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Abstract— The advances in mobile robotics, computing power,
and wireless communications have turned feasible the develop-
ment of communities of autonomous robots. In the last years,
there is a greater interest in systems of multiple autonomous
robots for the accomplishment of cooperative tasks. This project
takes it into account and presents an architecture for the
development of collaborative applications for a heterogeneous
team of mobile robots based on embedded agents. The imple-
mented architecture has the capacity to allow the team of robots
to accomplish such tasks, and also it has tools and features
that allow programmers to develop complex applications in
a reasonable time. An agent-based development platform has
been used for this purpose, due to it integrates the necessary
capabilities for developing distributed applications, and manages
the communications among all the components. To demonstrate
the advantages of the architecture a real application, robot
following, has been implemented. It consists of a set of embedded
agents, which run in real robot systems, demonstrating that
embedding agents in distributed intelligent systems is a powerful
method for quick application development in the multirobot
domain.

I. INTRODUCTION

This article describes the implementation and development
of a distributed architecture for the programming and control
of a team of coordinated heterogeneous mobile robots, which
are able to collaborate among them and with people in the
accomplishment of tasks of services in daily environments.

The presented agent-based architecture, Acromovi, was born
from the idea that teamworking is an essential capability for
a group of multiple mobile robots [12], [14].

In the last years, there is an increasing interest in the
development of systems of multiple autonomous robots, so
that they exhibit collective behaviour. This interest is due to
the fact that having one single robot with multiple capabilities
may waste resources. Different robots, each one with its own
configuration, are more flexible, robust and cost-effective.
Moreover, the tasks to achieve may be too complex for one
single robot, whereas they can be effectively done by multiple
robots [1].

Acromovi architecture is a framework for application de-
velopment by means of embedding agents and interfacing
agent code with native low-level code. It addresses the im-
plementation of resources sharing among all the group of
robots. Cooperation among the robots is also made easier
in order to achieve complex tasks in a coordinated way.

Also, Acromovi architecture is a distributed architecture that
works as a middleware of another global architecture for
programming robots.

Though robot programming has been extensively done in
C or C++ languages, a Java- based multiagent development
system was chosen to develop the architecture of our team
of robots [15]. Any common agent architecture can be used,
but it has been implemented by means of the JADE (Java
Agent DEvelopment Framework), a tool for the development
of multiagent systems, implemented in JAVA, that fulfils with
the FIPA specifications.

The embedded agents that constitute the Acromovi archi-
tecture work as interfaces between the applications and the
physical elements of the robots. Some agents also make easier
the handle of these elements and provide higher-level services.

This article is an updated version of previous works that
used the Acromovi architecture. In those previous works,
Acromovi was implemented by means of the MadKit multia-
gent platform, but in this new version, it is implemented with
the Jade multiagent framework. In the same way, the Robot
Following application is explained. With this application we
have proved that the application works as well with Jade as
with MadKit.

In Section II, the state of the art related with this work
is mentioned. In Section III an overview of the Acromovi
architecture is given. The different agents that constitute the
Acromovi architecture and their functions are then described
in Section IV. The Robot Following application is finally
described in Section V, before concluding and presenting final
remarks.

II. STATE OF ART

The amount of research in the field of cooperative mobile
robotics has grown progressively in recent years [5], [16].
Some examples of these works are presented below, empha-
sizing their potentials, and whether they are related (or not)
with embedded agents in mobile robotics.

CEBOT (CEllular roBOTics System) is a hierarchical de-
centralized architecture inspired by the cellular organization of
biological entities. It is capable of dynamically reconfiguring
itself to adapt to environment variations [9]. It is composed by
”cells”, in the hierarchy there are ”master cells” that coordinate
subtasks and communicate among them.



On the other hand, SWARM is a distributed system made up
of a great number of autonomous robots. It has been called the
term ”SWARM intelligence” to define the property of systems
of multiple non-intelligent robots to exhibit a collective intel-
ligent behaviour. Generally, it is a homogeneous architecture,
where the interaction is limited to nearest neighbours [11].

Other interesting project, MICRobES, is an experiment of
collective robotics that tries to study the long time adaptation
of a micro-society of autonomous robots in an environment
with humans. Robots must survive in this environments as
well as cohabit with their people [17].

