

R. Marín P. J. Sanz P. Nebot R. Esteller
Universitat Jaume I

Av. Sos Baynat, s/n. E-12006 Castelló - SPAIN
{rmarin, sanzp, al065289, esteller}@uji.es

* 0-7803-7952-7/03/$17.00  2003 IEEE.

Abstract - In this paper, we present the system
architecture that has been used in order to implement a
whole Internet-Based Tele-Laboratory, which allows
researchers and students to program remotely an online
robot. In fact, the challenge has been demonstrating that
remote programming combined with an advanced
multimedia user interface for remote control is very
convenient, flexible and profitable for the design of a
Tele-Laboratory. In fact, the contribution consist of
designing a system architecture that permits to any
external program (i.e. remote experiment, speech
recognition module, etc.) to have access to almost every
feature of the already existing “UJI Online Robot” (i.e.
cameras, object recognition, robot control, etc.) [1].

Keywords: Robotics TeleLabs, Remote Programming,
Education & Training, and Distributed Systems

 Online robots enable multiple users to have control
over a remote robotic system in a teleoperated manner.
This kind of systems are very useful for teaching robotics,
due to the fact that they enable the general public (e.g.
students) to gain experience of robotics technology
directly [1]. In fact, the next step is giving more freedom
to the operator, and not only enabling remote control of
the robotic system, but also remote programming.

 Enabling remote programming of the robot system
permits developing external programs that take control
over the whole set of robotic functions. Thus, for
example, we could design an experiment in Java for
performing a visual servoing manipulation, or we could
even use this interface for designing a voice-operated
robot. In fact, this is what we have done for the TeleLab.

 The interest for the design of Internet-based Tele-
Laboratories is increasing enormously, and this technique
is still very new. A very good example of already existing
experiments in this area can be found in [4].

The robot scenario is appreciated in Figure 1, where
three cameras are presented: one taking images from the
top of the scene, a second camera from the side, and a
third camera from the front. The first camera is calibrated,
and used as input to the automatic object recognition
module and 3D-model construction. The other two
cameras give different points of view to the user when a
teleoperation mode is necessary in order to accomplish a
difficult task (e.g. manipulating overlapped objects).

Once the user gets an online connection to the robot, the

manipulator goes to the initial position, so the whole scene
information is accessible from the top camera. At that
moment, the computer vision module calculates a set of
mathematical features that identify every object on the
board [3]. Afterwards, the contour information is used in
order to determine every stable grasp associated with each
object [5], which is necessary for vision-based
autonomous manipulation. This process is a must whether
high level task specification from a user is required, and
also in order to diminish network latency.

Meanwhile, we shall use the output from these visual

algorithms in order to construct a complete 3D model of
the robot scenario (i.e. the objects and the robot arm).
Thus, users will be able to interact with the model in a
predictive manner, and then, once the operator confirms
the task, the real robot will execute the action [2].

CAMERACAMERA

CAMERACAMERA

CAMERACAMERA

ILLUMINATIONILLUMINATION

CAMERACAMERA

Figure 1. Experimental setup (left); and the user interface associated (right).

3 System Architecture

As we can see in Figure 2, the Tele-Lab accepts
experiments (i.e. algorithms) as inputs using any
programming language capable of managing TCP/IP
sockets. We already provide a Java library for using the
robot in a simply manner. Future efforts will be oriented to
facilitate this library not only in Java but also with other
programming languages (i.e. Matlab, C, etc.).

The outputs of the experiments are returned to the user
by means of the Tele-Laboratory “Client Side” user
interface, which permits the operator to see the results of
their programmed actions directly on a multimedia Java3D
user interface.

