that
fall in the same region of the tree.

The procedure is recursive, considering each se-
quences as a polygon for subsequent recursions. So,
we apply the approximation and error computation
methods to each one of these sequences. The result-
ing approximations are then added to the tree sorted
by decreasing area. The sequence list is sorted by
area and its first element is added to the tree insert-
ing two new nodes. Error range for the edges of

w xthese two new nodes is set to 0.0–Current_error .
After inserting a new pair of planes in the tree, it

is necessary to update their parent node, in order to
avoid that an edge of the parent node be rendered
when the edges of its children that decimate it, are

Ž .also rendered see Fig. 5 .
We name parent_edge the edge that is in the

parent node and is affected by the insertion of new
planes. It will be necessary to avoid rendering any
parent edge at the same time that its children edges
Ž .Fig. 5 edge a . So, we change parent edge error
range low boundary to Current_error, the same
value that children edges error range high boundary.

Should part of parent_edge must be visible at the
same time that its children edges, we create one
Ž . Ž .Fig. 5 edge b or two new edges Fig. 5 edge c that
represent this visible parts. Error range for the new

Ž . Žwplane s is set the same as children edges 0.0–Cur-
x.rent_error . That way, at each node we store all the

Fig. 5. Adding new edges.
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Fig. 6. MRBSP tree construction algorithm.

possibly visible edges with their corresponding error
ranges. The error range will be used at rendering
time to determine for any viewing parameters, which
edges to render. This will be described in Section 5.

Finally, we classify the vertices of the chosen
sequence into new sequences with respect to the
planes just added, obtaining a new list of sequences
of vertices. Again the approximation method is ap-
plied to these sequences and its results are included

in the sorted list. The process is repeated until the list
of approximations became empty as described by the
algorithm in Fig. 6.

Current_error is updated at each iteration with
Žthe contribution of the sequence just included Er-

.ror_contrib . Using the following notation:i

Ø Sequence : the ith sequence of vertices obtainedi

after classification process.
Ø Approx : approximation obtained for Sequence .i i

Fig. 7. MRBSP tree rendering algorithm.
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Fig. 8. Different approximations of some 2D objects.
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( )Ø Error Approx : error obtained for Approx .i i
( )Ø Area Sequence : area of Sequence .i i

Then:

Error_contrib sArea SequenceŽ .i i

yError Approx ,Ž .i
Error_contribi

Current_errorsCurrent_errory .
Polygon_Area

5. Rendering

1In this work we consider 2 D models repre-2

sented as 2D polygons parallel to the XY plane and
are extruded from position Zs0 to their height.
Edges are rendered as two triangles forming a
quadrilateral perpendicular to the XY plane from
Ž . Ž .x , y , 0 to x , y , height . For efficiency, ren-0 0 1 1

dering is done in a front to back order using the
w x"dynamic screen" structure 13 .

Ž .To decide which edges sides to render, we use a
simple method that determines the acceptable error
Ž .threshold for the current view as a percentage of
the window occupied by the projection of the bound-

w xing box of the object. The procedure is similar 13

but it prunes those nodes of the tree whose error is
lower than the given threshold.

The method proceeds by classifying the view-point
in the tree, starting at the root downwards, and

Ž .rendering the edges sides in front of it, then those
in the node and finally those behind it. Only nodes
whose "Highest error" is bigger than threshold are
considered, and among all the edges stored at each
node, only those edge whose error range includes
threshold are rendered. The process is described by
the algorithm in Fig. 7.

Ž .The render_edge n:node, h:threshold routine
Ž .renders edges sides in node n whose error range

contains h. This is done by rendering the associated
quadrilateral as two triangles.

6. Results

We have implemented the construction and ren-
dering algorithms for MRBSP trees. Fig. 8 shows
different approximations of some objects for five
different threshold values. Along with each subfig-
ure, rendering times are presented. Fig. 9 shows the
results obtained when rendering the whole object

Fig. 9. Left: Original object seen from different distances. Right: Different approximations of the same object seen from different distances.
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represented with a conventional BSP tree, compared
to the results obtained with our MRBSP tree using
our algorithm described in Section 5.

This 2D serve us to check the improvement that
we can expect from developing 3D MRBSP trees
compared to traditional BSP trees.

For this experiments we have used a single
Ž .threshold for the whole tree object . It would be

possible to use a variable threshold for every tree
branch based on distance and orientation from view-
point. This will be done for the 3D extension.

7. Conclusions and future work

This work presents preliminary results in the de-
velopment of MRBSP trees for 3D space. Solving
the problem in 2D is only the first step before
attempting to solve the 3D case, our ultimate goal. In
this case, partition planes at tree nodes placed along
the edges in 2D turn into planes along a 3D face;
planar regions at tree leaves turn into volumes. Fi-
nally, we expect to obtain better results by combin-

Ž .ing 2D MRBSP trees for face polygon representa-
tion, and 3D MRBSP trees for polyhedron represen-
tation.

For the 3D case, in order to achieve a variable
resolution in our representation, it is possible to use a
variable threshold, i.e., a new threshold can be com-
puted for every tree branch, based both on distance
and orientation.

Besides hidden surface removal, we would also
like to apply our representation to other areas where
BSP trees have been used. Specifically, we would
like to use multiresolution BSP trees for speeding up
space classification, raytracing, shadow computa-
tions, and, possibly, CSG operations. Some of these
applications, however, require the construction of
balanced BSP trees.

Currently, this model is been used to develop a
3D geographic information system that combines

Žboth terrain data and other elements buildings, trees,
.etc. .
Finally, let us mention that our extension also

improves on previous applications of BSP trees. It
combines the advantages of both space partitioning
and multiresolution techniques. So it is an excellent

substitute for other LoD techniques, especially in
applications related to real-time rendering of com-
plex geometric models, virtual reality systems, and
distributed environments.
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