In an attempt to use traditional IA techniques, the GOPHER
architecture was thought to resolve problems in a distributed
manner by multirobots in internal environments [4]. A central
tasks planning system (CTPS) communicates with all the
robots and disposes a global vision of the tasks that has been
done and of the availability of the robots to perform the rest
of tasks.

In order to reuse native software components, agents can be
embedded in an interface level or middleware. ThinkingCap-
II [3] is an architecture developed, in a project of distributed
platform based on agents for mobile robots [10]. It includes
intelligent hybrid agents, a planning system based on a visual
tracking, vision components integration, and various naviga-
tion techniques. Furthermore, it has been developed over a
real-time virtual machine (RT-Java), implementing a set of
reactive behaviours.

Finally, Miro is a middleware for create autonomous mobile
robot applications from the University of Ulm. It is based on
the construction and use of object-oriented robot middleware
to make the development of mobile robot applications easier
and faster, and to foster portability and maintainability of
robot software [7]. This middleware also provides generic
abstract services like localization or behaviour engines, which
can be applied on different robot platforms with virtually no
modifications.

The previous works implement architectures and systems
so that teams of mobile robots can make cooperative tasks.
Our work consists of the implementation of an architecture of
such type, emphasizing the reusability of software, allowing
the programmer to seamlessly integrate native software com-
ponents (vision libraries, navigation and localization modules)
in the Java-programmed agent-based architecture. In this way,
embedding agents is the key for powerful distributed applica-
tions being rapidly developed.

Also, in this work is emphasized other important charac-
teristics, the sharing of resources from a robot among all the
team and the easy access to the elements of the robot by the
applications.

III. ACROMOVI ARCHITECTURE OVERVIEW

To establish mechanisms of cooperation between robots im-
plies to consider a problem of design of cooperative behaviour
given a group of robots, an environment and a task, how
the cooperation must be carried out. Such problem implies
several challenges, emphasizing among them the definition

of the architecture of the group. The multiagent systems are
the natural environment for such groups of robots, making
possible the fast implementation of powerful architectures for
the specification and execution of tasks.

A. Architecture design

The robots that constitute the team have already a two-
layer programming architecture with native (C/C++) libraries
for all their accessories. The lower layer, ARIA, takes care
of the requests of the programs to the robot components.
The upper layer, Saphira, provides services for range sensor
interpretation, map building, and navigation [13].

Acromovi architecture is able to subsume any other extra
software, like the ACTS (a colour tracking library) and the
Vislib (a framegrabbing library). ACTS is a native (C/C++)
module which allows the applications track up to coloured
objects which colour the users have been selected previously.
ACTS is an external program that works as a server, and
the applications work as clients that communicate with ACTS
server by means of an ARIA library. On the other hand, Vislib
is a library that provides a fast and flexible image processing
and single-camera machine vision. The image processing
functions that Vislib offers are generic convolution, filtering
and morphological tools. Vislib is written in the C language.

Subsuming existing C/C++ libraries is a powerful and quick
method for rapidly developing Java code and thus embedding
agents with all the functionality of native systems. Further-
more, the new code adds seamless integration with other
distributed agents, either running on remote applications, or
even as applets in web pages.

However, the existing native code is oriented to both local
and remote processing from only one controller, without defin-
ing collaboration mechanisms between robots or applications.
Acromovi architecture tries to overcome this problem by the
introduction of a new level over this architecture that allows
an easy collaboration and cooperation.

As can be seen in Fig. 1, Acromovi architecture includes
a middleware between the robot architecture and the appli-
cations, that allows the collaboration and cooperation of the
robots in the team. This middleware is based on an agent
oriented focus.

Fig. 1. General architecture diagram



Fig. 2. The middleware layer

The structure of the middleware layer can be seen in the
Fig. 2.

This middleware level has also been divided into two layers.
In the lower layer, there are a set of components, such as sonar,
laser, base, and so on. The others are special components
that offer services to the upper layer, as vision, navigation
or localization.

These components only perform two kind of functions:
requests processing and results sending. Thus, they could
be implemented like software components. But because of
reasons of efficiency, implementation facility and integration
with the whole structure, they have been developed as agents
that encapsulate the required functionality

The upper layer of the middleware is still in development.
This layer comprises a great variety of embedded and su-
pervising agents, e.g. agents that monitor the state of the
agents/components of the lower layer, agents that provide
services of subscription to a certain component, agents that
arbitrate or block the access to a component, and any other
type of agent which might offer a service that can be of interest
for the whole architecture or for a particular application. These
agents act as links between the applications and the agents that
access the components of the robot.

