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Abstract— We present an agent-based framework for the
development of distributed applications for a team of het-
erogenous mobile robots. The main goal is to ease the
development of cooperative tasks among teams of robots. The
proposed architecture must have not only the capacity to allow
the team of robots to accomplish such tasks, but also it must
have tools and features that allow programmers to develop
complex applications in a reasonable time. Agent-based devel-
opment platforms are used for this purpose, integrating the
necessary capabilities for developing distributed applications,
and managing the communications among all the components.

To demonstrate the advantages of the proposed framework,
two real applications, remote vision and robot following, are
presented. Both of them consist of a set of agents, and run
actually in real robot systems, demonstrating that distributed
systems do not add significant overhead to real-time tasks.

Index Terms— Mobile robots software reuse rapid-
application development cooperation

I. INTRODUCTION

The presented agent-based framework (Acromovi -
acronym in Spanish for Cooperative Architecture for In-
telligent Mobile Robots) was born from the idea that
teamwork is an essential capability for a group of multiple
mobile robots [1], [2]. It is known that having one single
robot with multiple capabilities may waste resources. Dif-
ferent robots, each one with its own configuration, are more
flexible, robust and cost-effective. Moreover, the tasks to
achieve may be too complex for one single robot, whereas
they can be effectively done by multiple robots.

Many multirobot architectures have been proposed in
the recent years. ALLIANCE is an architecture oriented to
the cooperation of a small-medium team of heterogeneous
robots, with little communication among them [3]. It as-
sumes that robots are relatively able to discern the effects of
their actions and those of the rest of agents, either through
its perception or through communication. Individual robots
act based on behaviors or sets of behaviors to make their
tasks.

DPA is another architecture for dynamic physical agents,
well suited for robotics [4]. A physical agent is the result of
integrate a software agent in an autonomous hardware. This
hardware is frequently a mobile robot. DPA architecture
shows the agent like a modular entity with three levels of
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abstraction: control module, supervisor module and agent
module. The architecture’s operation is based on two basic
processes for each module: the process of introspection and
the one of control, and in a protocol of intermodular dia-
logue which allows the exchange of information between
modules.

ABBA (Architecture for Behaviour Based Agents) [1] is
another architecture for mobile robots, whose purpose is to
design an architecture to model the robot’s behavior so that
it can select reactive behaviors of low level for his survival,
to plan high level objectives oriented to sequences of
behaviors, to carry out spatial and topological navigation,
and to plan cooperative behaviors with other agents.

The previous works implement architectures and systems
so that teams of mobile robots can make cooperative tasks.
Our work consists of the implementation of an architecture
of such type, adding the versatility and power of the
multiagent systems for the resolution of cooperative tasks
for a group of heterogeneous robots.

In addition, we emphasize the reusability of software,
allowing the programmer to seamlessly integrate native
software components (vision libraries, navigation and lo-
calization modules) in the Java-programmed agent-based
framework. In this way, powerful distributed applications
can be rapidly developed.

Acromovi architecture is a framework for application de-
velopment, which addresses the implementation of resource
sharing among all the group of robots. Cooperation among
the robots is also made easier in order to achieve complex
tasks in a coordinated way.

Though robot programming has been extensively done in
C or C++ languages, a Java-based multiagent development
system was chosen to develop the architecture of our team
of robots [5]. Among Java strengths, those particularly
pursued were the high-level communication capabilities,
and the native interface to existing C/C++ code.

This article describes the Acromovi architecture and its
constitutive agents, as well as two applications, Remote
Vision and Robot Following. These applications demon-
strate the rapid development capabilities and ease-of-use
of agents implemented with this framework.

Acromovi architecture is a distributed architecture that
works as a middleware of another global architecture for
programming robots. It has been implemented by means
of the MadKit (Multi-Agent Development Kit) multiagent
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systems framework, a Java-based library of generic agents
[6].

The agents that constitute the Acromovi architecture
work as interfaces between the applications and the phys-
ical elements of the robots. Some agents also make easier
the handle of these elements and provide higher-level
services.

