
Laboratory on Agent-based
Mobile Manipulation

Patricio Nebot, Enric Cervera

Part I: Running the Agent Controller

Step 1: Open the system

First to all log in to the system, as user iurs and password iurs2004.
Then open the Madkit Environment, as follows:

1. Open a terminal.
2. Enter the MadKit directory: cd madkit_3.1b5
3. Launch MadKit: desktop.sh &

The Graphical environment takes a few seconds to load. Please wait.

Step 2: Launching the Communicator Agent

When the graphical environment is loaded you can rearrange the frames. You can see 4
different frames or windows, as indicated in the following picture:

You can see 6 buttons in the top side, at the left.

Press the first button, Communicator

Now, two windows must be open in the workspace:

You can see a window labelled as Dynamic Two Channels Communicator.

In this window add the IP of your server, following the next table:

Name IP
Happy 192.168.69.10
Doc 192.168.69.11
Sneezy 192.168.69.12
Dopey 150.128.82.58

If you have any problem in this Step, please communicate it to the Lab teacher.

Step 3: Executing the Robot's Agent Controller

Now, launch the Agent Controller pressing its button

A new window is opened in the workspace.

Now you can select different commands using the menu, and the robot must execute the
different orders. If anything goes wrong, press the stop button. Enjoy!

Part II: Creating a Simple Agent

Step 1: writing the agent's source code

VERY IMPORTANT: if Madkit is running, please quit from the application.

Go into the templates directory and edit the file square.java. This file contains the basic
skeleton of a Madkit agent:

public class square extends Agent{
 String robot = “Sleepy”;
 public void activate(){
 requestRole("Seven Dwarfs", robot, "square", null);
 }
 public void live(){
 /* Here goes your code */
 }
 public void end(){
 leaveRole("Seven Dwarfs", "Sleepy", "template");
 }
}

Important: Change the variable robot with the appropriate name of the robot which
you connect.

Prior to adding any code, you should learn how the agent sends commands to the
elements of the robot. This is done by means of the function sendOrder, which sends a
string message (the order) to the specified element of the robot:

String[] sendOrder(String element, String command)
The result of this function is an array with the data returned (if any) by the robot
element, the base, the sonar or the gripper.

An example of use of this function is:
String[] tmp = sendOrder("Base", "(getPose)");

Such example returns an array of three elements (x, y, heading) of the actual position
and orientation of the robot.

Now, using the functions listed in the reference at the end of this document, you have to
write an agent that drives the robot to follow a square trajectory.

Once your code is ready, you should save the file and quit from the editor.

Step 2: Compiling and running the agent

In order to compile your agent's code, you should simply run make –f Makefile_square
in the same directory.

Next, you should start Madkit, and run the Communicator agent, as previously, making
the connection with your robot.

Now, press the third button ; your program will execute, and hopefully move the
robot in the planned trajectory (in case of failure, go back to editing the source).

Part III: creating a wandering agent

Follow the same steps of the previous part to create this agent. In this case, the file to
open is wander.java. You only need to edit the live method in the agent's template. The
goal of this agent is to drive the robot in a random walk through its environment
without colliding with the surrounding objects.

To program this behaviour, you can follow two points of view. One is to move the
robot in the direction towards free space, or the most distant obstacle. The other is drive
the robot straight until it detects that an obstacle is near, then the robot moves to the
free space.

This is only a suggestion. You can make your own program in the way that you want.

Compile the agent with make –f Makefile_wander. To run it, press the button .

Important: some useful functions are implemented in the file wander.java:

• sendOrder(element, command): sends the specified command to the robot
element.

• stringToDouble(string_array): converts the array of strings into an array of
doubles.

• stringToBoolean(string_array): converts the array of strings into an array of
booleans.

• mayor(double_array): returns the maximum element of the array.
• calculate_dir(num_sonar): returns the direction corresponding to the specified

sonar.

Part IV: creating a wandering & grasping agent
Follow the same steps of the previous part to create this agent. In this case, the file to
open is graspWander.java. You only need to edit the live method in the agent's
template. The finality of this agent is similar to the previous agent, it must drive the
robot in a random way through its environment and when it detects an object between
the gripper, it must catch it.
Compile the agent with make –f Makefile_graspWander. To run it, press the button

.

