
Low Cost Virtual Animation Effects for Sports Broadcasting:
Mosaics, Flags and Big-sized Flags

Alberto Denia, José Ribelles, Ángeles López and Óscar Belmonte
Institute of New Imaging Technologies

Universitat Jaume I
Castellón, Spain

Email: ribelles@uji.es

Abstract—Big TV production companies often use expensive
commercial products able to apply augmented reality to sport
broadcasts. In this paper, we present a method for simulating
several animation effects performed by the audience in the
stands, such as mosaics, little flags and a big-sized flags. The
main goal is to develop a very simple method, using low-
cost graphics hardware, affordable for a not so big company,
while achieving visual realism and computational efficiency.
We define a common geometry model for different effects, a
construction process for each effect, and a common animation
process by means of a shader. The construction process
instantiates the geometry model to the characteristics of a
particular effect. The animation process is entirely coded in
GLSL for real-time rendering. The movement is simulated by
means of a vertex displacement technique, which uses a noise
function to modify the shape of geometry.

Keywords-Augmented reality, computer animation, broad-
casting.

I. INTRODUCTION

Nowadays, in sports broadcast, television networks usu-
ally add virtual elements to sports scenes. These elements
may be advertising, informative or decorative. For exam-
ple, the shields of the teams, the lineup, the score, three-
dimensional floating shapes with advertisements, and even
technical data like distances between players. There are a
number of commercial products able to apply augmented
reality to sports broadcast. For example, the Piero system
[1], developed by the BBC, allows to generate virtual views
and stick graphics on to the playing land. Other similar
systems are Viz Arena [2] and Tog Sports [3]. Big TV
production companies often use some of these commercial
products. However, these products are usually expensive and
personal training is required to take advantage of software.
Therefore, they are hard to be acquired for local TV channels
or not so big TV companies.

In this paper, we present a technique to overlay animated
computer-generated elements during sports broadcast. We
aim to develop a very simple method, using low-cost graph-
ics hardware, enabling any TV production company to use
this animation technique in real-time to make the broad-
cast of the event more spectacular. The proposed method
simulates some of the effects performed by the audience in

Figure 1. An example of a mosaic performed by regular audience of a
stadium.

the stands which, as far as we know, current commercial
software applications do not include. Usually, the audience
in the stands tries to enhance entertainment through music,
songs, flags, banners, etc. Less frequently, due to the cost of
organization, the audience performs vast mosaics. Each spec-
tator raises a piece of colored cardboard (see figure 1), or
they unfold big-sized flags or banners together. Sometimes,
the audience itself creates visual effects through movements,
like the well-known audience wave. Concretely, we aim to
simulate the following effects performed by the audience:
• mosaicing
• waving of little flags
• unfolding and waving of a big-sized flag
Furthermore, we pursue visual realism, so that the anima-

tion seems actually performed by the audience. Also, we try
to exploit the advantages of current programmable graphics
hardware so that computer graphics must be overlaid in
real time. Not so long ago, such simulation had involved a
considerable delay. However, current low-cost graphics hard-
ware has proved to perform well in countless applications
for real-time rendering, among others.

For these purposes, we define a common geometry model,
a construction process for each effect and a common ani-
mation process by means of a shader. The geometry model
aims to represent the common geometry inherent in any of
the effects to be simulated, that is, the arrangement of the
stands, the simulation of spectator absences, differences of
spectator heights, and other details. The construction process
instantiates this model to the particular characteristics of



each effect, that is, the size and texture of each element,
relationship between elements, and type of movement.

The animation process simulates the change of shape
through time, and it has been divided into three main stages:
appearance, exposition, and disappearance. Animation ef-
fects can be easily created by developing shaders that modify
their behavior over time [9]. The use of a noise function is
a simple mechanism for modifying the shape and position
of an object and for simulating an oscillating motion:

vertex := vertex +
noise(Offset+vertex*S1)*S2

The Offset value changes over time, whereas S1 and
S2 factors control the amplitude of the effect. As the vertex
itself is used as input of the noise function, the effect is
repeatable. The animation process has been entirely coded
using GLSL.

