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Abstract

Space partitioning techniques are a useful means of
organizing geometric models into data structures. Such
data structures provide easy and efficient access to a
wide range of computer graphics and visualization
applications like real-time rendering of large data bases,
collision detection, point classification, etc. Binary Space
Partitioning (BSP) trees are one of the most successful
space partitioning techniques, since they allow both
object modeling and classification in one single
structure. However, with the advent of networked
graphics applications there is an increasing need for
multiresolution geometric representations. This paper
presents a novel method that extends BSP trees to
provide such a representation. The models we present
have the advantages of both BSP trees and
multiresolution representations. Nodes near the root of
the BSP tree store coarser versions of the geometry,
while leaf nodes provide the finest details of the
representation. We present in this paper different
algorithms to construct multiresolution BSP trees in 2D.
Then we propose extensions of our methods to 3D space.

1. Introduction.

One of the main problems of visualization
applications is how to render complex geometric scenes
at interactive rates. Traditional modeling techniques are
very inefficient when it comes to storing, transferring,
and rendering such complex models. A recent solution to
this problem stores different level-of-detail (LOD)
representations for a given model. Then, objects further
from the viewer are retrieved, transferred and rendered at
their coarsest LOD. Conversely, objects near the viewer
are retrieved, transferred and rendered at their finest
LOD. Such representations are called multiresolution
representations [1].

Their main advantage is that only the necessary
geometric detail is used for model rendering.
Furthermore, in a networked environment they can be
transmitted much faster than the entire geometric
description. However, there are still certain issues that
need to be addressed regarding these representations:
mesh simplification [2], level-of-detail modeling [3],
selective refinement [4], and progressive rendering [5].

Certain modeling techniques, like space partitioning,
allow more efficient representations than traditional
techniques. The best example is Binary Space
Partitioning (BSP) trees [6] where the partitioning planes
are chosen to be those defined by the polygons of the
model. This allows both easier manipulation and faster
rendering of the polygon data in the model.

Our work combines the advantages of partitioning
techniques and multiresolution representations by
introducing multiresolution BSP trees. Our representation
allows fast spatial classification due to its BSP tree
organization, and LOD control for rendering due to its
multiresolution feature. Tree nodes near the root provide
a coarser representation of the model, while nodes further
down the hierarchy provide higher LOD representations
of the model. This extension of BSP trees allows efficient
modeling and rendering of complex environments, and
we expect it to be widely used in graphics applications.

Section 2 introduces the problem and objectives
addressed in this paper. Section 3 describes the function
used to evaluate approximations and the method used to
split concave polygons. Section 4 presents different
construction methods for 2D multiresolution BSP trees.
Section 5 compares the results obtained with those
methods. Finally, section 6 presents our conclusions plus
several ideas for future work.
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2.BSP trees as multiresolution models

Storage of multiresolution models requires data
structures that allow retrieval of LOD representation
according to eye location and view orientation. Different
data structures have been proposed in the literature for
this purpose, like image pyramids [7], volume pyramids
[8], textures and reflectance [9], polygonal models [10].

Polygonal models are by far best suited for
multiresolution representations. They are simpler and
more versatile than any other geometric representation.
However, they require simplification, the process of
obtaining coarser LOD representations from the original
full-detail model. Simplification is controlled by a
function that minimizes both the number of polygons of
the representation, and the error incurred by the
approximation. The main problem of simplification
algorithms is the definition of this function. Several
simplification algorithms have been proposed in the
literature [10] [11] [5] but none of them includes a space
partitioning representation as part of the model.

The main contribution of our paper is the use of BSP
trees to store the geometry of a multiresolution
representation. BSP trees allow for fast retrieval of LOD
representation and fast rendering of that representation.
Also, they allow for progressive transmission and
rendering by traversing the tree in order. This is possible
because coarser LODs are located near the root of the
tree, while finer LODs are located further down the tree.
The following figures clarify these issue. Figure 2
illustrates how this tree can be reconstructed in a
multiresolution way.
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 Figure 1 . BSP trees for polygon representation.
 Left: polygon and planes defining its boundaries.
  Right: the associated BSP tree representation.

