Supplemental Material for "Influence of Polytypism on Electronic Structure of CdSe/CdS and CdSe/CdSe Core/Shell Nanocrystals"

Carlos Segarra, Fernando Rajadell, Juan I. Climente, and Josep Planelles*

Departament de Química Física i Analítica, Universitat Jaume I, E-12080, Castelló de la Plana,

Spain

E-mail: josep.planelles@uji.es

^{*}To whom correspondence should be addressed

Material parameters

Below we summarize the material parameters used in the calculations. m_0 is the free electron mass and ε_0 the vacuum permittivitty. A relative dielectric constant of 3 and confining potential of 5 eV is taken outside the NC to account for the dielectric environment. For alloyed regions, $CdSe_{1-x}S_x$, we assume exponential evolution of the composition (from x = 0 at the CdSe core interface, to x = 1 at the CdS shell interface) and interpolate the material parameter.

Hexagonal material parameters

See Supplementary Information of Ref.¹ for a complete list.

Cubic material parameters

Description	Symbol	CdSe ZB	CdS ZB	Units	CdSe Ref.	CdS Ref.
Elastic modulus tensor	<i>C</i> ₁₁	$66.7 \cdot 10^9$	$77.0 \cdot 10^9$	Pa	² p. 314	² p. 258
Elastic modulus tensor	<i>C</i> ₁₂	$46.3 \cdot 10^9$	$53.9 \cdot 10^{9}$	Ра	² p. 314	² p. 258
Elastic modulus tensor	<i>C</i> ₄₄	$22.3 \cdot 10^{9}$	$23.6 \cdot 10^{9}$	Ра	² p. 314	² p. 258
Piezoelectric constant	<i>e</i> ₁₄	0.16	0.29	C⋅m ²	3	3
Dielectric constant	ε	9.6	8.43	ϵ_0	4	4
Lattice constant	а	6.077	5.825	Å	5	6
Spin-orbit matrix element	Δ_{SO}	0.41	0.079	eV	7	8
Electron mass	<i>m</i> *	0.12	0.209	<i>m</i> ₀	9	10
Luttinger parameter	γ1	5.51	4.11	$1/m_0$	² p. 323	² p. 266
Luttinger parameter	γ2	1.24	0.77	$1/m_0$	² p. 323	² p. 266
Luttinger parameter	γ3	2.14	1.53	$1/m_0$	² p. 323	² p. 266
CB Deformation pot.	a _c	-3.77	-3.59	eV	11	11
VB Deformation pot.	a_v	-1.81	-1.51	eV	11 12	11 12
VB Deformation pot.	b	-0.8	-4.7	eV	15 12	1612

VB Deformation pot.	d	-4.4	-4.4	eV	12	12
---------------------	---	------	------	----	----	----

Table S1: Zinc-Blende CdSe and CdS parameters used in the calculations.

Band offsets

All values are derived from Ref.¹⁸

Material	CdSe WZ	CdSe ZB	CdS WZ	CdS ZB
CdSe WZ	0.0	-0.094/-0.035	0.341/-0.409	0.226/-0.455
CdSe ZB		0.0	0.435/-0.374	0.32/-0.42
CdS WZ			0.0	-0.115/-0.046
CdS ZB				0.0

 Table S2: Conduction band/valence band offsets listed for different materials and crystal structures. Units are eV.

Strain in polytypes

To estimate the initial strain of a ZB[111] (core) material buried inside a WZ (shell) one, we need to transform the ZB[100] lattice constant a_{ZB} (Table S1) into WZ-like lattice parameters. To this end, we will start from a_{ZB} and calculate the lattice constants a_{WZ}^{id} , c_{WZ}^{id} of an *ideal* WZ structure where the buried ZB[111] material is not stressed, i.e., no strain is present. Comparison of ZB[111] and WZ[0001] lattices, see e.g., ¹⁹ show that under the assumption of an *ideal* tetrahedral coordinations of anions and cations, three times the ideal WZ[0001] unit cell has the same volume than twice the ZB[111] one. Besides, geometrical considerations for ideal WZ crystal implies $c/a = \sqrt{8/3}$ (see e.g. Bimberg et al. ²⁰). We then reach the following equivalences: $a_{WZ}^{id} = \frac{1}{\sqrt{2}} a_{ZB}$ and $c_{WZ}^{id} = \frac{2}{\sqrt{3}} a_{ZB}$. For CdSe, we infer $a_{WZ}^{id} = 4.297$ Åand $c_{WZ}^{id} = 7.017$ Å.

