

The Hamiltonian: a.u. and Coulomb gauge ($\nabla A = 0$) $H = \frac{\hat{p}^2}{2m} + \frac{(A + A') \cdot \hat{p}}{m} + \frac{(A + A')^2}{2m} + V$ $A \cdot p = -i \frac{B_0}{2} f(-y \partial_x + (x - x_0) \partial_y) \begin{cases} f_1 = 1 \\ f_2 = \frac{a^2}{\sqrt{(x - x_0)^2 + y^2}} \end{cases}$ $A' \cdot p = i \frac{B_0}{2} f(-y \partial_x + (x + x_0) \partial_y) \begin{cases} f_1 = 1 \\ f_2 = \frac{a^2}{\sqrt{(x + x_0)^2 + y^2}} \end{cases}$ etc. H F(x, y) = E F(x, y)

g	d	i	a	g	s		s	p	m	•	m
---	---	---	---	---	---	--	---	---	---	---	---

% defined in main.m -> cons=-1/(2*m*h^2);cons2=i*bf/(4*m*h);cons2e=cons2*radbf^2;cons3=bf^2/(8*m);

d=zeros((n-2)^2,1); b=d;bet=d;a=d;alp=d; % filling diagonals with zeros

bet=d;a=d;alp=d;

n0=round((n-1)/2); n1=round(n*(x0/lon)); n2=round(n*(-x0/lon)); % center of the system
% centers of the magnetic disks

for ii=1:(n-2) for jj=1:(n-2)
for jj=1:(n-2)
kk=(ii-1)*(n-2)+jj;
aux=sqrt(((ii-n0-n1)^2+(jj-n0)^2))*h;
auxm=sqrt(((ii-n0-n2)^2+(jj-n0)^2))*h; % distance node - magnetic disk center % filling diagonals region B neg 0 d (kk)=-4*cons+aux1+pote(ii,jj); b(kk)=cons-cons2*(ii-n0-n1)*h+cons2e*(ii-n0-n2)*h/auxm^2; bet(kk)=cons+cons2*(ii-n0-n1)*h-cons2e*(ii-n0-n2)*h/auxm^2; a(kk)=cons+cons2*(jj-n0)*h-cons2e*(jj-n0)*h/auxm^2; alp(kk)=cons-cons2*(jj-n0)*h+cons2e*(jj-n0)*h/auxm^2; elseif auxm < radbf</pre> aux1=cons3*(auxm^2+radbf^4/aux^2); aux1=cons3*(auxm^2+radbf^4/aux^2); aux1=aux1-(bf^2*radbf^2/4/m)*(h^2*((jj-n0)^2+(ii-n0-n1)*(ii-n0-n2))/aux^2); d(kk)=-4*cons+aux1+pote(ii,jj); b(kk)=cons+cons2*(ii-n0-n2)*h-cons2e*(ii-n0-n1)*h/aux^2; bet(kk)=cons-cons2*(ii-n0-n2)*h+cons2e*(ii-n0-n1)*h/aux^2; a(kk)=cons-cons2*(jj-n0)*h+cons2e*(jj-n0)*h/aux^2; alp(kk)=cons+cons2*(jj-n0)*h-cons2e*(jj-n0)*h/aux^2; else % filling diagonals region B = 0 aux1=cons3*((radbf^4/aux^2)+(radbf^4/auxm^2)); aux1=aux1-(bf^2*radbf^4/4/m)*h^2*((jj-n0)^2+(ii-n0-n1)*(ii-n0-n2))/aux^2/auxm^2; d(kk)=-4*cons+aux1+pote(ii,jj); b(kk)=cons-cons2e*(ii-n0-n1)*h/aux*2+cons2e*(ii-n0-n2)*h/aux*2; bet(kk)=cons+cons2e*(ii-n0-n1)*h/aux^2-cons2e*(ii-n0-n2)*h/auxm^2; a(kk)=cons+cons2e*(jj-n0)*h/aux^2-cons2e*(jj-n0)*h/auxm^2; alp(kk)=cons-cons2e*(jj-n0)*h/aux^2+cons2e*(jj-n0)*h/auxm^2; end end end

□ for k=1: (n-2): (n-2)^2 % filling with zeros % upper diagonal [0,values] b(k)=0; end □for k=(n-2):(n-2):(n-2)^2 % filling with zeros % lower diagonal [values,0] bet(k)=0; end **□for** k=1:(n-2) % filling with zeros a (k) =0 ; % upper diagonal [0,values] end **□ for** k=(n-2)*(n-2)+1:(n-2)^2 % filling with zeros alp(k)=0; % lower diagonal [values,0] end BCs : F = 0 at the grid borders

