
Acromovi Architecture: Implementation of the Upper Layer

Patricio Nebot and Enric Cervera
Robotic Intelligence Lab

Dept. of Computer Science and Engineering
Univeritat Jaume I

Campus de Riu Sec, E-12071 Castellón de la Plana, Spain
pnebot@icc.uji.es, ecervera@icc.uji.es

Multiagent systems are an important tool for the development of new robotic applications. They are the natural
environment for the development of applications in which more than one robot takes part. And they make possible the fast
implementation of powerful architectures for the specification and execution of the tasks by those teams of robots. The
Acromovi architecture is a distributed agent-based architecture for programming and controlling a team of multiple
heterogeneous mobile robots that are capable to cooperate between them and with people to achieve service tasks in
daily environments. This architecture is divided into two layers. The purpose of this work is to describe the agents that
form the upper layer of the Acromovi architecture. In this layer there is a set of agents addressed to supervise and control
the access to the agents of the lower layer.

1. INTRODUCTION

Multiagent systems are an important tool for the
development of new robotic applications. They are the
natural environment for the development of applications in
which take part more than one robot. And they make
possible the fast implementation of powerful architectures
for the specification and execution of the tasks of those
teams of robots.

As has been shown in previous works and papers [9] [10],
the Acromovi architecture was born from the idea that
teamwork is an essential capability for a group of multiple
mobile robots. Having one single robot with multiple
capabilities may waste resources. Different robots, each
one with its own configuration, are more flexible, robust
and cost-effective. Moreover, the tasks to achieve may be
too complex for one single robot, whereas they can be
effectively performed by multiple robots.

Acromovi architecture is a distributed architecture for
programming and controlling a team of multiple
heterogeneous mobile robots that are capable to cooperate
between them and with people to achieve service tasks in
daily environments.

This architecture has some peculiarities. It allows the reuse
of code, due to it uses native components, by means of
agent wrappers, providing the programmer with a set of
tools for mobile robots. Also, it allows the sharing of the
robots' resources among the team and an easy access to the
robots' elements by the applications.

Other two important features of the Acromovi architecture
are the scalability and the facility of use. Regarding the
scalability, Acromovi permits that once an application has
been tested, it could be converted in a new agent of the
global architecture, thus, it is possible to reuse this new
agent to create more complex applications. And finally,
concerning to the ease of use, it is important to remark that
a new application can be developed in very short time.

Moreover, Acromovi architecture is a middleware layer
between the robot architecture and the applications. This
middleware is based on an agent-oriented approach. It has
been developed by means of the JADE multiagent
development tool, and it is is composed of multiple
interacting agents.

This middleware level is logically divided into two layers.
In the lower layer, there are a set of components that
access to the physical parts of the robots, as the sonar, the
base or the gripper; and other special components that
offer services to the upper layer, as the vision, the
navigation or the localization.

The purpose of this work is to add to the Acromovi
architecture the agents that form the upper layer. In this
layer there is a set of “generic” agents aimed at controlling
and supervising the access to the agents of the lower layer.

These “generic” agents have been conceptually divided
into two groups. On the one hand, there is a generic agent
to control those agents of the lower layer that can serve
data in a continuous way. On the other hand, there are two
special agents in charge of controlling those agents of the
lower layer that can have a problematic access, as can be
concurrent problems, and so on. The candidate agents of
the lower layer to use an agent of this type are those who
move a physical part of the robot.

In the following section, the most important works related
with control architectures and systems of multiple robots
working cooperatively are mentioned. In section 3, the
Acromovi architecture is described, firstly form the point
of view of the design, and the implementation of this
architecture is shown afterwards. In the fourth section, the
upper layer of the Acromovi architecture is described, just
as the agents it is composed of. Finally, in section 5, the
most important conclusions are enumerated.

- 1 -

2. STATE OF THE ART

Although the field of cooperative robotics has received
much attention recently, this section only wants to cite a
few works focused on problems which are similar to the
one addressed in this work.

MICRobES is an experiment of collective robotics that
tries to study the adaptation of a micro-society of
autonomous robots to an environment with humans. The
robots also must cohabit with the people [11].

CEBOT is a hierarchical decentralized architecture able to
dynamically reconfigure itself to try to adapt to the
environment changes [4]. In this architecture there are a
special “cells” that coordinate the subtasks.

ThinkingCap-II [1] is an architecture developed in a
distributed platform based on agents for mobile robots.

SWARM is a distributed system made of a great number of
autonomous robots. This project tries to show that a
system with multiple non-intelligent robots can exhibit a
collective intelligent behaviour. In this case, the
architecture is homogeneous and the interaction is limited
to the nearest neighbours [6].