The presented middleware has made feasible the change
from an abstraction based on library functions for the handling
of the robot -that are available in compilation and not consider
multiplicity of systems- to an abstraction based on embedded
agents -that are available in execution and natively distributed.

Because of the heterogeneous character of the team, there
are different middleware layers for the robots, depending on
the configuration of each robot of the team. These middleware
layers are generated in execution time according to the ele-
ments that each robot has active at the moment of its execution.
These different configurations can be seen in Fig. 3.

Over the middleware layer is the applications layer, that also
can be implemented as agents. These applications, to access
to the components of the robots, must communicate with the
agents of the middleware, which then access to the bottom

layer that controls the robot.
Once an application has been tested, and if it is useful for

the whole architecture, it can be converted in a new agent of
the upper layer of the middleware. Thus, each application that
we make can increase our system to make applications more
difficult and more interesting, following a bottom-up design.

B. Architecture implementation

Due to the fact that the middleware is just a set of embedded
agents, a multiagent systems programming tool has been
selected for its implementation.

At beginning MadKit(Multi-Agent Development Kit) was
the tool chosen for such purpose. MadKit is a Java multi-agent
platform built upon an organizational model called Aalaadin.
It provides general agent facilities (lifecycle management,
message passing, distribution, ...), and allows high hetero-
geneity in agent architectures and communication languages,
and various customizations. It can run in various modes: a
graphical runtime environment in console-mode, embedded in
an applet [8].

After a time with MadKit, we decided to change it to prove
new multiagent tools. The new multiagent tool chosen was
JADE (Java Agent DEvelopment Framework). It is a software
framework to develop agent-based applications in compliance
with the FIPA specifications for interoperable intelligent multi-
agent systems. Also, nowadays, JADE is considered the most
used platform. This two things made that we change to JADE.

JADE is a software framework fully implemented in Java
language. It simplifies the implementation of multiagent sys-
tems through a middleware and through a set of graphical

(a) Bare Robot (b) Robot with Camera

(c) Robot with Laser (d) Powerbot Base

Fig. 3. Different middleware layers.



tools that supports the debugging and deployment phases. The
agent platform can be distributed across machines (which not
even need to share the same OS). The JADE middleware
implements an agent platform for execution and a development
framework. It provides some agent facilities as lifecycle man-
agement, naming service and yellow-page service, message
transport and parsing service, and a library of FIPA interaction
protocols ready to be used [2].

The agent platform can be distributed on several hosts. Only
one Java Virtual Machine (JVM) is executed on each host.
Each JVM is basically a container of agents that provides a
complete runtime environment for agent execution and allows
several agents to concurrently execute on the same host.

The communication architecture offers flexible and efficient
messaging, where JADE creates and manages a queue of
incoming ACL messages, private to each agent. The transport
mechanism is like a chameleon because it adapts to each
situation, by transparently choosing the best available protocol.

JADE supports also scheduling of cooperative behaviours,
where JADE schedules these tasks in a light and effective way.
The runtime includes also some ready to use behaviours for
the most common tasks in agent programming, such as FIPA
interaction protocols, waking under a certain condition, and
structuring complex tasks as aggregations of simpler ones

Having all in mind, we implemented Acromovi once again.
In this case, each robot of the team is a main container, thus,
we have seven main containers, one in each robot that works
as host of the distributed network. In each container, we have
a group of agents. These agents are created in execution time
depending on the robot configuration. Each of these agents
represents one of the elements which in that moment has active
the robot. So, in that way, we implement the heterogeneity
that we mentioned in the generation of the middleware layer
of Acromovi. All this, can be seen in the Fig. 4.

Because of the fact that ARIA and Saphira are implemented
in C++ and JADE in Java, it has been necessary to use a

Fig. 4. Structure of the jade implementation

mechanism to integrate such different programming languages.
For this, it has been used JNI (Java Native Interface), that
allows to manage C++ code in Java programs.

The robot elements are represented and managed by agents.
These agents communicate with the native layer of the global
architecture by means of JNI. A brief explanation of the agents
is given in the next section.

IV. ACROMOVI AGENTS

The agents that constitute the Acromovi architecture are
described in the following paragraphs. These agents are con-
ceptually divided in three groups depending on the part of the
robot in which the agent carries out its task: body agents, laser
agents and vision agents.

