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Abstract – Few-electron states of AlAs-GaAs-AlAs hexagonal quantum rings pierced by an axial
magnetic field are computed through full configuration interaction calculations. The quantum
ring is in the low-density regime, populated with N = 1 up to N = 7 electrons. Similar to circular
rings, the energy spectra of the hexagonal ones reflect an integer and fractional Aharonov-Bohm
regular oscillation pattern for N = 1 and N = 2, 3, respectively. Deviations from the regular
fractional period with increasing electron density become apparent for larger N . Remarkably, for
N = 6 the Aharonov-Bohm effect is completely suppressed. This is a unique symmetry-related
feature of hexagonal rings that only can emerge in the low-density regime.

Introduction. – Most III-V nanowires with a diam-
eter less than about 400 nm have a very neat hexagonal
section even after a few overcoating processes. [1–6]
These core-multishell nanowires have an unconstrained
longitudinal direction and different material composition
along the orthogonal plane (radial direction), that even-
tually bound carriers on a prismatic tube surrounding
the central core. With a proper material modulation
along the growth axis, or just by cutting them, a strong
confinement of carriers in the longitudinal direction can
be introduced [7–10] leading to a hexagonal flat quantum
ring (QR) where the free carriers are confined on a
square-well type potential in the radial direction. [11]
These flat polygonal structures are much less studied
than their circular counterparts, where evidences of the
Aharanov-Bohm (AB) effect have given rise to a decade
of intensive research. [12–18] One then wonders what
differences can be expected from the different confinement
symmetry of hexagonal rings.

In a recent paper [19] we presented a theoretical study
of correlated multi-electron states of hexagonal semicon-
ductor rings populated with N = 1 up to N = 7 electrons
and found that charges get more localized in the corners
as the number of electrons increases up to N = 6, where
we found a maximum of localization. The result evidences

the deficiency of a picture based on orbitals delocalized
on the whole ring, i.e. electron correlation becomes
crucial. In this Letter we investigate the response of this
N -electron system to an external axial magnetic field
which brings AB physics into play. Specifically, we focus
on the different response in comparison to circular QRs.

It is well known that an increase in the strength of
an externally applied axial magnetic field in a circular
QR leads to oscillations of the ground state energy. The
period and amplitude of the oscillations depends on the
electron population and it is referred to as fractional
AB effect. [20] The first unambiguous experimental
evidence of this effect may be traced back to the work
by Keyser. [21] Soon after, Emperador et al. [22] related
this fractional response to a low kinetic energy and a
phenomenon of electronic localization. Full configuration
interaction (FCI) calculations by Niemelä et al. [23] of
QRs populated up to four electrons revealed the crucial
role of electron-electron interaction on the decrease of
the period and amplitude of the ground state energy
and its fractional character. Liu et al. [24] extended
the FCI calculation to QRs populated with N = 5 and
N = 6 electrons as a function of the magnetic field and
the QR radius, thus yielding a phase diagram with a
rich variety of ground states. The fractional character
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of the AB effect was though fully explored earlier using
the empirical Hubbard model, [25] and it was concluded
that fractional AB oscillations arise for small values of
the factor α = N t/(U L), where N is the number of
electrons in the QR, t is the tunnelling integral, U the
repulsion one and L the number of sites along the QR
where the single-particle functions are located. For α to
be small, the ratio between the one-electron integral t
and the two-electron integral U must be small, i.e., a low
kinetic energy and a strong electron-electron interaction is
required. Also, since α is proportional to N , a low-density
regime is needed. Additionally, L introduces the possible
role of symmetry lowering: the larger L the sooner the
Hubbard model reaches the fractional AB regime. But no
other symmetry-related effect is reported.

In this work, we consider the same AlAs-GaAs-AlAs
hexagonal QR studied in ref. [19], where all physical pa-
rameters, namely effective masses, conduction-band offset
and dielectric constant can be found. We carry out calcu-
lations for N = 2 up to N = 7 interacting electrons in the
low-density regime. We find that the low-energy spectrum
of the hexagonal QR resembles that of circular ones. Like
in circular QRs, the energy spectra of the hexagonal QRs
analyzed here reflect an integer and regular AB oscillation
pattern for N = 1, a fractional, also regular, AB oscilla-
tion pattern for N = 2 and N = 3, and deviations from
the regular period with the increasing electron density.
Specifically, N = 4 and N = 5 have not regular oscillation
amplitude patterns, while N = 7 shows already an integer
period, like that of N = 1. The most intriguing result is
found for N = 6 electrons, where AB effect is completely
suppressed, which translates into zero magnetization. We
show this is a peculiar symmetry-related response of the
N = 6 system in hexagonal QRs that only can emerge in
the low-density regime.