Figure 1 shows a conventional BSP tree. We can
represent the polygon in that figure by the alternative tree
in figure 2. The new tree is multiresolution since nodes a,
b, c, and d provide a coarser representation, while the rest
of nodes add detail until the entire tree has been
considered. Section 4 describes different methods to
construct such trees in 2D.
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Figure 2 . A multiresolution BSP tree polygon representation.
Upper left: polygon and boundary planes.

Upper right: associated BSP tree representation.
Bottom: multiresolution tree of the polygon.

3. Preliminaries

3.1 Approximation Error

Given a polygon, we want to construct its BSP tree
representation by choosing partitioning planes along its
edges. Thus, the final representation should contain all
the edges of the polygon, plus some others that help our
multiresolution purposes. Our objective is to choose
planes, or, equivalently, edges in such an order that
adding them to the representation increases the amount of
detail. This is achieved in two steps. First, we make an
initial approximation to the polygon. Then, we choose
edges in an order so that the amount of detail added by
each choice gets smaller as the algorithm progresses.
Finally, the algorithm concludes when all edges have
been chosen.

In some cases we also choose to include planes that
do not correspond to specific edges. One of these cases
arises when modeling concave polygons. Recall that BSP
trees are best suited for modeling convex polygons. When
a concave polygon is to be represented it may be
necessary to divide it into less concave parts, as described
later. This requires adding extra partitioning planes to the
representation. Another case is to include planes that
decimate edges of the original polygon.

We consider two parameters when constructing a
multiresolution BSP tree representation: error incurred by
the approximation, and number of cuts on the original
polygon. By cuts we mean intersection points between
edges and partitioning planes. Every time a new
partitioning plane is added some edges may need to be
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cut in half. Such cuts increase the number of edges of the
polygon and thus the size of the BSP tree. Our plane
selection algorithm will try both to minimize error and to
avoid introducing cuts.

To evaluate this error it is necessary to develop an
error function. The problem can be informally stated as
follows: given a polygon S, represented by a set of N≥2
ordered points in the plane, and a constant M, 2≤M≤N,
find a new set of M points that define a new polygon R,
which most closely fits the given set.

The following notation is introduced to allow for a
formal characterization of this problem:

A sequence of points in R2 is a finite non-empty
ordered set of coordinate pairs; i. e.,

S=(s1,s2,...,sN)=(sx1,sy1), (sx2,sy2),….. ,(sxN,syN)

R=(r1,r2,...,rM)= (rx1,ry1), (rx2,ry2),….. ,(rxM,ryM)

If ri and ri+1 are two consecutive vertices of R, then
ei(ri,ri+1) will denote the edge from ri to ri+1. Then R is
said to be a valid approximation of S for this problem if
ei(ri,ri+1) 1≤i≤Μ of R passes through s∈S. This restriction
is assumed to minimize number of cuts. This will happen
if:
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Once R is defined, it is necessary to define the set of
points of S spanned by each edge of R to evaluate the
approximation error. Using an error measure, (i.e. square
distance), we can compute the error for each edge as the
sum of the errors of all the vertices spanned by this edge.

Given that we force edge ei to pass through two
vertices of S, let say si and sj, the set of vertex Si:sj,…,sk
are spanned by ei. Regarding edges ei-1, ei and ei+1 of R
they approximate Si-1:sf,...,sg, Si:sj,…,sk y Si+1:sl,...,sm,
respectively. If us≠ 0 and ut≠ 1 (ri,ri+1 ∉ S) then, two
sequences Sa:sg+1,...,sj-1 y Sb:sk+1,...,sl-1 exist and we must
find which edge spans vertices in these sequences. Thus,
we define Vi as the set of vertices spanned by edge ei,
including Si and those vertices of Sa and Sb located closer
to ei than to ei-1 or ei+1.