A. Body agents

These agents are the basic agents for the operation of the
robot and they correspond to the main elements of the robots.
There are five body agents: Base Agent, Gripper Agent, Sonar
Agent, Bumper Agent and IR Agent.

Base Agent: agent responsible of the physical operation of
the robot, all about the motion of the motors and internal state
of the robot. This agent is the most important because it is the
link between all the rest of the agents and the physical robot.

Gripper Agent: agent that makes that the gripper works in a
proper way and permits to other agents the manipulation of the
gripper. The gripper is a two degree of freedom manipulator
attached to the front of the robot and contains in its paddles a
grip-sensor and infrared breakbeam switches in front and rear
to sense objects and their positions.

Sonar Agent: it makes the sonar work correctly and returns
the appropriate sonar values when these are required by other
agents or applications. The sonars consist of transducers that
provide range information for collision avoidance, localization,
and navigation. Measurements range from ten centimetres to
over four meters.

Bumper Agent: agent that manages the bumpers of a robot.
It permits to know if a robot disposes of bumpers, how many
of them, and in which position. Also, it allows to recognize
which bumper has been triggered.

IR Agent: agent that is in charge of the management of the
4 IR sensors that are disposed in the front of the Powerbot.
These sensors has the function to prevent the robot of ledges
such as stairways or holes. The agent indicates the state of
each sensor, indicating whether it is triggered or not.

It is important to emphasize that bumper and IR sensors are
sensors for the safe navigation of the robot, and they respond
at two levels. First, the activation of one of this sensors causes
the robot’s controller to take a certain action, by the moment
it stops the motor and sets the brakes, but this behaviour can
be changed. At the next level, the controller informs about the
condition that has produced the previous action.

B. Laser agents

These agents communicate with the laser rangefinder, using
the ARIA interface, and permit to use two modules of Saphira:



Localization and Navigation. These two modules are powerful
native libraries integrated into Saphira, using a Montecarlo-
Markov method for robot’s localization and a Gradient system
for the navigation All their functionality is readily subsumed
by the embedded agent.

Laser Agent: agent that allows multiple operations with the
laser such logging its lectures, determining the distance to an
object with better precision than the sonar, etc. With the tools
and primitives provided by the Laser Agent, we are able to do
tasks like mapping, environment scout and so on.

Localization Agent: agent that provides the robot a very
good localization in a known environment, i.e. a map loaded
previously in the robot. This agent also can be used in
combination with the sonar sensors. This agent provides the
functions needed to load a map in the robot.

Navigation Agent: with the previous two agents -Laser and
Localization- the Navigation Agent calculates the path be-
tween two points. It also includes a collision-avoidance system
and real-time path calculation, that allows the robot to select
the best path, avoiding dynamic obstacles in the environment.
This agent uses the map loaded in the Localization Agent.

C. Vision agents

Acromovi architecture is increased with the vision agents,
who capture images for the robot camera. The vision agents
divide themselves in four parts: Camera Agent, Acts Agent,
Vision Agent and Display Agent.

Camera Agent: agent which moves physically the camera
(pan, tilt and zoom) and informs about its state. Thus, although
the camera is an external device, it can be integrated how
any other element (sonar, laser navigation, gripper, etc). The
camera is a Pan-Tilt-Zoom camera Canon VC-C4.

ACTS Agent: agent used for colour tracking of objects by
means of the ACTS system. It provides information about
these objects as can be area, bounding box or centroid.
This agent makes use of the ARIA class that permits the
communication with the ACTS server.

Vision Agent: agent that acquires images by the camera, to
visualize and modify them. It makes use of the Vislib.

Display Agent: agent that modifies and to process oper-
ations on the captured image by the Vision Agent, with the
Vislib library. These operations are implemented with Java
AWT (Abstract Window Toolkit) y Java 2D.

V. ROBOT FOLLOWING

The application described here is an old application that we
developed with the old version of Acromovi. Now, we have
implemented it with the new version to proved that this new
version works as well as the old.

In this application one robot equipped with local vision
pursuits another one. The leader robot navigates through an
indoor environment, controlled either by a user or by its own
navigation algorithms. The follower robot uses its PTZ vision
system to determine the position and orientation of the leader
robot, by means of a colour pattern. Such pattern, together
with the local visual parameters, allows to easily compute the

Fig. 5. Triangular formation using virtual points

distance and relative orientation of the leader robot with regard
to the follower-observer one.