Theory. – We perform an exact diagonalization of the
multi-particle Schrödinger equation via a FCI procedure.
As a first step, the single-particle orbitals φi and energies
ǫi of the conduction band are computed through a real-
space numerical solution of the eigenvalue equation of the
effective-mass Hamiltonian,

h =
1

2
(p + A)

1

m∗(r)
(p + A) + V (r) (1)

where r is the 2D coordinate on the hexagonal domain,
m∗(r) is the isotropic material-dependent effective mass
of electrons, A is the magnetic vector potential, and V (r)
is the confining potential, represented schematically in
the inset of fig. 1. This equation is numerically integrated
using the finite-elements method on a regular triangular
mesh with hexagonal elements. The grid reproduces
the symmetry of the system thus avoiding numerical
artifacts originated by discretization asymmetries of
the six domain boundaries, as would be the case, e.g.,
using a rectangular grid. Unless otherwise indicated, the

employed geometry is a regular hexagon domain with
edges 66.5 nm long including a GaAs well 6.8 nm wide
with uniform thickness all around the 37.3 nm AlAs core.
The GaAs well is covered by a 13.5 nm AlAs capping
layer (see inset in fig. 1).

Finally we diagonalize the multi-particle Hamiltonian

H =
∑

iσ

ǫie
†
iσeiσ +

1

2

∑

ijkl

∑

σσ′

Uijkle
†
iσe†jσ′ekσ′ejσ (2)

where eiσ (e†iσ) is the annihilation (creation) operator for
an electron in the orbital state i and with spin σ. For
all the calculations we use 24 spin-orbital single-particle
states, giving

(

24
N

)

Slater determinants, with N being the
number of electrons.
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Fig. 1: Orbital energies vs. magnetic field, labelled according
to the C6 symmetry group. Two well-separated shells com-
posed by 6 orbitals can be identified, with a 2 meV energy gap
between them. Inset: Schematics of the system. The GaAs
ring is wrapped around an hexagonal AlAs core and capped by
an additional AlAs shell. The free electrons are confined in the
GaAs region.

Results and discussion. – In fig. 1 we show the
low-lying part of the single-electron energy spectrum as
a function of the magnetic field. Orbitals are labelled
according to the C6 symmetry group. Well-separated
with a 2 meV energy gap between them, we can identify
two shells each composed by 6 orbitals. Namely, two
groups of orbitals well separated in energy, having the
same degeneracy pattern. The result, quite different
from that of a circular QR, originates from the symmetry
lowering when going from circular to hexagonal shape. In
the first case we have an infinite number of irreducible
representations (irreps) which associated orbitals can
cross. By contrast, the hexagonal ring has only six irreps,
so that anticrossings between orbitals with the same
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symmetry appear. This opens a gap between the shells.
The states cross with increasing field only within the shell
where states have different symmetry (see fig. 1). As a
consequence of the shell splitting, we find that in a wide
range of the low-lying N-electron states only the lowest
6 orbitals (spin-independent real space wave functions)
have significant population.
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Fig. 2: Energy of low-lying few-electron states, labelled accord-
ing to the C6 symmetry group and spin multiplicity, vs. the
magnetic field. The six panels show the cases of N = 2 to
N = 7 electrons, as indicated. Zero energy, indicated by the
straight reference line, corresponds to the ground state energy
without magnetic field.