The first distributed application, Remote Vision, allows
to manipulate the camera, to capture and to process the
images from another machine and even from another robot.
This application allows to calibrate and to move the camera,
being able to obtain new images on the user demand.

Using Acromovi architecture we were able to develop
the second application, Robot Following, in a very short
time, thanks to its flexibility. By using a small set of agents,
with specified roles, and communicating with other general
agents previously defined in our system, the development
of such application, and other ones with a medium-high
level of complexity, is very fast.

In Section II an overview of the Acromovi architecture
is given. The different agents that constitute the Acro-
movi architecture and their functions are then described
in Section III. The Visual Controller and Robot Following
applications are finally described in Sections IV and V,
before concluding and presenting final remarks.

II. ACROMOVI ARCHITECTURE OVERVIEW

Acromovi architecture is a distributed architecture for
programming and control a team of multiple heterogeneous
mobile robots that are capable to cooperate between them
and with people to achieve tasks of service in daily
environments [7].

The robots that constitute the team have already a
programming architecture with native (C/C++) libraries for
all their accessories. This architecture is constituted by two
layers. The lower layer is called ARIA, and it takes care
of the requests of the programs to the robot components.
The upper layer, called Saphira, provides services for range
sensor interpretation, map building, and navigation [8].

Also, the architecture is able to subsume any other extra
software, like the ACTS (a color tracking library) and
the Vislib (a framegrabbing library). ACTS is a native
(C/C++) module which, in combination with a colour
camera and a framegrabber, allows the applications track
up to colored objects which color the users have been
selected previously. ACTS is an external program to the
architecture that works as a server, and the applications
work as clients that communicate with ACTS server by
means of an ARIA library. In the other hand, Vislib is a
library that provides a fast and flexible image processing
and single-camera machine vision. The image processing
functions that Vislib offers are generic convolution (2D
kernel), filtering and morphological tools. Vislib also is
written in the C language.

Subsuming existing C/C++ libraries is a powerful and
quick method for rapidly developing Java code and thus
embedding agents with all the functionality of native sys-
tems. Furthermore, the new code adds seamless integration

Fig. 1. General architecture diagram

with other distributed agents, either running on remote
applications, or even as applets in web pages.

However, the existing native code is oriented to both
local and remote processing from only one controller,
without defining collaboration mechanisms between robots
or applications. Acromovi architecture tries to overcome
this problem by the introduction of a new level over
this architecture that allows an easy collaboration and
cooperation.

As can be seen in Fig. 1, Acromovi architecture is a
middleware between this robot architecture and the appli-
cations, that allows the collaboration and cooperation of
the robots in the team. This middleware is based on an
agent oriented focus.

This middleware level has also been divided into two
layers. In the lower layer, there are a set of components,
such as the sonar, the laser, the base, and so on. The others
are special components that offer services to the upper
layer, as the vision, the navigation or the localization.

These components only perform two kind of functions:
requests processing and results sending. Thus, they could
be implemented like software components. But because of
reasons of efficiency, implementation facility and integra-
tion with the whole structure, they have been developed as
agents that encapsulate the required functionality. But one
should take into account that this implementation may vary
in the future if needed.

The upper layer of the middleware is still in develop-
ment. This layer comprises a great variety of embedded
and supervising agents, e.g. agents that monitor the state
of the agents/components of the lower layer, agents that
provide services of subscription to a certain component,
agents that arbitrate or block the access to a component,

Fig. 2. The middleware layer
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Fig. 3. Different middleware layers.

and any other type of agent which might offer a service
that can be of interest for the whole architecture or for a
particular application. These agents act as links between
the applications and the agents that access the components
of the robot.

The structure of the entire middleware layer can be seen
in the Fig. 2.

Because of the heterogeneous character of the team,
there are different middleware layers for the robots, de-
pending on the configuration of each robot of the team.
These middleware layers are generated in execution time
according to the elements that each robot has active at the
moment of its execution. Therefore, each middleware layer
will have active those agents that permit the access to the
own components of the robot. These different configura-
tions can be seen in Fig. 3.

Due to the fact that the middleware is just a set of em-
bedded agents, the MadKit(Multi-Agent Development Kit)
multiagent systems programming tool has been selected [6]
for its implementation.