Finally, Miro is a middleware to create applications for
autonomous mobile robots. It is based on the construction
and use of an object-oriented middleware to make easier
and faster the development of applications and to promote
the portability and the maintenance of the robot software
[2]. This software also provides generic abstract services,
which can be applied in different robotic platforms without
introducing changes.

These works implement architectures and systems to teams
of robots can make cooperative tasks. Acromovi
architecture is an architecture of this type, but it is
important to remark some aspects like the software
reusability by means of embedded agents, the share of
resources among the robots of the team, and the easy
access to the physical elements of the robot by the
applications

3. ACROMOVI ARCHITECTURE

The presented agent-based architecture, Acromovi, was
born from the idea that teamworking is an essential
capability for a group of multiple mobile robots [7] [8].

As it has been mentioned above, Acromovi architecture is
a framework for application development based on
embedding agents and interfacing agent code with native
low-level code. It addresses the implementation of
resources sharing among all the group of robots. Also,
Acromovi architecture is a distributed architecture that
works as a middleware of another global architecture for
programming robots.

It has been implemented by means of the JADE (Java
Agent DEvelopment Framework) [5], a tool for the
development of multiagent systems, implemented in
JAVA, that fulls with the FIPA specifications [3].

The embedded agents that constitute the Acromovi
architecture work as interfaces between the applications
and the physical elements of the robots. Some agents also
make easier the handling of these elements and provide
higher-level services.

Establishing mechanisms of cooperation between robots
implies to consider a problem of design of cooperative
behaviour given a group of robots, an environment and a
task, how the cooperation must be carried out. Such
problem implies several challenges, emphasizing among
them the definition of the architecture of the group. The
multiagent systems are the natural environment for such
groups of robots, making possible the fast implementation
of powerful architectures for the specification and
execution of tasks.

3.1 Architecture Design
The mobile robot has already a programming architecture,
with native (C/C++) libraries, constituted by two layers.
ARIA, the lower layer, and Saphira, the upper layer. But
also, the Acromovi architecture is able to subsume any
other extra software, like the ACTS (a colour-tracking
library) and the Vislib (a frame-grabbing library).

As it can be seen in Fig. 1, the Acromovi architecture is a
middleware layer between the robot architecture and the
applications that allows the collaboration and cooperation
among the robots within the team and allows sharing the
resources of each robot among all the team.

Fig. 1. General architecture diagram

This middleware is based on an agent-oriented approach.
The applications layer is over the middleware layer. These
applications, to access to the components of the robots,
must communicate with the agents of the middleware,
which access then to the bottom layer that controls the
robot.

- 2 -

The middleware level has been divided into two layers. In
the lower layer, that can be seen in the Fig. 2, there is a set
of components that access to the physical parts of the
robots, such as the sonar, the base or the gripper; and other
special components that offer services to the upper layer,
as the vision, the navigation or the localization. These
components only perform two kinds of functions: requests
processing and results sending.

Fig. 2. The lower layer of the middleware

The upper layer, which is explained later, comprises a
variety of embedded agents addressed to supervise and
control the access to the agents of the lower layer, such as
arbiter agents to manage the access to the different
elements of the robot, filter agents to avoid conflictive
actions of certain elements, and subscriber agents to serve
data from one element in a continuous way. These agents
also act as links between the applications and the agents
that access the components of the robot.

Other important characteristic of the middleware is due to
the fact that the team of robots is heterogeneous. Because
of this characteristic, there are different middleware layers,
depending on the configuration, for each robot of the team.
These middleware layers are generated in execution time
according to the elements that each robot has active at the
moment of its activation.

Finally, another interesting characteristic of the overall
architecture is the scalability. That is, once an application
has been tested, and if it is useful for the entire
architecture, it can be easily converted into a new agent of
the upper layer of the middleware, increasing this way our
system to make applications more difficult and more
interesting, following a bottom-up design.

3.2 Architecture Implementation
Due to the fact that the architecture has been designed
following an agent-oriented approach, for its
implementation has been selected a multiagent systems
programming tool. JADE (Java Agent DEvelopment
Framework) is a framework to develop agent-based

applications in compliance with the FIPA specifications
for interoperable intelligent multiagent systems.

The JADE middleware implements an agent platform for
execution and a development framework. And it provides a
library of FIPA interaction protocols ready to be used.

Following the JADE specifications, each robot or PC
involved in the architecture is a main container. In each of
these containers, we have a group of agents. These agents
are created in execution time depending on the robot
configuration, as it has been mentioned above. Each of
these agents represents one of the elements that are active
in the robot in that moment. This can be seen in Fig. 3.