In fig. 2 we summarize the behaviour of the energy of
lowest-lying few-electron states vs. the magnetic field.
The represented energies are relative to the N-electron
ground state energy in the absence of magnetic field
(horizontal red line). The few-electron states are labelled
according to the C6 symmetry group and spin multi-
plicity of states. Figure 3 displays the corresponding
magnetization in meV/T. We can see that for N = 2
and N = 3 a perfect fractional AB is observed. Thus,
fig. 3 reveals that for N = 2 the AB period is halved
as compared to the N = 1 case. Likewise, for N = 3 it
is one third. Deviations of the regular fractional period
become apparent for larger N . For N = 4 and especially
for N = 5 the oscillation amplitude pattern is far from
regular, and the N = 7 case already shows an integer
period. The observed behaviour is consistent with the
previous calculations on QRs. [22–25] In particular, the
behaviour vs. N is consistent with an increasing α
factor that prevents the fractional behaviour of the AB
oscillations. [25]
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Fig. 3: Magnetization of the N -electron hexagonal QR vs. the
applied magnetic field, for N = 1 (bottom) up to N = 7 (top).
For the sake of clarity, the different magnetization profiles have
been offset by 2 meV/T.

The most striking result in figs. 2 and 3 is found for
N = 6. In this case a complete suppression of the AB
oscillation that turns into a completely flat magnetization
profile occurs.

In order to understand the peculiar behaviour of the
N = 6 system, we repeated the set of FCI calculations
but introducing a scaling factor f that multiplies the
electron-electron interaction integrals. For f = 0 we
obtain the non-interacting particle spectrum with a cross-
ing, at about 1/2 of flux, of two different configurations,
a2(e+

1 )2(e−1 )2 and (e+
1 )2a2(e+

2 )2, corresponding to two
different states 1A with the same total symmetry and
total spin (see panel (a) in fig. 4). The first configuration
is the lowest-lying one at B = 0 while the second
represents a highly excited configuration at this magnetic
field. The two configurations are essentially exchanged
at about one unit of flux. When the electron-electron
repulsion is included the string of symmetry-labels of the
orbitals cannot be used as good quantum numbers, since
the configuration interaction takes place. Then, only the
total symmetry and total spin are good labels. However
we can still identify these configurations as dominant,
with a large contribution in the case of small f factors.
In the presence of Coulomb interactions, the two 1A
states having these leading configurations anticross, the
anticrossing being larger as electron-electron interaction
increases (see panels (b), (c) and (d) in fig. 4).

To further asses the role of the regime of density,
we carried out calculations for an hexagonal QR three
times smaller than the above sample. Simulations of
magnetizations are reported in fig. 5. In this case, we can
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Fig. 4: Lowest-lying states for N = 6 for increasing Coulomb
interaction. In the panels (a), (b), (c) and (d) the Coulomb
repulsion is scaled down by a factor of 0, 0.1, 0.2 and 0.5,
respectively. Red lines correspond to the states which anti-
crossing is responsible of the suppression of the AB effect and
of the flat magnetization profile.

observe a neat fractional behaviour only for N = 2. As far
as the N = 6 case is concerned, fig. 5 reveals that the AB
suppression is no longer present. This is because in this
density regime the magnitude of the anticrossing between
the two 1A states of the N = 6 system cannot overcome
the relative stabilization of the triplet 3B state coming
from the exchange integrals (see fig. 4) so that 3B emerges
as the ground state in a narrow window around one half of
flux, yielding an irregular discontinuity in the magnetiza-
tion profile around this magnetic field, as reported in fig. 5.

Role of symmetry and conclusions. – To con-
clude, we explore whether or not the suppression of the
AB effect may occur in QRs of symmetries other than
C6. To this end, we take into account the previous
result relating the suppression of the AB effect to the
anticrossing between the B = 0 ground state and an
excited state of the same symmetry and total spin. In
particular, the symmetry of the N -electron state can be
calculated as the product of the irreps of the orbitals
in the leading configuration. Furthermore, the orbital
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Fig. 5: Magnetization of the small hexagonal QR (three times
smaller than in previous figures) for N = 1 (bottom) up to
N = 7 (top). For the sake of clarity, the different magnetization
profiles have been offset by 2 meV/T.

ordering can also be determined from that of a circular
QR by considering the symmetry reduction C∞ → Cn.
We give the mathematical details in the Appendix. By
considering the Cn symmetry groups with n = 3 up to
n = 10 (i.e. from triangular to decagonal shape) we prove
that, besides the N = 6 hexagonal QR, the smallest
Cn group that may render a possible anticrossing is the
N = 10 C10-symmetry QR. On the one hand, C10 is not
a geometry that can be realistically synthesized at the
nanometric level, on the other hand, the relatively large
number of electrons required, N = 10, and the need of
a low-density regime points this regime as difficult to be
experimentally achieved. Then, we may say that no other
ground state anticrossing like that of the N = 6 case in
hexagonal QRs can occur for the currently synthesized
geometries.