Augmented reality based techniques require knowledge
about the position and orientation of the camera, as well as
the focal length [4], [5]. These parameters can be initially
obtained in an offline calibration process. Also, as these
parameters may change during video acquisition a number
of registration techniques can be applied. Several of these
techniques take profit of the availability of a basic model of
the stadium, as well as the size of the playing field and loca-
tion of lines and other elements of the game. Although this
information together with the camera location considerably
simplifies the calibration and registration problems, slight
variations often require a real time adjustment [6], [7], [8].
In this paper, we assume the user to have a basic model of
the stands where the desired animation effect will be shown.
Then, the user picks on the display the corners of the area
where the animation effect will be overlaid and a tracking
method [11], [12] is used for locating these features through
the video in real time. Section II describes how this process
is done.

Sections III, IV and V describe the three effects (mosaics,
flags, and big-sized flag) presented in this paper. Each
section is composed of three parts:

1) A description of the animation effect when performed
by the audience of an stadium.

2) A description of the geometry model and the con-
struction process that instantiates the model to the
characteristics of the particular effect.

3) A description of the animation process for the partic-
ular effect.

For the sake of ease, we use section III, which presents
the first animation effect, mosaics, to describe the general
framework in detail, together with the description of mosaic
construction and animation. Then, sections IV and V, present
the other effects in comparison with mosaics. Section VI
presents results of the insertion of these virtual effects in
real images. Finally, section VII presents some conclusions
of this work.

II. FEATURE TRACKING

The position of the corners of the area where the an-
imation effect will be shown must be located accurately.
Initially the user picks the corners, and then the tracking
system locates these feature points in the consecutive frames
of the video sequence. Although the quality of tracking
highly depends on the selected points, in the stands there
are unchanging elements like fences, stairs and gates, which
facilitates the user to find good points for tracking.

The Lucas-Kanade method [11] is a widely used differen-
tial method for optical flow estimation, which estimates op-
tical flow locally, in the neighborhood of the interest points.
As differential methods are based on gradient matching, they
cannot provide flow information in the interior of uniform
regions of the image. Also, the method assumes that the
flow is essentially constant in a local neighborhood of the
pixel under consideration, as well as the illumination. The
images in sports scenes fulfill these conditions: the area in
the stands is rich in structure, the illumination is constant,
and the displacement between consecutive frames is smooth.
Even though the Lucas-Kanade as well as other differential
methods are usually efficient, we used the pyramidal approx-
imation by Bouguet [12], available in the OpenCV library
[10], which greatly improves the efficiency.

Other considerations for performance improvement are:
to use gray-level conversion of images, and to reduce image
resolution. These optimizations allow to track the feature
points in real-time through a high-definition video sequence,
with a low-performance computer.

III. MOSAICS

A. Description

A mosaic is composed of a set of tesseras placed along
the stands. The tessera is a piece of card or fabric that
the spectators raise to produce a mosaic work. In case
the spectator holds more than one tessera, these must be
enumerated and arranged as a sort of notebook. The audience
is requested to raise their tesseras through the PA system,
for instance, and the commentator announces the number of
tessera in case of two or more.

The mosaic animation comprises several steps: tessera
rising, exposition period, tessera exchange in case of several,
and tessera descent. Except for very special occasions, the
audience simply assists to the event and is not trained for
mosaicing. There is no time to rehearse or test the animation.
Also, maybe the stands are not full, and even some tesseras
can be lost. These factors determine the final appearance of
the mosaic (see figure 2) and must be simulated for achieving
visual realism.