Fig. 3. Structure of the JADE implementation

The agents of the lower and the upper layers co-habit
together in each of the containers. Their separation is
logical, and in the level of implementation their differences
lie in the agents that can communicate with them or the
agents that they can communicate with.

It is important to note that in the lower layer the agents
have been conceptually divided in three different groups,
depending in which part of the robot the agent carries out
its work. Thus, the body agents are the basic agents for the
operation of the robot and manage its main elements.
These agents are the Base, Gripper, Sonar, Bumper and IR
agents. The laser agents communicate with the laser and
implement the localization and navigation for the robot.
The agents are the Laser, Localization and Navigation
agents. At end, the vision agents are in charge to capture
the images from the camera and process them in a correct
way. These agents are the Camera, ACTS, Vision and
Display agents.

In the upper layer the agents have also been divided into
two groups, as it is explained below in detail. On the one
hand, there is an agent in charge to control those agents of
the lower layer that can serve information in a continuous
way. On the other hand, there are two agents in charge to
manage those agents of the lower layer that can have
conflicts in its access. The agents of the lower layer that

- 3 -

can use these agents are those that can move physically
any part of the robot, as the base, gripper o camera.

4. UPPER LAYER

The purpose of this section is to explain the configuration
and the agents that form the upper layer of the Acromovi
architecture explained before.

As it has been said before, in this layer there is a set of
agents addressed to supervise and control the access to the
agents of the lower layer. Arbiter agents to manage the
access to the different elements of the robot. Filter agents
to avoid conflictive actions of certain elements. And
subscriber agents to serve data from one element in a
continuous way.

Thus, in this layer, that can be seen in Fig. 4, only there are
three types of agents, arbiter, filter and subscriber agents.
It is important to remark that these agents are “generic”,
that is, their functionality varies depending on the agent of
the lower layer that they serve. So, there can be more than
one of these agents at the same time, but controlling
different agents of the lower layer, in the overall
architecture.

Fig. 4. The upper layer of the middleware

These three “generic” agents have been conceptually
divided into two groups. The first group is formed by one
generic agent in charge of controlling those agents of the
lower layer that can serve data in a continuous way, such
as the sonar, laser, vision, This generic agent is called
Subscriber agent. The second group is formed by two
special agents, the Filter and the Arbiter agents. These
agents are designed to control the access to some
«problematic» elements. Which are these «problematic»
elements? They are all those elements that can have a
wrong operation if one or more agents can to access and
execute operations at the same time on them. These
elements are the base, the gripper, the camera ... So, they
try to resolve concurrency problems. Other important
characteristic of these agents is that they also try to prevent
the agents from performing operations with the

«problematic» elements that can put in danger the robot's
life. For example, if one agent wants to move the robot two
meters, but there is a wall at one-meter distance.

In that way, for a robot with a laser system would have
several agents in the upper layer. One Subscriber agent to
manage the data coming from the Laser agent and another
one to manage the data coming from the Sonar agent. Also,
we have one Filter and one Arbiter agents to control the
access to the Base agent, two more to control the access to
the Gripper agent, two to control the access to the
Localization agent, and finally two more to control the
access to the Navigation agent.

The work the Subscriber generic agent is the following.
When one application or agent wants to have a continuous
flow of data from one of the agents of the lower layer, it
has to make a subscription to the Subscriber agent. In the
message of subscription, the agent must indicate how often
it wants to receive that data. The frequency is specified by
a number which indicates in which cycles of reading the
agent wants the data. That is, if the agent sends 2, each 2
readings of the data, the Subscriber agent sends this data to
the corresponding agent. Other agents can make a different
petition, the Subscriber agent differentiates them and sends
the data to each agent when corresponds.

The Subscribe agent is continuously requesting
information to the agent which it is serving. So it always
has the actual values of this agent. The rate in which
Subscriber agent requests the information to the served
agent is given by the real rate at which the agent can serve
the information.

Finally, the work that perform the Arbiter and Filter agents
is described. Firstly, the Filter agent should not allow an
agent to realize an action that could be in danger the life of
the robot or element that it must to care. That is, if one
agent wants to move 3 meters but there is a wall in 2
meters, the Filter agent must to avoid this action. So, each
action that an application or agent sends to one of the
”problematic” agents must be seen by the Filter agent and
if it can cause a danger in the robot, the Filter must avoid
this action.

On the other hand, the Arbiter agent is in charge of
distributing the access to the agents. This agent is in charge
of giving permission to the other agents to access to the
resources of the agent that it manages. That is, if one agent
wants to use the services of the Base agent, it must ask the
Arbiter agent in charge to manage the Base agent if it can
do it. If the Arbiter gives it permission, the agent can
access to the Base agent to make the corresponding
operations. At the same moment that the Arbiter agent
gives permission to a certain agent, it sends a message to
the Filter agent so that it can control the messages that are
sent by the agent with permission to the agent that controls
the element. When the agent finishes its work, it informs
of it to the Arbiter agent. When the Arbiter agent receives
the notification, it can give permission to other agents.