MadKit is based on a organizational model called
Aalaadin, based on three concepts: agent, group and role.
MadKit also implements the community concept.

Because of the fact that ARIA and Saphira are imple-
mented in C++ and MadKit in Java, it has been necessary to
use a mechanism to integrate such different programming
languages. For this, it has been used JNI (Java Native In-
terface), that allows to manage C++ code in Java programs.

Since our facilities include seven mobile robots, the
middleware layer is formed by a community of agents
called ”Seven Dwarfs”, that can be seen in Fig. 4. In
this community, one active robot defines a group of its
elements, which are represented and managed by agents.
These agents communicate with the native layer of the

global architecture by means of JNI. A brief explanation
of the agents is given in the next section.

Over the middleware layer is the applications layer, that
can be implemented as agents too. These applications, to
access to the components of the robots, must communicate
with the agents of the middleware, which then access to
the bottom layer that controls the robot.

III. ACROMOVI AGENTS

The agents that constitute the Acromovi architecture are
described in the following paragraphs. These agents are
divided in three groups depending on the part of the robot
in which the agent carries out its task: body agents, laser
agents and vision agents.

A. Body agents

These agents are the basic agents for the operation of
the robot and they correspond to the main elements of the
robots. There are five body agents: the Base Agent, the
Gripper Agent, the Sonar Agent, the Bumper Agent and
the IR Agent.

Base Agent: agent responsible of the physical operation
of the robot, all about the motion of the motors and internal
state of the robot. This agent is the most important because
it is the link between all the rest of the agents and the
physical robot. Thus, it must be launched in advance so
that all the rest of agents can work.

Gripper Agent: agent that makes that the gripper works
in a proper way and permits to other agents the manip-
ulation of the gripper. The gripper is a two degree of
freedom manipulator attached to the front of the robot
and contains in its paddles a grip-sensor and infrared
breakbeam switches in front and rear to sense objects and
their positions.

Sonar Agent: it makes the sonar work correctly and
returns the appropriate sonar values when these are re-
quired by other agents or applications. The sonars consist
of transducers that provide range information for colli-
sion avoidance, localization, and navigation. Measurements
range from ten centimeters to over four meters.

Bumper Agent: agent that manages the bumpers of a
robot. It permits know if a robot disposes of bumpers,
how many of them, and in which position. Also, it allows
to recognize which bumper has been triggered. By the
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Fig. 4. Structure of the ”Seven Dwarfs” community
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moment, the only robot of the team that uses this agent
is the PowerBot.

IR Agent: agent that is in charge of the management
of the 4 IR sensors that are disposed in the front of the
Powerbot. These sensors has the function to prevent the
robot of ledges such as stairways or holes. The agent
indicates the state of each sensor, indicating whether it is
triggered or not.

It is important to emphasize that bumper and IR sensors
are sensors for the safe navigation of the robot, and they
respond at two levels. First, the activation of one of this
sensors causes the robot’s controller to take a certain action,
by the moment it stops the motor and sets the brakes,
but this behavior can be changed. At the next level, the
controller informs about the condition that has produced
the previous action.

B. Laser agents

These agents comunicate with the laser rangefinder,
using the ARIA interface, and permit to use two modules of
Saphira: Localization and Navigation. These two modules
are powerful native libraries integrated into Saphira, using
a Montecarlo-Markov method for robot’s localization and a
Gradient system for the navigation. All their functionality
is readily subsumed by the embedded agent.

Laser Agent: agent that allows multiple operations with
the laser such logging its lectures, determining the distance
to an object with better precision than the sonar, etc. With
the tools and primitives provided by the Laser Agent, we
are able to do tasks like mapping, environment scout and
so on.

Localization Agent: agent that provides the robot a
very good localization in a known environment, i.e. a map
loaded previously in the robot. This agent also can be used
in combination with the sonar sensors. This agent provides
the functions needed to load a map in the robot.