Important: some useful functions are implemented in the file graspWander.java:

• The functions from wander.java.
• stringToInt(string_array): converts the array of strings into an array of

integers.

Part V: creating a visual grasping agent

The finality of this agent is to grasp an object using the vision. To make it possible it is
necessary to use or communicate with two new agents, the agent that manage the
camera and the agent that communicates with the ACTS server.

The ACTS (Activmedia Color Tracking System) is a software which, in combination
with a color camera and frame grabber, lets the applications track up to colored objects.
The ACTS agent makes feasible the communication between the whole system and the
ACTS server. In the programming reference at the end of this document, you can find
the whole set of functions to manage the camera and to communicate with the ACTS
system.

To program this agent, you can follow the next steps: First, you have to find the object
in the space, to do it, you can make an horizontal sweeping with the camera. Next, you
can turn the robot to this direction and refine the seeking to a better calibration of the
direction of the robot. The next steep is to move the robot towards the object, but it’s
necessary to make a visual realignment in each step to not lose the object. When the
gripper detects the object between its paddles, you have to stop the robot and to catch
the object.

Remember, this is only a suggestion. You can make your own program in the way that
you want.

Follow the same steps of the previous part to create this agent. In this case, the file to
open is graspVision.java. You only need to edit the live method in the agent's template.

Compile the agent with make –f Makefile.graspVision. To run it, press the button .

Important: in the file graspVision.java there are implemented the same functions as in
graspWander.java.

Programming Reference

Base class

This class is in charge of the physical operation of the robot. It is responsible of the
movement of the robot, as well as to monitor the battery voltage or to check if one of
the motors is blocked.

areMotorsEnabled indicates if the motors are enabled.
disableMotors disables the motors on the robot.
enableMotors enables the motors on the robot.

getBatteryVoltage gets the battery voltage of the robot.
getLeftVel gets the velocity (metres/second) of the left wheel of the robot.

getPose
gets the global position of the robot. Returns an array
containing the global coordinates X and Y, in metres, and the
orientation, in radians [X,Y,Th].

getRightVel gets the velocity (metres/second) of the right wheel of the robot.
getRotVel gets the velocity (metres/second) of the right wheel of the robot.

getVel gets the velocity (metres/second) of the robot.
isLeftMotorStalled indicates if the left motor is stalled.

isRightMotorStalled indicates if the right motor is stalled.

move <metres>
tells the robot to move the given distance forward/backwards. If
the distance is positive, the robot move forward, in other case,
the robot moves backwards.

setDeltaHeading
<radians>

tells the robot to turn on his axis the given angle. If the angle is
positive, the robot turns to left, and if the angle is negative, the
robot turns to right.

setRotVel <rad/sec>
sets the rotational velocity of the robot. If the velocity is
positive, the robot turns to left, and if the velocity is negative,
the robot turns to right.

setVel <m/sec>
sets the velocity of the robot. If the velocity is positive, the
robot moves forward, and if the velocity is negative, the robot
moves backwards.

setVel2 <m/sec>
<m/sec>

sets the velocity of each of the wheels on the robot
independently. If the velocities are positive, the wheels move
forward, and if the velocities are negative, the wheels move
backwards.

stop
stops the robot, by telling to have a translational velocity and
rotational velocity of 0.

Gripper class

This class takes charge of the operation of the robot gripper, as well as to monitor its
state.

deployPos
this command puts the gripper in a deployed position, ready for use.
Puts the gripper at bottom with the paddles open.

getGraspTime
gets the seconds that the gripper will continue grasping for after both
paddles are triggered, and stopped.

gripClose this command closes the gripper paddles.
gripOpen this command opens the gripper paddles.

gripPressure
<seconds>

sets the amount of pressure that the gripper applies. This command
sets the seconds that the gripper will continue grasping for after the
paddles stop.

gripState
returns the state of the gripper paddles. 0 if paddles are between open
and closed; 1 if paddles are open; and 2 if paddles are closed.