Now, we can associate an error or distortion measure
to each edge, as the degree of fitness of the edge to all of
its spanned vertices:
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where d(v,ei(ri,ri+1)) is an elementary distortion, i.e.
square distance , of vertex v with respect to the edge ei.

So, we can measure the error of approximating
polygon S with triangle R as:
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Several functions d may be used to measure the error
contribution for each vertex of R. If distance (or square
distance) is used, given a spike in the polygon, error is
computed regardless of its width. To solve this problem it
would be necessary to discretize the edges of the spike
and add the distances to all points obtained in the
discretization. Obviously, this may be achieved by just
computing the area of the spike. Then, we use an error
function that computes the area of the error incurred in
the approximation as the area of the differences between
the polygon S and the approximation triangle R. That
error function is:
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Figure 3 . Computing approximation error of S with R.

3.2 Concave Polygon Subdivision

Most of the algorithms described in this paper require
special treatment of highly concave polygons. Our
strategy for dealing with this problem is a divide-and-
conquer strategy. The idea is to split concave polygons
into smaller polygons that either are convex or have less
concavities. To achieve this goal we select partitioning
planes that divide the polygon instead of bounding it.
Such planes are selected by connecting pairs of vertices of
the original polygon.

To select the pair of vertices to use in splitting process we
have considered some techniques to infer the structure of
a polygon. Specifically, we studied techniques based on
medial axes and Voronoi skeletons [12]. However, we
could not extract the necessary concavity information
from this structures to appropriately subdivide a given
polygon. Therefore, we decided to adopt a strategy that
considers all possible pairs of vertices and determines
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which one defines the best partitioning plane. In order to
reduce the amount of work necessary to evaluate all pairs,
we only consider certain candidate pairs. Candidate pairs
must satisfy all of the following conditions:

1. they must not be endpoints of the same edge,
2. the partitioning line they define must divide the

polygon into two subregions, and
3. at least one of the vertices must not belong to the

polygon's convex hull.

It is possible that no vertex pair of the polygon satisfies
all of the above conditions. In that case we add new
vertices to the polygon by inserting all the midpoints of
its edges in its vertex list. Then we run the above
algorithm again, and recursively repeat the process until
some candidate pair is found. If we find more than one
candidate pair, then we select the best one using the
difference area between the polygon and its convex hull.

In some cases, when a concave polygon needs to be
subdivided, it is possible that the sequences of
approximations associated to each subregion do not
exactly match with each other. In such cases we solve the
problem by imposing certain constraints on the way the
approximations are constructed to assure that the
sequence of approximation of the parts fit together
properly.

4. CONSTRUCTION METHODS

This section presents four methods developed to
construct multiresolution BSP trees. All methods start by
computing the initial approximation as the triangle that
minimizes the error function defined in section 3.1.
Edges of this triangle will be inserted on top of the tree as
partitioning planes. If those planes cut some edge of the
original polygon, then we add new vertices to its
representation. Next we classify all the vertices with
respect to the planes already in the tree, obtaining several
sequences of vertices that are located in the same region.
New polygons are constructed with each one of this

sequences and then, the algorithm is applied recursively
to each of these new polygons to generate subsequent
planes till the original polygon is fully represented.

To force subsequent planes fit previous ones
properly, we constrain triangle approximation for each
one of the new polygons to pass through first and last
vertex of the sequence. This constrain is carried out by
applying some restrictions that simplify the process.
Since the first and last vertices of the sequence are
located over planes already placed in the tree, only two
new planes will be inserted in each recursion. This is
described below for each method.

4.1. Three vertices approximation

Computing the initial approximation . In this
method we construct an initial approximation by
choosing three vertices of the polygon. All possible
triangles that share three vertices with the original
polygon are evaluated, selecting the triangle that
minimizes our error function. For convex polygons we
obtain the largest possible triangle enclosed in the
polygon (see figure 5a).