ROBOT
SERVER

DATABASE
SERVER

SERVER SIDE

CLIENT SIDE
R

O
B

O
T

IC
S

T
U

T
O

R
IA

L
ONLINE ROBOTS CONTROLLER

C
O

L
L

A
B

O
R

A
T

IV
E

T
O

O
L

S LA
B

E
X

E
R

C
IC

E
S

COMPUTER VISION

JAVA3D VIRTUAL & AUGMENTED REALITY

NATURAL LANGUAGE RECOGNITION

OBJECT RECOGNITION

INTERNET RMI

E
X

PE
R

IM
E

N
T

S
SE

R
V

E
R

TCP/IP
(SOCKETS)

SPEECH
RECOGNIZER

&
SINTHESIZER

CAMERA
SERVER I

CAMERA
SERVER II

CAMERA
SERVER III

DISTANCE
SENSOR
SERVER

VISUALLY GUIDED GRASPING

SERVERS MANAGER
CORBA

HTTP CORBA
JDBC

TELE-LABORATORYINPUTS
VOICE COMMANDS

EXPERIMENTS
(ALGORITMS)

Public class Experiment1
main(){

for (i=0;!(end); i++){
...
}

}

Figure 2. System architecture for the Internet-based Tele-Lab

4 The “Experiment” Java Library
As seen in Figure 2, the interface that the TeleLab

provides to remote applications (e.g. experiments) is called
the “Experiments Server”. The “Experiments Server”
maintains an open TCP/IP socket over a well-known port
(i.e. 7745). It is on this socket where the external
applications must be connected to be able to communicate
with the Tele-Laboratory.

Moreover, the “Experiments Server” is responsible for
receiving the commands and the data from the applications
(e.g. students experiments), as well as sending back to
clients the results and evaluation of the execution of these
actions on the TeleLab.

The “Experiment” Java Library has the benefit of giving

the user the possibility to have a copy of object instances
that are running in the TeleLab itself. To do that, it is
necessary that those Java objects be “serialized” (i.e. the
object can be transformed into a chain of bytes). To allow
this, Java has the “Serializable” class, as a way to not only
send strings through a socket, but also object’s instances.

Again, if the object to be transferred by the socket

contains attributes, every one of them must be serializable
too. If they are not, the object could not be transferred.

The “Experiment” Java Library consists of a
class/library and a skeleton for the accomplishment of
experiments in the TeleLab. The experiments (i.e. user
algorithms) need to have information about the real robot
scenario (i.e. camera inputs, object recognition, etc.). The
whole set of data referred to robot vision are all stored into
a class called “SceneManager”. Therefore, the transfer of
this object to the experiments will be necessary. To do
that, the “Experiments” Java Library includes a method
called “getSceneManager”, which provides the user the
capability of getting on the experiment a copy of the
SceneManager object that has the information of the real
robot environment.

As explained in Figure 3, once a student or a scientist
wants to program an experiment by using the
“Experiments” Library, the best way (and unique) to begin
is creating a Java class (e.g. Experiment1) that extends
from the “Experiment” class. By doing this every aspect
related to sockets programming and object serialization are
encapsulated.

Thus, every experiment matches a template (see Figure
3) that we call “Experiment_template”, and they all have
the same structure: (1) extending “Experiment” class, (2)
creating an instance of the experiment, (3) calling the
“getSceneManagerSer” to obtain the serialized objects
from the TeleLab, (4) executing the corresponding actions
on the TeleLab, and (5) closing the connection.

Experiment

Experiment1 Experiment2 Experiment3 Experiment4

Experiment_template

 Figure 3. The “Experiment” Java Library Software
Architecture

The template has the following form:

public class Experiment_template extends Experiment {
 public Experiment_template(String host,int port) {
 super(host,port);
 }

 public static void main(String[] args) {
 // Fixed part that connects with the server and obtains the data from
him
 Experiment_template et = new

 Experiment_template("127.0.0.1",7745);
 et.connect();
 SceneManagerSer sms = et.getSceneManagerSer();

 // To fill out with the specific actions to do with the scene data
 // obtained from the server

 // Fixed part that disconnects the experiment from the server
 et.disconnect();
 }
}

5 Examples of Experiments

At this section we are presenting 4 simple examples that
have been practiced in our laboratory by a pilot group of
students.