In summary, we have shown that hexagonal QRs ex-
hibit AB phenomena different from the well-known circu-
lar rings. The most remarkable finding is the complete
suppression of the AB effect when the six-electron hexag-
onal QR system is in the high-correlation, low-density
regime. The phenomenon originates in the anticrossing
between the B = 0 ground state and an excited state of
the same symmetry and total spin. We have demonstrated
that this effect is exclusive of hexagonal structures and it
implies the possibility of switching on and off the device
magnetization by varying the number of confined carriers.

Appendix. – A Cn group has n irreps labelled with
k = 0± 1± 2 . . . up to the integer part of n/2. The k = 0
irrep is generally referred to as A and it is real and fully

p-4



Suppression of the Aharonov-Bohm effect in hexagonal quantum rings

symmetric. The remaining irreps are complex and labelled
E±

k . For even n, k = n/2 and k = −n/2 correspond to the
same real and fully antisymmetric irrep B. The character
χ±k(Cm

n ) of the irrep k (−k) corresponding to an angle
2π m/n around the rotation axis of the Cn group is:

χ±k(Cm
n ) = exp

[

±i
2π

n
k m

]

(3)

This expression allow us to write the character table of
any Cn group. All the same, if k = n p + q with q =
0, 1, . . . (n− 1) and p = 0, 1, 2, . . ., the following identities,

exp

[

±i
2π

n
(n p + q)m

]

= exp

[

±i
2π

n
q m

]

(4)

exp

[

∓i
2π

n
(n − q)m

]

= exp

[

±i
2π

n
q m

]

(5)

allow us to conclude that:

χ±k(Cm
n ) =

{

χ±q(C
m
n ); q ≤ kM

χ∓(n−q)(C
m
n ); q > kM

(6)

where kM is the integer part of n/2, i.e., the largest value
of k in the character table of Cn.
The last result allow us to determine the symmetry
C∞ → Cn reduction table. Thus, for even n, the C∞

irreps labelled as k = 0, 1,−1, 2,−2, . . . correspond to A,
E+

1 , E−
1 , E+

2 , E−
2 . . . E+

kM−1, E−
kM−1, B, B, E−

kM−1 . . .,

E−
1 , E+

1 , A, A, E+
1 , E−

1 . . . For odd n they correspond
to A, E+

1 , E−
1 . . ., E+

kM
, E−

kM
, E−

kM
, E+

kM
. . ., E−

1 , E+
1 , A,

A, E+
1 , E−

1 . . . This symmetry reduction scheme helps to
understand the evolution vs. the magnetic field of the
single-particle orbitals of poligonal rings pierced by an
axial magnetic field: sets of non-crossing shells containing
n orbitals with different symmetry repeatedly crossing as
the magnetic field increases (see e.g. fig. 1).

As for the product of irreps we have:

χ±k1
(Cm

n ) χ±k2
(Cm

n ) = exp

[

i
2π

n
[(±k1) + (±k2)]m

]

(7)
Then, the product of two irreps ±k1, ±k2 yields the irrep
labelled with the sum k = (±k1) + (±k2). In case the
resulting k is larger than kM , then we write k = n p + q
with q < n and identify k with q (with −(n − q)) if
q ≤ kM (q > kM ).

With this information we may adress the problem of
anticrossings. The scheme of orbital energies vs. the
magnetic field is shown in fig. 6.

In order to have, at a given value of the magnetic field,
an anticrossing between two N -electron states that are
the ground state in either side of the avoided crossing,
the dominant electronic configuration in either side of the
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Fig. 6: Scheme of the orbital energies vs. the magnetic field.
Left: low-lying part of the energy spectrum corresponding to
a Cn symmetry with large n. The orbitals are labelled by k =
0± 1± 2± 3 . . . Center: top and bottom of the orbital shell for
even n. The notation for orbitals, {A, e±

k
(k = 1, 2 . . . kM−1), B

}, is that of the Cn irreps. Right: top and bottom of the orbital
shell for odd n. The Cn notation {A, e±

k
(k = 1, 2 . . . kM ) } is

used.