Computing subsequent planes: Given that we force
triangle approximation for each polygon to pass through
first and last vertex of the polygon, these must be vertices
of the triangle. Then, only one vertex is left to be chosen.
We add two new planes in the tree along the line that join
this vertex and the first and last ones of the sequence.

Analysis. This method produces acceptable results
in terms of error and temporal cost. For convex polygons
no cuts are produced. In this case, what we get is a
constrained triangulation [13] such that contains the
largest possible triangle enclosed in the polygon plus a set
of smaller triangles around it, that provide successive
approximations to the original polygon boundary (see
figure 5a). Concave polygons (figure 5b) give rise to a
great number of cuts that enlarge size of the resulting
tree. Therefore, this method produces also the highest
number of planes. Complexity of this algorithm is O(n3).

4.2. Three edges approximation

Computing the initial approximation . In this
method we construct an initial approximation by
choosing three edges of the original polygon. The process
is similar to three vertices approximation, but evaluating
all the triangles that can be obtained by extending any
three edges of the original polygon. For convex polygons
we obtain the smallest possible triangle that surrounds the
entire original polygon (see figure 5b).

Figure 4 . Subdividing
Concave Polygons
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Computing subsequent planes: We restrict our
search to two of the edges obtained by joining all possible
pairs of vertices of the sequence. The error function is
evaluated for this pairs and all the planes already in the
tree and the pair with minimum error is selected. Then
this pair is inserted in the tree as two new planes.

Analysis. This method is specially suited for convex
polygons giving certainly good results. On the other
hand, for concave polygons results are not so good. Its
main advantage is that planes are always placed through
the edges of the original polygon and this keep size of the
tree to a minimum.

4.3 Six vertices approximation

Computing the initial approximation . In this
method we only consider triangles that intersect the
original polygon at six of its vertices. First, new edges are
constructed joining every pair of vertices in the original
polygon. Those edges are then extended until they
intersect forming triangles. The error function is then
evaluated for each possible triangle, and the triangle with
the smallest error is selected as the initial approximation.

Computing subsequent planes: Again, the
restriction used is that the edge joining the first and last
vertices of the sequence must be in the triangle. Then we
construct new edges joining the rest of vertices and,
among them, we choose those two that form the triangle
(together with the already mentioned) with minimum
error. After that, this two new planes will be inserted.

Analysis. This method produces substantially better
results in terms of error minimization at the expense of
added time complexity: O(n6). Also there are some
mismatches between successive triangles. The number of
cuts is similar to the other two strategies (figures 5e, 6e).

4.4 Scaling approximation

The scaling method is based on the idea that objects
further from the viewer look smaller than objects closer to
the viewer. This implies that finer detail of a given object
disappears as it moves away from the viewer. We can
thus use this characteristic to compute different LOD
representations of an object.

Computing the initial approximation . The
procedure consists of three steps. During the first step we
scale down the polygon by a given scale factor. Then we
scan convert each of its edges and determine whether
adjacent edges are colinear or not. Finally, if two adjacent
edges are colinear, then we substitute them by a new
single edge. This procedure is repeated for decreasing
scale factors until there are only three edges left. In order

to determine whether two adjacent edges are colinear, we
first scan convert both edges separately. Then we scan
convert an imaginary edge joining the first vertex of the
first edge with the last vertex of the second edge. If the
results of both scan conversions coincide, then the new
one can substitute the two old edges.

Computing subsequent planes: Likewise three
vertices approximation method, we use a restriction that
force the edge joining the first and last vertices of the
sequence to be in the triangle, thus its colinearity is not
tested. So we check colinearity of the rest of edges
removing one of them at a time till there are only two
left. Then, these ones are inserted in the tree.

Analysis. Both error and number of cuts obtained by
this algorithm are comparable to those produced by the
above methods (see figures 5d and 6d). However, its time
complexity is much better: O(n2). For that reason we
believe that this method is particularly good at
constructing BSP trees for 2D polygons.