5.1 Objects Attributes Experiment

The first example consists of designing an experiment

that simply uses the “Experiment” library in order to
obtain information about the objects that are currently on
the remote robotics scenario (i.e. number of objects, area,
etc.).

public class ExperimentExample1 extends Experiment {
 public ExperimentExample1(String host,int port) {
 super(host,port);
 }

 public static void main(String[] args) {
 // Fixed part that connects with the server and obtains the data from
him
 ExperimentExample1 ee1 = new
ExperimentExample("127.0.0.1",7745);
 ee1.connect();
 SceneManagerSer sms = ee1.getSceneManagerSer();

 System.out.println("Width: " + sms.imgWidth + " Height: " +
sms.imgHeight);
 for (int i=0;i<sms.numObjeto;i++) {
 SceneObject so = sms.getSceneObject(2);
 System.out.println("Area Object: " + so.area);
 }

 // Fixed part that disconnects the experiment from the server
 ee1.disconnect();
 }
}

As can be seen in the previous algorithm, we follow the

“Experiment_template” structure and print on the console
the area of every object present in the scene. This can be
easily implemented by using the object serialization
feature presented above.

5.2 Path Planning Experiment

In this second experiment the student uses the remote
programming feature to bring the robot from a point to
another (i.e. from [x1, y1, z1] to [x2, y2, z2]) by following
a straight line.

public class ExperimentPath extends Experiment {
 public ExperimentPath(String host,int port) {
 super(host,port);
 }

 public static void main(String[] args) {
 ExperimentPath ep = new ExperimentPath("127.0.0.1",7745);
 ep.connect();

 int[] ini = {-15,30,15}; int[] fin = {15,10,5};
 int incr = 2; String orden;
 double t = 0.0; long y = 0, z = 0;
 long x = ini[0]; int dist = fin[0] - ini[0];

 for (int i=0;i<=dist;i+=incr) {
 x += incr;
 t = (x - ini[0]) / (double)(fin[0] - ini[0]);
 y = Math.round(ini[1] + (t * (fin[1] - ini[1])));
 z = Math.round(ini[2] + (t * (fin[2] - ini[2])));

 orden = "move to position " + Long.toString(x) + " " +
 Long.toString(y) + " " + Long.toString(z);
 sendOrder(orden);
 orden = "confirm"; sendOrder(orden);
 }
 ep.disconnect();
 }
}

5.3 Pick and Place Experiment I

The third experiment consists of launching a grasping
action over one of the objects in the scene, by using the
most stable grasping points. In particular, we launch the
action “grasp object 1” on the TeleLab, then we move the
gripper to the quadrant 8 of the robot scenario, and finally
we ungrasp the object by executing the command
“ungrasp”. As can be seen in the following algorithm, the
action “confirm” is necessary in order to send the action
over the real robot and not only on the 3D virtual
environment.

public class ExperimentPick extends Experiment {
 public ExperimentPick(String host, int port) {
 super(host, port);
 }

 public static void main(String[] args) {
 ExperimentPick ep = new ExperimentPick("127.0.0.1", 7745);
 ep.connect();

 sendOrder("grasp object 1");
 sendOrder("confirm");

 for (int i=0;i<5;i++) {
 sendOrder("move up"); sendOrder("confirm");
 }

 sendOrder("move to quadrant 8");
 sendOrder("confirm");

 sendOrder("ungrasp");
 sendOrder("confirm");

 ep.disconnect();
 }
}

In Figure 4 we can appreciate the states of the robot during
the execution the the Pick and Place Experiment I

Figure 4. Snapshots of the educational robot when
executing the Pick and Place Experiment I.

1 2

3 4

5.4 Pick and Place Experiment II

This second Pick and Place Experiment enables the user
to execute a grasping action over two particular points of
the object contour. For this example the two selected
points are defined by the intersection of the Object’s
Maximum Inertia Axis and its contour. For a big broad of
applications this alternative is sufficient.

As can be seen in the algorithm, in this situation we add
a grasping to the object by using the object’s attributes
“p1” and “p2” that represents the contour points that
intersect with the Maximum Inertia Axis.