Navigation Agent: with the previous two agents -Laser
and Localization- the Navigation Agent calculates the path
between two points. It also includes a collision-avoidance
system and real-time path calculation, that allows the robot
to select the best path, avoiding dynamic obstacles in
the environment. This agent uses the map loaded in the
Localization Agent.

C. Vision agents

Acromovi architecture is increased with the vision agents,
who capture images for the robot camera. The vision agents
divide themselves in four parts: the Camera Agent, the Acts
Agent, the Vision Agent and the Display Agent.

Camera Agent: agent which moves physically the
camera (pan, tilt and zoom) and informs about its state.
Thus, although the camera is an external device, it can be
integrated how any other element (sonar, laser navigation,
gripper, etc). The camera is a Pan-Tilt-Zoom camera Canon
VC-C4.

ACTS Agent: agent used for color tracking of objects by
means of the ACTS system. It provides information about
these objects as can be area, bounding box or centroid.

Fig. 5. Visual application interface

This agent makes use of the ARIA class that permits the
communication with the ACTS server.

Vision Agent: agent that acquires images by the camera,
to visualize and modify them. It makes use of the Vislib.
Since Vislib is written in the C language, Vision Agent
follows the same mechanism explained for the case of the
access to the ARIA library, the use of JNI.

Display Agent: agent that modifies and to process
operations on the captured image by the Vision Agent, with
the Vislib library. These operations are implemented with
Java AWT (Abstract Window Toolkit) y Java 2D [9].

IV. APPLICATION: REMOTE VISION

This application consists of a graphical user interface
(GUI), that can be seen in Fig. 5, which allows the user
to send commands to the vision and camera agents and
display the results. Such commands include the capture and
display of the current image grabbed by the robot camera,
the pan/tilt/zoom motions of the camera, and the image
processing operations provided by the Vislib and Java 2D
libraries. Such libraries provide low-level operations like
thresholding, blurring, edge detection, as well as high-level
ones as colour or motion tracking.

The graphical interface is built around pure Java Swing
components, thus resulting in a cross-platform application,
capable of running in any operating system running the
Java virtual machine.

The remote vision GUI just sends messages to the agents,
which take care of the operations in the own robot. The
agents return the appropriate result in another message
to the GUI agent, which then displays the image (in
grabbing and image processing operations) or just indicates
whether the operation has been made correctly or not, in
the case, e.g., of camera motions. Such agent interaction is
intuitively depicted in Fig. 6.

When the Camera Agent receives the message of the
Remote Vision Agent, it calls to the corresponding function
of the native ARIA library to move the camera. After doing

VisualController

VisionAgent DisplayAgentCameraAgent

Fig. 6. Agents communication in the Remote Vision application
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so, the result of this function is returned back to the calling
agent.

The Vision Agent works similarly, by executing the
operation described in the message, which in this case is
translated to its equivalent one in the native Vislib library.
Again, the result of the native function is returned to the
calling agent.

Finally, the Display Agent executes operations related to
Java 2D libraries. Such operations involve image grabbing
and processing, and the result is a new image which is
returned back to the Remote Vision Agent for Display.

The main drawback of this application is responsiveness.
Agent communications of images is quite surely not the
best efficient way of sending data through a network. How-
ever, flexibility and ease of use are its main advantages.

As interesting future extensions, we would like to ex-
plore the capabilities of Java for image compression and
continuous video transmission, to enable the Remote Vision
agent to grab continuous video in real time.

V. APPLICATION: ROBOT FOLLOWING

In this application one robot equipped with local vision
pursuits another one. The leader robot is assumed to
navigate through an indoor environment, controlled either
by a user or by its own navigation algorithms. The follower
robot uses its PTZ vision system to determine the position
and orientation of the leader robot, by means of a color
pattern. Such pattern, together with the local visual param-
eters, allows to easily compute the distance and relative
orientation of the leader robot with regard to the follower-
observer one.

Information exchange results as a consequence of the
motion of the robots. Both robots may agree initially
in a common value of their velocities. Alternatively, the
follower robot may send stop/restart orders to the leader
robot, in case that the distance between them grows too
much. Such strategies are easily implemented as message
protocols between the controller agents of both robots.