The method may be extended to more robots in a line
formation, provided that each robot follows its predecessor,
and it is equipped with a vision system.

Also, it is possible that the robot could internally add a
fixed displacement to its leader position, thus allowing robot
formations other than lines to be easily deployed. As depicted
in Fig. 5, each robot computes a virtual point instead of the
leader position. These virtual points can be calculated simply
displacing the leader position in the correct form. Now, the
followers do not follow the leader, but these virtual points.

Colour tracking is provided by the ACTS server, which
needs to be trained with the colours of the target. The Acts
Agent works as link between the ACTS server and the Robot
Following Application.

A number of agents are directly (in one or another way)
involved in this application. A diagram of their interactions is
depicted in Fig. 6.

The first agent implied in the process is the BlobCenter,
whose role is to coordinate the ACTS, Base, and Camera
Agents. Its goal is to keep the target visible. To do so, it
determines the blob centroid, by means of a message received
from ACTS Agent, computes the motion needed by the camera
and compensates the camera and robot motions, sending
messages to Base and Camera Agents.

The Position Agent calculates the robot orientation and
position. When the target is centered on the image (it sends

ACTSAgent

BaseAgent BlobCenter

CameraAgent

Position

Bezier

CollisionSonarAgent

Fig. 6. Agents communication in the Robot Following Application



a message to the BlobCenter to know it), it sends messages
to the Camera and ACTS Agents to determine the camera
position (pan and tilt) and the different blob areas. With this
information, it calculates the distance to the target and its
orientation, as well as the camera orientation. Those data is
forwarded to the Bézier Agent.

The Bézier agent determines a path to the target, defined by
a Bézier curve. It determines two intermediate Bézier’s curve
control points and the initial and final points (the positions of
the follower and leader robots) [6]. Motion commands are then
sent to the Base Agent to perform the real motion of the robot.
The system is robust enough to respond to sudden changes in
the position or orientation of the leader robot, thanks to the
real-time tracking system, and the small processing overhead.

Last but not least, in the background, the Collision Agent
supervises the robot’s path, communicating with the Bézier
agent and Sonar Agent. By communicating with the Sonar
Agent, it is able to detect the presence of obstacles in the
robot’s path. When an obstacle is getting closer the robot, the
agent sends a message to the Bézier agent, which moderates
the robot’s speed, stopping the robot if necessary, sending the
corresponding message to the Base Agent.

As a future extension, another agent could calculate alter-
native paths to avoid obstacles maintaining the previous curve
made by the Bézier agent, by e.g. adding new intermediate
control points.

VI. CONCLUSION

In this article, we have explained the new Acromovi archi-
tecture. In this new version, its implementation has changed
from MadKit to Jade. It’s important to remark that this change
has been made without any problem.

Some of the conclusions of the old implementation are also
true with the new implementation. Some of those conclusions
are:

• Reutilization. The framework enables the use of native
components, by means of agent wrappers, providing the
programmer with a huge set of preprogrammed, tested
and efficient tools for mobile robots.

• Integration. Once an application has been tested, it can
be converted in a new agent of the upper layer of
the middleware. Thus, each application can increase our
system to make applications more difficult and more
interesting.

• Quick development of multirobot applications. Joining
the advantages of the distributed computation and mul-
tiagent systems, this architecture is very appropriate for
the implementation and execution of tasks that require
collaboration or coordination by part of the robots of the
team.

• Sharing resources of a robot among all the team and easy
access to the elements of the robot by the applications.

• Time needed by users to develop an application. In just
a few weeks, a student with very low Java skills, is
able to program agents and develop the necessary testing
procedures.

Future extensions of this work include the study of effi-
ciency, particularly in image applications and communications.
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trajectories,” in Eighth Conference on Intelligent Autonomous System,
2004.

[7] S. Enderle, H. Utz, S. Sablatng, S. Simon, G. Kraetzschmar, and
G. Palm, “Miro: Middleware for autonomous mobile robots,” in IFAC
Conference on Telematics Applications in Automation and Robotics,
2001.

[8] J. Ferber and O. Gutknecht, “A meta-model for the analisys and design of
organizations in multi-agent systems,” in Third International Conference
on Multi-agent Systems(ICMAS’ 98) Proceedings, 1998.

[9] T. Fukuda and G. Iritani, “Construction mechanism of group behavior
with cooperation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems(IROS), 1995.
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