- 4 -

5. CONCLUSIONS

In this article, it has been shown how the upper layer of the
Acromovi architecture has been implemented and formed.

Also, it has briefly explained the Acromovi architecture,
which is the support for all the programming and
interaction of the agents that manages our team of robots.

The Acromovi architecture is basically an agent-based
distributed architecture for the programming and
controlling of teams of mobile robots. This architecture
allows code reuse by means of the use of native
components, providing the programmer with a set of
ready-to-use of tested and efficient agents.

Also, the presented architecture allows the scalability of
the system. That is, if one tested application is of interest
for the whole system, it can easily converted in a new
agent of the architecture, to serve as basis for new
applications more complex.

Moreover, this architecture implements another concept,
the resources sharing. This means that all the elements of
one of the robots of the team can be easily accessed by all
the other robots of the teams by means of the agents that
control each of the other robots.

Regarding the upper layer, it is formed by a set of agents
addressed to supervise and control the access to the agents
of the lower layer.

The Subscriber agent is in charge of serving a continuous
flow of data of a certain element of the robot to the rest of
agents of the architecture. This agent also adds the
possibility to indicate how often the provider agent wants
to receive the data of interest for its operation. Also, the
provider agent maintains a list with all the subscriber
agents and their frequency of data, and serves to any agent
when it corresponds.

The Filter and Arbiter agents allow to control the access to
certain elements of the robot and filtering actions that can
put in danger the robot. The Arbiter agent gives permission
to access to a certain element of the robot to the petitioner
agents in order of arrival of petitions. The Filter agent
controls all the actions that the agents send to the element
and avoid those that can put in danger the life of the robot.

With these new agents, it has been overcome some
problems present on the Acromovi architecture. With the
Subscriber agent, it has been solved the problem that
appears when one agent needs a continuous flow of data
from other agent. The Filter and Arbiter agents avoid a
more important problem in the distributed systems, which
is the concurrency problem in the access to a certain
resource. The Arbiter agent solves that problem by giving
the permission to the agent to access to a certain element.
That is, it is insured that only one agent access to the
element at each time.

6. ACKNOWLEDGMENTS

This work has been partly funded by project GV05/137
from the Generalitat Valenciana.

7. REFERENCES

[1] Cáceres, D. & Martínez, H. & Zamora, M. & Balibrea,
L. (2003). A real-time framework for robotics
software. International Conference on Computer
Integrated Manufacturing (CIM-03).

[2] Enderle, S. & Utz, H. & Sablatng, S. & Simon, S. &
Kraetzschmar, G. & Palm, G. (2001). Miro:
Middleware for autonomous mobile robots. IFAC
Conference on Telematics Applications in Automation
and Robotics.

[3] FIPA, The Foundation for Intelligent Physical Agents
(2005). Available from: http://www.fipa.org,
Accessed: 2005-07-13.

[4] Fukuda, T. & Iritani, G. (1995). Construction
mechanism of group behavior with cooperation.
IEEE/RSJ International Conference on Intelligent
Robots and Systems(IROS).

[5] JADE, Java Agent DEvelopment Framework (2005).
Available from: http://jade.cselt.it/, Accessed: 2005-
07-10.

[6] Johnson, J. & Sugisaka, M. (2000). Complexity
science for the design of swarm robot control systems.
26th Annual Conference of the IEEE Industrial
Electronics Society (IECON).

[7] Jung, D. & Zelinsky, A. (1999) An architecture for
distributed cooperative planning in a behaviour-based
multi-robot system, Journal of Robots and
Autonomous Systems.

[8] Mataric, M. J. (1998). New directions: Robotics:
Coordination and learning in multirobot systems,
IEEE Intelligent Systems.

[9] Nebot, P. & Cervera, E. (2005a). A Framework for the
Development of Cooperative Robotic Applications,
Proceedings of 12th International Conference on
Advanced Robotics (ICAR 2005).

[10] Nebot, P. & Cervera, E. (2005b). Agent-based
Application Framework for Multiple Mobile Robots
Cooperation. Proceedings of IEEE International
Conference on Robotics and Automation (ICRA
2005).

[11] Picault, S. & Drogoul, A. (2000). The microbes
project, an experimental approach towards open
collective robotics. Proceedings of the 5th
International Symposium on Distributed Autonomous
Robotic Systems (DARS'2000).

- 5 -