Next, by assuming for the ideal WZ phase the same elastic constant as its ZB partner, we may consider that the strain of either phase buried in a given matrix is the same. Then, if the matrix

is a hexagonal WZ material we can calculate the initial strain as that of the ideal buried WZ. For CdSe(ZB[111]) inside CdS(WZ) we obtain an initial strain of 3.92% (3.97%) in the direction orthogonal (parallel) to the *c* axis. These values are almost identical to those of WZ/WZ CdSe/CdS.

Even after minimizing elastic energy, relaxed strain remains very similar for pure WZ and polytype CdSe/CdS structures, as shown in Figure S1, where we compare the hydrostatic strain for the three model NCs investigated in the main paper.

Figure S1: Strain profile along *c* axis, for CdSe/CdS NCs with WZ/WZ core/shell, ZB/WZ core/shell and ZB/WZ core/shell including and alloyed CdSeS interlayer.

References

- (1) J. Planelles, F. Rajadell, and J.I. Climente J. Phys. Chem. C 120, 27724-27730 (2016).
- (2) Sadao, A. Handbook of Physical Properties of Semiconductors; Kluwert Academic Group, 2004.
- (3) Jun Xin, Yanqing Zheng and Erwei Shi Appl. Phys. Lett. 91, 112902 (2007).
- (4) The dielectric constant of cubic CdSe and CdS is reported as the geometric average of the hexagonal ε_{\perp} and ε_{z} dielectric constants, see e.g..² The values in Table S1 are the geometric average of dielectric constant used for hexagonal materials.
- (5) N. Samarth, H. Luo, J. K. Furdyna, S. B. Qadri, Y. R. Lee, A. K. Ramdas, and N. Otsuka, *Appl. Phys. Lett.* 54, 2680 (1989).
 Cited in Ref.² p. 312.
- (6) W. R. Cook, Jr., J. Am. Ceram. Soc. 51, 518 (1968).
 Cited in Ref.² p. 256.
- (7) C. Janowitz, O. GÃijnther, G. Jungk, R. L. Johnson, P. V. Santos, M. Cardona, W. Faschinger,

and H. Sitter, Phys. Rev. B 50, 2181 (1994). Cited in Ref.² p. 319.

- (8) M. Willatzen, M. Cardona, and N. E. Christensen, *Phys. Rev. B* 51, 17992 (1995).
 Cited in Ref.² p. 264.
- (9) Y. D. Kim, M. V. Klein, S. F. Ren, Y. C. Chang, H. Luo, N. Samarth, and J. K. Furdyna, *Phys. Rev. B* 49, 7262 (1994).
 Cited in Ref.² p. 322.
- (10) M.-Z. Huang and W. Y. Ching, J. Phys. Chem. Solids 46, 977 (1985).
 Cited in Ref.² p. 265.
- (11) Su-Huai Wei and Alex Zunger Phys. Rev. B 60 (1999) 5404
- (12) There is a scatter of data in the literature on valence deformation potentials for cubic CdSe, CdS compounds. For example, A. Sadao² reports three sources for cubic CdSe. Namely, A. Blacha et al., ¹³ T. Nakayama¹⁴ and H. J. Lozykowski et al. ¹⁵ None of them report a proposal for the deformation potential *d*, and the different *b*-values reported change even the sign, this last deformation potential being crucial to determine the heavy hole/light hole strain-driven splitting. Then, we employ here the experimental *b*-values reported for CdS¹⁶ and CdSe.¹⁵ As for *a_c*, we employ the *a_v* parameters also calculated by Wei and Zunger.¹¹ Finally, since no *d* values are reported for CdS and CdSe, we employ the value d = -4.4 eV that correspond to CdTe, this value being close to that reported for many semiconductors.¹⁷
- (13) A. Blacha, H. Presting, and M. Cardona, *Phys. Status Solidi B*126, 11 (1984).
 Cited in Ref.² p. 324 (CdSe), p. 267 (CdS).
- (14) T. Nakayama, Solid-State Electron. 37, 1077 (1994).
- (15) H. J. Lozykowski and V. K. Shastri, J. Appl. Phys. 69, 3235 (1991).
- (16) D. W. Niles and H. Höchst, Phys. Rev. B 44, 10965 (1991).

- (17) See e.g. Table 8.4 in Sadao Adachi, *Properties of Group IV, III V and II VI Semiconductors* John Wiley and Sons, Chichester, 2005
- (18) Calculated from data in: Wei S.H. and Zhang S. B.; *Phys. Rev. B* 62 (2000) 6944; Wei S.H., Zhang S. B. and Zunger A. *J. Appl. Phys.* 87 (2000) 1304.
- (19) P.E. Farias Junior and G.M. Sipahi, J. Appl. Phys. 112 (2012) 103716
- (20) Andrei Schliwa, Gerald Hönig, and Dieter Bimberg, in Multi-Band Effective Mass Approximations, Matthias Ehrhardt and Thomas Koprucki Eds. (Springer, Heidelberg , 2014).