monoelectronic crossing must be different yet it must yield
the same symmetry and total spin for the N -electron state.
This cannot occur for odd number N of electrons. For
even N it can only occur if the square of the irreps Γ−k

and Γk+1, k + 1 ≤ kM yield the same irrep, i.e., if

χ−k(Cm
n )2 = χk+1(C

m
n )2 (8)

with

χ−k(Cm
n )2 = exp

[

−i
4π

n
k m

]

(9)

χk+1(C
m
n )2 = exp

[

i
4π

n
(k + 1)m

]

(10)

It obviously occurs for m = 0. It must be also true for
m = 1, 2, 3 . . . (n − 1), i.e., it must occur both that q be a
natural number (q ∈ N) and the fulfilment of the identity:

4π

n
(k + 1)m) = 2π q −

4π

n
k n (11)

In other words,

k =
1

4
(
n q

m
− 2), m = 1, 2, . . . (n − 1) and q ∈ N (12)

It obviuosly holds for (k = 1, n = 6), for we may just
select q = m in eq. 12. It cannot hold for n = 3. In this
case we have three irreps k = 0±1. Then, q = (2 k+2)m/n
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must be a natural number for k = 0, m = 0, 1, which is
not the case (q = 2 m/3 /∈ N for m = 0, 1). In Table 1 we
enclose the possible q values for the symmetry groups Cn

from n = 3 up to n = 10 as a function of m. Since for a
given group Cn the irrep label kM is equal to the integer
part of n/2, we have then a single possible k for C3, two
of them for C4 and C5, three for C6 and C7, etc.

Table 1: Possible q values for the symmetry groups Cn from
n = 3 up to n = 10 as a function of m = 1, 2, . . . (n − 1). The
integer values are highlighted.

H
H

H
H

H
n

k
0 1 2 3 4

3 2
3 m

4 1
2 m 3

2 m
5 2

5 m 6
5m

6 1
3 m m 5

3 m
7 2

7 m 6
7 m 10

7 m
8 1

4 m 3
4 m 5

4 m 7
4 m

9 2
9 m 6

9 m 10
9 m 14

9 m
10 1

5 m 3
5 m m 7

5 m 9
5 m

As we can see in Table 1, up to the symmetry group
C10, no ground state anticrossing occurs except for
(n = 6, k = 1) and (n = 10, k = 2). In other words, for
the currently synthesized geometries, only the hexagonal
one presents the ground state anticrossing when the
number of electron just fills the e+

2 with two electrons. As
discussed in previous sections, this anticrossing has deep
physical consequences if the system is the high correlation
low-density regime.
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[5] Rudolph D., Funk S., Döblinger M., Morkötter S., Herten-
berger S., Schweickert L., Becker J., Matich S., Bichler
M., Spirkoska D., Zardo I., Finley J.J., Abstreite G. and
Koblmüller G., Nano Letters 13 (2013) 1522.

[6] Royo M., Bertoni A. and Goldoni G., Phys. Rev. B 87

(2013) 115316.
[7] Lauhon L. J., Gudiksen M. S., Wang D. and Lieber C.

M., Nature 420 (2002) 57.
[8] Shen G., Chen D., Bando Y. and Golberg D., J. Mater.

Sci. Technol. 24 (2008) 541.
[9] Shen G. and Chen D., Sci. Adv. Mater. 1 (2009) 353.

[10] Heigoldt M., Arbiol J., Spirkoska D., Rebled J. M.,
Conesa-Boj S., Abstreiter G., Peir F., Morante J. R. and
Fontcuberta i Morral A. J. Mater. Chem. 19 (2009) 840.

[11] Hasen J., Pfeiffer L. N., Pinczuk A., He S., West K.W. and
Dennis B.S., Nature 390 (1997) 54; Fasth C., Fuhrer A.,
Björk M. T. and Samuelson L., NanoLett. 5 (2005) 1487;
Tatebayashi J., Ota Y., Ishida S., Nishioka M., Iwamoto
S. and Arakawa Y., Appl. Phys. Lett. 100 (2012) 263101.

[12] Fuhrer A., Lscher S., Ihn T., Heinzel T., Ensslin K.,
Wegscheider W. and Bichler M., Nature 413 (2001) 822.

[13] Lorke A., Luyken R. J., Govorov A. O., Kotthaus J.,
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