After that, we execute the grasping command on that
object by using the already created grasping.

public class ExperimentCandidate extends Experiment {
 public ExperimentCandidate(String host, int port) {
 super(host, port);
 }
 public static void main(String[] args) {
 ExperimentCandidate ec = new ExperimentCandidate("127.0.0.1",
7745);
 ec.connect();
 SceneManagerSer sms = ec.getSceneManagerSer();

 int object = 3;
 SceneObject so = sms.getSceneObject(object);
 sendOrder("add grasp " + so.p1 + " " + so.p2 + " to object " +
object);
 sendOrder("confirm");

 sendOrder("grasp object " + object + " using " + (so.nGrasps-1));
 sendOrder("confirm");

 for (int i=0;i<5;i++) {
 sendOrder("move up"); sendOrder("confirm");
 }

 sendOrder("move to quadrant 15");
 sendOrder("confirm");

 sendOrder("ungrasp");
 sendOrder("confirm");

 ec.disconnect();
 }
}

6 Results and Conclusions
The present paper presents an extension of the UJI

Online Robot architecture that enables not only control a
robot by interacting with an advanced user interface, but
also letting the scientist and students program their own
experiments by using the Java programming language.

This has been possible thanks to the definition of the
“Experiments” library, that allows in a encapsulated way to
provide the TeleLab clients with the serialized objects
necessary to perform these action.

Until now we have performed the following remote
programming experiments:

1. Extracting information about the robot scenario
(i.e. objects areas, etc.).

2. Position control of the robot using different
trajectories.

3. Pick and Place operations using already defined
grasping points.

4. Pick and Place operations letting the scientist to
calculate their grasping points.

The researchers that have been using the Tele-Lab until

now have found it very useful due to the fact that it enables
controlling the whole robotic system (cameras, object
recognition, predictive interface, robot control, etc.) from a
single library. It can be considered as a very good
alternative for researchers to perform a rapid prototyping
of their algorithms by using a real robotic system
accessible from any computer. Moreover, a pilot group of
students have been using the “Experiments” library to
design their own experiments. They became very
concerned and motivated with the experience.

Future efforts will focus on the design of more advanced
experiments for remote manipulation, as well as the study
of automatic methods for evaluation of the experiments.

In fact, we are preparing a Visual Servoing experiment to
let students of the next undergraduate robotics course to
use the TeleLab in order to explore this interesting subject.

Acknowledgments
This is to acknowledge sources of financial support for this
research, that was provided in part by the Spanish Ministry
of Science and Technology (CICYT) under project
CICYT-DPI2001-3801, and by the “Conselleria de Cultura
i Educació” (Generalitat Valenciana, Spain) under project
GV01-244.

References
[1] R. Marín, P.J. Sanz., J.S. Sanchez, A Very High
Level Interface to Teleoperate a Robot via Web including
Augmented Reality. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). Washington, May,
2002.

[2] R. Marín, P. Vila, P.J. Sanz, A. Marzal. “Automatic
Speech Recognition to Teleoperate a Robot via Web”. In
Proceedings of the IEEE International Conference on
Intelligent Robots and Systems (IROS). Lausanne,
October, 2002.

[3] R. Marín, J.S. Sanchez, P.J. Sanz. “Object
Recognition and Incremental Learning Algorithms for a
Web-based Telerobotic System”. In Proc. IEEE Intl. Conf.
on Robotics and Automation (ICRA). Washington, May
2002.

[4] G. T. McKee, The Development of Internet-Based
Laboratory Environments For Teaching Robotics and
Aritificial Inteligence. In Proc. of the IEEE Int. Conf. on
Robotics and Automation (ICRA). Washington, May,
2002.

[5] P.J. Sanz, A. P. del Pobil, J. M. Iñesta, G. Recatalá.
“Vision-Guided Grasping of Unknown Objects for Service
Robots”. In Proc. IEEE Intl. Conf. on Robotics and
Automation (ICRA), pp. 3018-3025, Leuven, Belgium.
May 1998.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: 4904
	02: 4905
	03: 4906
	04: 4907
	05: 4908
	06: 4909