In this paper, we consider these issues:
• Beginning of the animation. This consists on rising

the tesseras. Most probably the tesseras are not raised
simultaneously due to inexperience audience, but we



(a) Trained audience

(b) Regular audience

Figure 2. Two examples of mosaic work, (a) performed by trained
audience, with impeccable result, and (b) performed by the regular audience
of a stadium, where some black dots can be observed in the white area for
instance.

can assume all the tesseras will be lifted in a short
period of time.

• Lack of spectators in the stands. Although mosaics are
usually prepared for events that are sold out, unexpected
factors can prevent some spectators from attending the
event. Also, as these spectators may form part of a
group, the empty spaces may usually take one or more
consecutive seats.

• Height of the tessera. It varies as the spectators have
different heights, or some spectators are standing up
while others remain seated.

• Movement of the lifted tessera. The tessera cannot
remain still as the spectator keeps it raised. It will
probably have a light swinging movement.

• Change of tessera for displaying different contents.
• End of animation. Mosaic descent will not be simulta-

neous, but the period of time will be shorter than mosaic
rising. In general, it takes less time to lower the tessera
than to raise it.

• Other unexpected factors. Tessera falls, spontaneous
descents, and other movements can keep a tessera out

(a) Simulation of empty areas

(b) Height modification

Figure 3. Mosaic construction: (a) Mosaic representation with empty areas:
some areas without seats, and some seats without audience. (b) Mosaic after
tesseras height modification.

of sight for a short period of time.

B. Construction

In general, the basic shape of the stands (by abstracting
details as seats, steps, entries and so on) can be easily
modeled by surfaces such as quadric surfaces and planar
surfaces.

The virtual mosaic can be represented as a tessera matrix
with the size of the stands, plus a masking matrix of the
same size to mark some tesseras not to be shown. There
are two reasons to mark a matrix cell without tessera: either
it is located in an area without seats (steps, entries and so
on), or the seat is simulated to be empty. For the first case,
we need to know the arrangement of the seats, corridors,
steps, entries, etc. in the stands. Usually, these are arranged
in a regular manner, which simplifies the modeling process.
For the second case, we simulate empty spaces that may
take one or more seats. For a given percentage of absences,
we randomly mark the location as well as the number of
consecutive empty seats. Figure 3(a) shows an example of
stands where some seats are not displayed due to these
reasons.



To simulate height differences (see figure 3(b)), we apply
a random vertical displacement to each tessera using the
Box-Muller transform, which allows to transform uniformly
distributed random variables, to a new set of random vari-
ables with a Gaussian distribution.

C. Animation

The processes of mosaic rising and descent are very
similar. Each tessera is randomly assigned a delay. When
the process begins, each tessera starts moving after the asso-
ciated delay. Although these values are generated randomly,
we also take into account three issues. First, all the tesseras
must reach their final position in a period of T seconds.
Second, the time for rising/lowering a tessera is set. Third,
a given percentage of tesseras must reach their final position
in a period of T/2 seconds, while the rest of them will finish
in the rest of time.

(a) Original (b) Modified

Figure 4. Mosaic animation: vertices and normals are modified by means
of a noise function. (a) A portion of the original mosaic. (b) Modification
of vertices and normals.

Once the tesseras are raised, to simulate the swinging
movements, we use a noise function. During animation,
each vertex of the panel is added a noise value, in order
to produce a slight displacement of the vertex (see figure 4).
To obtain the swinging, the displacement must vary through
time. In addition, to be able to perceive the random general
movement of the tesseras it is important that consecutive
tesseras use non consecutive noise values. Also, in order
to improve visual appearance, instead of recalculating the
normal of the tessera after the displacement of its vertices,
the normal is modified for each vertex by using the same
noise value, thus producing a different normal at each vertex,
and consequently, a non uniform shading of the tessera.

The change of the content of the mosaic is simulated
while rotating every tessera around itself. A random delay is
assigned to each tessera as was done in the rising process.
Then, at the same time the tessera is quickly rotated the
texture is changed.