gripStop stops the gripper paddles.
halt halts the lift and the gripper paddles.

isGripMoving returns “true” if the gripper paddles are moving.
isLiftMaxed returns “true” if the lift is either all up or down.
isLiftMoving returns “true” if the lift is moving.

liftCarry
<seconds> raises the lift by the given seconds.

liftDown lowers the lift to the bottom.
liftStop this command stops the lift.
liftUp raises the lift to the top.

paddleState
returns the state of each gripper paddle. 0 if no paddles are triggered;
1 if the left paddle is triggered; 2 if the right paddle is triggered; and
3 if both paddles are triggered.

sensorsState
returns the state of the gripper’s breakbeams. 0 if no breakbeams are
broken; 1 if the inner breakbeam is broken; 2 if the outer breakbeam
is broken; and 3 if both breakbeams are broken.

storePos
puts the gripper in a storage position. Puts the gripper at top with the
paddles closed.

Sonar class

This class is the responsible to return the appropriate sonar values when these are
required.

areSonarsEnabled returns “true” if the sonars are enabled.

getClosestSonarNum
<start_angle> <end_angle>

returns the number of the sonar that has the closest
current reading in the given range. The angles must be
done in radians.

getClosestSonarRange
<start_angle> <end_angle>

returns the closest of the current sonar readings in the
given range. The angles must be done in radians. The
value returned is the distance from the physical sonar
disc to where the sonar bounced back, in metres.

getNumSonar returns the number of sonars that there are.

getSonarNewVector
gets an array indicating for each sonar disc if his reading
is new or not.

getSonarRange
<num_sonar>

gets the range of the last sonar reading for the given
sonar. “num_sonar” must be between 0 and 7. The sonar
range is the distance from the physical sonar disc to
where the sonar bounced back, in metres.

getSonarRangeVector
gets an array with the sonar ranges for all of the sonar
discs.

isSonarNew <num_sonar>
this command find out if the given sonar has a new
reading. “num_sonar” must be between 0 and 7.

Camera class

This class is the responsible to move the camera in an appropriate way and to return the
correct values when these are required.

canZoom returns “true” if the camera can zoom.
getPan returns the angle the camera is pan, in radians.
getTilt returns the angle the camera is tilt, in radians..

getZoom returns the value of the zoom.
getMaxPan gets the maximum value the camera can pan to, in radians.
getMinPan gets the minimum value the camera can pan to, in radians.
getMaxTilt gets the maximum value the camera can tilt to, in radians.
getMinTilt gets the minimum value the camera can tilt to, in radians.

getMaxZoom gets the maximum value for the zoom.
getMinZoom gets the minimum value for the zoom.
haltPanTilt halts all pan-tilt movement.
haltZoom Halts zoom movement.

reset resets the camera to the home position.
pan <radians> pans the camera to the given direction, in radians.

panRel <radians>
pans relative to the current position the camera by the given
radians.

tilt <radians> tilts the camera to the given direction, in radians.

tiltRel <radians>
tilts relative to the current position the camera by the given
radians.

panTilt <radians>
<radians> pans and tilts the camera to the given directions, in radians.

panTiltRel <radians>
<radians>

pans and tilts relatives to the current position the camera by
the given radians.

zoom <value> zooms the camera to the given value.
power <0/1> indicates the camera to switch on or off.

Acts class

This class is in charge to manage the communication with the ACTS for vision
tracking.

isConnected returns “true” if there is a connection with the ACTS server.
receiveBlobInfo gets the blob information from the connection to the ACTS server.

getNumChannels returns the number of channels that can be used by the Acts server.

getMaxBlobs
returns the maximum number of blobs that can be tracked in each
channel.

getNumBlobs
<channel>

gets the number of blobs that the specified channel is tracking in
this moment.

getBlob <channel>
<blob>

returns the information of the specified blob. The information is
returned in an array. In the first position, there is the area of the
blob; in the second and third, the coordinates x and y of the center
of gravity; the fourth coordinate, the left border of the blob; the
fifth, the right border; the sixth, the top border; and the seventh, the
bottom border. .