Another advantage of this method is that we can
associate a distance to each of the nodes of the BSP tree.
The partitioning plane associated to that node will then
be used for rendering when the distance from the viewer
to the object is smaller than the node's distance. Such
distances can be easily computed from the scale factors
used in the approximation algorithm. The resulting
structure is a multiresolution BSP tree whose LODs are
already parameterized according to the distance from the
object to the viewer.

5. RESULTS

We have implemented the algorithms described in
the previous section. Figures 5 and 6 show the results
obtained by applying each of the methods to two test
polygons, respectively. First polygon is convex while
second one is concave. Figure 7 contains a comparison of
the performance of the different methods. We can draw
the following conclusions from the graphs in figure 7:

• Error of the initial approximation . The best
method is the six-vertex method, but we discard it for
cost reasons. Three-vertices, three edges and scaling
methods present an acceptable error ratio.

Time complexity. Results presented in this work are
produced by greedy algorithms with no optimization. It
is possible to reduce the order of their cost at least by
one using some techniques like incremental error
computation presented in [14]. This has not been done
yet, as this work is just a preliminary study. The best
results are obtained by the scaling, with O(n2) cost.
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Three vertex and three edges approximation methods
have also an acceptable cost, O(n3). Even though this is
not an key factor (recall that BSP trees are constructed
during a preprocessing stage), the six vertices method
require too much time to compute, especially, when
method be extended to 3D.

• Number of cuts. The best results are obtained with
the scaling approximation method. The three-vertex
method produce acceptable results, too.

• Number of tree planes. The best approximation is
the three-edge approximation because partitioning
planes always coincide with edges of the original
polygon. Results of the rest of methods are acceptable.

6. CONCLUSIONS. FUTURE WORK.

From the above results we can conclude that the
three edges approximation is the best one for convex
polygons. However, the scaling method is the most
general of all the methods presented in this paper.
Additionally, it produces good intermediate
approximations, and preserves the most significant
vertices of the original polygon. Furthermore, we can stop
the scaling process when a minimum number of edges is
reached, like four or five, instead of three. An additional
feature is the distance parameter that we can store with
each node in the BSP tree. Finally, the most important
reason to adopt the scaling method is the fact that it
produces far better visual results than the rest of
approximation methods. Hence, our next step is to try to
extend it to 3D. We expect such extension to be easier for
the scaling method than for the rest of methods.

As immediate future work we are extending the
method to 3D. In this case, partition planes at tree nodes
placed along edges in 2D turn into planes along a face;
planar regions at tree leafs turn into volumes. Finally, we
can obtain better results by combining 2D BSP trees for
polygon representation, and 3D BSP trees for polyhedron
representation.

We expect to extend to 3D all our approaches but the
six-vertex method due to the problems they pose in 2D.
We will analyze possibilities of the three-vertex and the
three-edge methods, and we will certainly develop
extensions for the scaling method. We would also like to
apply our representation to other areas where BSP trees
have been used. Specifically, we would like to use
multiresolution BSP trees for speeding up space
classification, raytracing, shadow computations, and,
possibly, CSG operations. Some of these applications,
however, require the construction of balanced BSP trees.

c) 3 Vertices d) 3 Edges

e) 6 Vertices f) Scaling

Figure 5 . Construction methods for convex polygons.

c) 3 Vertices d) 3 Edges

e) 6 Vertices f) Scaling

Figure 6 . Construction methods for concave polygons
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Figure 7 . A comparison between the different BSP tree
construction methods.

Also, some work is being done to improve the error
function. For example, consider a polygon with a long
narrow spike. Even though the spike may have a small
area, its presence or absence from the image may be
important. To solve this problem we are considering the
use of some techniques as the method of moments [15].

Finally, let us mention that our extension greatly
improves on previous applications of BSP trees. It
combines the advantages of both space partitioning and
multiresolution techniques. So it is an excellent substitute
for other LOD techniques, especially in applications
related to real-time rendering, complex geometric
models, virtual reality systems, and distributed
environments (VRML).
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