

Range of k and 3D extension $k - k' = k + \frac{2\pi}{a}m, m \in Z$ same character: $e^{i[k + \frac{2\pi}{a}m]na} = e^{ikna}$ $k \in [-\frac{\pi}{a}, \frac{\pi}{a}];$ k = 0 labels the fully symmetric A₁ irrep **3D extension** $\begin{cases} x \to r \\ k \to k \end{cases}$ $\Psi_k(r) = e^{ik \cdot (r+a)}u(r+a) = \frac{e^{ik \cdot a}}{e^{ik \cdot a}}e^{ik \cdot r}u(r)$ $T_a \Psi_k(r) = e^{ik \cdot (r+a)}u(r+a) = \frac{e^{ik \cdot a}}{e^{ik \cdot a}}e^{ik \cdot r}u(r)$ **Reciprocal Lattice** 1D: $k \sim k' \rightarrow k' - k = K = \frac{2\pi}{a}$: $e^{iKa} = 1$ 3D: $k \sim k' \rightarrow k' - k = K$: $e^{iK \cdot a_i} = 1$, $a_i = a, b, c$ (lattice vectors) K? $K = p_1k_1 + p_2k_2 + p_3k_3$, $k_i = 2\pi \frac{(a_j \times a_k)}{(a_j \times a_k)a_i}$, $p_i \in Z$ $K \cdot a_i = 2\pi p_i$ { k_1, k_2, k_3 } \rightarrow reciprocal lattice Γ : k = 0, $k = xk_1 + yk_2 + zk_3$, $x, y, z \in (-1/2, 1/2)$ **Eirst Brillouin zone:** Wigner-Seitz cell of the reciprocal lattice