Tesseras fall and other unexpected movements that may
keep a tessera out of sight for a while are modeled through
the masking matrix of the mosaic. During animation, some
of the tesseras are randomly marked in this matrix for a
short period of time.

IV. FLAGS

A. Description
During a sports event, the audience often wave little flags

of variable size. The simulation of this effect differs from
virtual mosaics in these issues:
• The absence of flags is much higher than that of

tesseras, as the tesseras of a mosaic are provided by
the organization whereas the flags are usually carried
by the spectators.

• The size of flags is variable whereas the tesseras size
is constant. Usually, different flags have different sizes
as well as different appearance.

• Each flag displays an individual image, whereas all the
tesseras of a mosaic form together a unique image.

• The waving of flags is a movement stronger than
tesseras swinging.

• No change of contents is simulated.

B. Construction
The model for little flags is identical to that of the virtual

mosaic, with two differences. First, the percentage of empty
cells when modeling flags is higher than tesseras. Second,
the masking matrix is also used to mark the type of flag
assigned to each seat. Each flag type has predetermined size
and texture. The method for assigning a flag type to each
seat depends on the desired effect. For example, they can
be assigned randomly, or the stands can be divided in areas
corresponding to different supporters, such that each area is
assigned a type.

C. Animation
The method for animation of flags is identical to that

used for the mosaic. To simulate a higher waving movement,
we just increase the amplitude of the noise function. This
produces a higher displacement of the vertices (see figure
5).

V. BIG-SIZED FLAG

A. Description
This effect consists of simulating a big-sized flag appear-

ing over the audience. This kind of flag does not cover the
whole stands but a rectangular-shaped area. The principal
differences with respect to the mosaic are:
• All the pieces that compose the flag are connected, such

that each piece shares their vertices with the adjacent
pieces (see figure 6).

• The beginning of the animation consists of unfolding
the flag from the last row to the first one.

• The absence of spectators is not considered.
• The audience pushes the flag upwards above their

heads.
• The end of the animation consists of folding the flag

in the opposite direction.
• No changes of contents are simulated.



Figure 5. Several non-consecutive instants of the animation of a waving flag.

B. Construction

The model for representing the big-sized flag is identical
to that of the mosaic, except for two differences. First, the
flag is applied to a rectangular area of the stands. Second, the
masking matrix is not necessary, given that absences are not
considered so that this kind of element can cover corridors,
gates, etc.

(a) Wire mesh

(b) Final appearance

Figure 6. Big-sized flag: the pieces are connected and displaced conse-
quently.

C. Animation

Initially, the flag is folded after the last row. At the
beginning of the animation, the flag is unfolded and moved
through the stands until it covers completely a rectangular
area. This process is simulated by means of a simple scale
geometric transform ranging from 0 to 1.

The animation of the flag waving movement is performed
through the same noise function than mosaic animation, with
values in a wider amplitude. In the experiments, we could
observe that the results are better when the amplitude varies
during the unfolding and folding processes instead of being
constant. Therefore, we made this value higher when the flag
is folded and it gradually decreases until it is completely
unfolded.

VI. RESULTS

The results obtained in the experiments show that the
quality of the tracking is good in presence of camera
displacements and turns, if somewhat sensible to zoom
functionality (see figure 7).

Figure 8 shows some shots of the animations produced
by the described technique. The insertion of the virtual
effects in the real images has been performed approximately,
as we do not have information about camera parameters
and stadium dimensions. Figures 8(a) and 8(b) show two
examples of virtual mosaics. Figures 8(c) and 8(d) show two
examples of virtual flags. In figure 8(c) flags appear along
the whole stands, while only a little portion is simulated in
figure 8(d). Figures 8(e) and 8(f) show a virtual big-sized
flag unfolded over the audience. The last one shows a closer
view in order to be able to perceive the details.

Examples of the animations are available at http://rubi.
dlsi.uji.es/∼ribelles/ICCSA11/.