An example of execution is depicted in Fig. 7. The
method may be extended to more robots in a line formation,
provided that each robot follows its predecessor, and it is
equipped with a vision system.

Also, it is possible that the robot could internally add
a fixed displacement to its leader position, thus allowing
robot formations other than lines to be easily deployed. As
depicted in Fig. 8, each robot computes a virtual point
instead of the leader position. These virtual points can
be calculated simply displacing the leader position in the
correct form. Now, the followers do not follow the leader,
but these virtual points.

Color tracking is provided by the ACTS server, which
needs to be trained with the colors of the target. The Acts
Agent works as link between the ACTS server and the
Robot Following Application.

A number of agents are directly (in one or another way)
involved in this application. A diagram of their interactions
is depicted in Fig. 9.

(a) Step 1 (b) Step 2

(c) Step 3 (d) Step 4

Fig. 7. Robot Following experiment.

The first agent implied in the process is the BlobCenter,
whose role is to coordinate the ACTS, Base, and Camera
Agents. Its goal is to keep the target visible. To do so,
it determines the blob centroid, by means of a message
received from ACTS Agent, computes the motion needed
by the camera and compensates the camera and robot
motions, sending messages to Base and Camera Agents.

The Position Agent calculates the robot orientation and
position. When the target is centered on the image (it sends
a message to the BlobCenter to know it), it sends messages
to the Camera and ACTS Agents to determine the camera
position (pan and tilt) and the different blob areas. With
this information, it calculates the distance to the target and
its orientation, as well as the camera orientation. Those
data is forwarded to the Bézier Agent.

The whole process does adds a very small processing
overhead, thus demonstrating the capabilities of Java-based
agent architectures for fast real-time vision-based tasks, as

Fig. 8. Triangular formation using virtual points
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Fig. 9. Agents communication in the Robot Following Application

long as no image transmission is needed.
The Bézier agent determines a path to the target, defined

by a Bézier curve. It determines two intermediate Bézier’s
curve control points and the initial and final points (the
positions of the follower and leader robots) [10]. Motion
commands are then sent to the Base Agent to perform the
real motion of the robot. The system is robust enough to
respond to sudden changes in the position or orientation of
the leader robot, thanks to the real-time tracking system,
and the small processing overhead.

Last but not least, in the background, the Collision Agent
supervises the robot’s path, communicating with the Bézier
agent and Sonar Agent. By communicating with the Sonar
Agent, it is able to detect the presence of obstacles in
the robot’s path. When an obstacle is getting closer the
robot, the agent sends a message to the Bézier agent,
which moderates the robot’s speed, stopping the robot if
necessary, sending the corresponding message to the Base
Agent.

As a future extension, another agent could calculate al-
ternative paths to avoid obstacles maintaining the previous
curve marked by the Bézier agent, by e.g. adding new
intermediate control points.

In Fig. 10, the trajectory of two robots in an indoor
environment is shown. The follower robot (red trajectory,
named Happy) follows a smoother trajectory than that of
the leader robot (blue, named Sneezy), as a result of the
algorithm based on Bézier curves.

VI. CONCLUSION

Reutilization is a basic principle in software engineering.
Our framework enables the use of native components, by

Fig. 10. Trajectory in a real robot following run.

means of agent wrappers, providing the programmer with
a huge set of preprogrammed, tested and efficient tools for
mobile robots. The agents add the distributed capabilities,
with message interchange for cooperation between robots.

Acromovi architecture, the presented framework, allows
the quick development of multirobot applications, by join-
ing the advantages of the distributed computation and mul-
tiagent systems. This architecture is thus very appropriate
for the implementation and execution of tasks that require
collaboration or coordination by part of the robots of the
team.

Such as architecture enables us also to share characteris-
tics of a robot among all the team, with the correspondent
increase of the robot performance. Moreover, the Acromovi
agents permit an easy access to the elements of the robot
by the applications.

One of the most interesting point is the time needed
by users to develop an application of this kind. In just
a few weeks, a student with very low Java skills, is
able to program agents and develop the necessary testing
procedures.

Future extensions of this work include the study of
efficiency in image applications and communications.
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