VII. CONCLUSION

In this paper, we present a technique to create computer-
generated effects that simulates the animation effects per-
formed by the audience in the stands of a stadium. To
increase visual realism, this technique takes into account
issues like absence of spectators, differences in height and
movement of the elements in the animation. The animation
can be processed in real time, and the visual results in real
video sequences are quite satisfactory.

At present, this technique can simulate a few animation
effects, based on those that a regular audience usually
perform. But this technique could be used to generate new
effects, difficult for the audience to perform due to lack of
infrastructure, material or training. Therefore, we plan to
research the simulation of other effects, like the audience
wave, and even to improve of the versatility of the presented
effects. For example, a wave that traverses a mosaic and



(a) (b) (c)

(d) (e) (f)

Figure 7. Results of the feature tracking. Six frames of the video sequence, one per second, are shown. The quadrilateral and the corners, feature points,
are drawn in green.

produces a change of color or image, or even a domino
effect to perform such change.

For the near future, we also plan to improve the tracking
system. First, we can increase the number of interest points
along the sides of the quadrilateral, or even we can take
into consideration other features (line segments, planes) [13].
Second, we can weight these features according to their
goodness, as in [14].

ACKNOWLEDGMENT

This research is supported by the Spanish Ministry of Sci-
ence an Innovation Grant No DPI2008-06548-C03-01 and
CONSOLIDER INGENIO 2010 (CSD2007-00018); and by
Fundació Caixa Castelló-Bancaixa Grant No: P1-1B2009-
50.

REFERENCES

[1] BBC, The PIERO project, http://www.bbc.co.uk/rd/projects/
virtual/piero/

[2] VIZRT, Viz Arena, http://www.vizrt.com/products/article202.
ece

[3] RT Software, TOG Sports, http://www.rtsw.co.uk/index.php?
page=togsports

[4] R. Azuma, A survey of augmented reality, In Computer Graph-
ics (SIGGRAPH’95 Proceedings, Course Notes 9: Developing
Advanced Virtual Reality Applications), pp. 1–38, 1995.

[5] F. Abad and E. Camahort and R. Vivó, Antecedentes y fun-
damentos de la integración de objetos sintéticos en escenas
reales, DSIC Research Report, 2002.

[6] L. Vacchetti and V. Lepetit and P. Fua, Combining edge and
texture information for real-time accurate 3D camera tracking,
International Symposium on Mixed and Augmented Reality,
pp. 48–56, 2004.

[7] T. Watanabe and M. Haseyama and H. Kitajima, A soccer
field tracking method with wire frame model from TV images,
International Conference on Image Processing, pp. 1633–1636,
2004.

[8] G. A. Thomas, Real-time camera pose estimation for augment-
ing sports scenes, BBC Research Report, 2007.

[9] R. J. Rost and B. Licea-Kane, OpenGL(R) Shading Language
(3rd Edition), Addison-Wesley Professional, 2009.

[10] G. radsky and A. aehler, Learning OpenCV: Computer Vision
with the OpenCV Library (1st Edition), O’Reilly Media, 2008.

[11] B. D. Lucas and T. Kanade, An iterative image registration
technique with an application to stereo vision, Proceedings of
Imaging Understanding Workshop, pp. 121–130, 1981.

[12] J.Y. Bouguet, Pyramidal Implementation of the Lucas
Kanade Feature Tracker Description of the algorithm, http:
//robots.stanford.edu/cs223b04/algo tracking.pdf, Intel Corpo-
ration Microprocessor Research Labs, 2000.

[13] R. Deriche and O. Faugueras, Tracking line segments, Image
and Vision Computing, 8(4), pp. 261–270, 1990.

[14] J. Shi and C. Tomasi, Good features to track, Proceedings of
IEEE International Conference on Computer Vision and Pattern
Recognition (CVPR 94), pp. 593-600, 1994.



(a) (b)

(c) (d)

(e) (f)

Figure 8. Some results. From top to bottom: mosaics, little flags, big-sized flags.


