Double groups

Josep Planelles

March 12, 2015

1 Some rotational double groups and products of irreps

Two-fold rotational group

\bar{C}_2	E	C_2^1	C_2^2	C_2^3	$e^{iM\phi}$ basis
A	1	1	1	1	$M = 0, \pm 2, \pm 4$
В	1	-1	1	-1	$M = \pm 1, \pm 3$
$E_{-3/2}$	1	i	-1	-i	M = 1/2, -3/2
$E_{3/2}$	1	-i	-1	i	M = -1/2, 3/2

Product of irreps for the two-fold rotational group

	A	В	$E_{-3/2}$	$E_{3/2}$
A	A	В	$E_{-3/2}$	$E_{3/2}$
В		A	$E_{3/2}$	$E_{-3/2}$
$E_{-3/2}$			В	A
$E_{3/2}$				В

Three-fold rotational group

\bar{C}_3	E	C_3^1	C_3^2	C_3^3	C_3^4	C_3^5	$e^{iM\phi}$ basis
A	1	1	1	1	1	1	$M=0,\pm 3$
E_+	1	ϵ	ϵ^*	1	ϵ	ϵ^*	M = 1, -2
E_{-}	1	ϵ^*	ϵ	1	ϵ^*	ϵ	M = -1, 2
$E_{1/2}$	1	$-\epsilon^*$	ϵ	-1	ϵ^*	$-\epsilon$	M = 1/2
$E_{-1/2}$	1	$-\epsilon$	ϵ^*	-1	ϵ	$-\epsilon^*$	M = -1/2
$E_{3/2}$	1	-1	1	-1	1	-1	$M = \pm 3/2$

with $\epsilon = e^{i \frac{2\pi}{3}}$.

Product of irreps for the three-fold rotational group

	A	E_+	E_{-}	$E_{1/2}$	$E_{-1/2}$	$E_{3/2}$
A	A	E_+	E_{-}	$E_{1/2}$	$E_{-1/2}$	$E_{3/2}$
E_+		E_{-}	A	$E_{3/2}$	$E_{1/2}$	$E_{-1/2}$
E_{-}			E_+	$E_{-1/2}$	$E_{3/2}$	$E_{1/2}$
$E_{1/2}$				E_+	A	E_{-}
$E_{-1/2}$					E_{-}	E_+
$E_{3/2}$						A

(5)

Four-fold rotational group

\bar{C}_4	E	C_4^1	C_4^2	C_4^3	C_4^4	C_4^5	C_4^6	C_4^7	$e^{iM\phi}$ basis
A	1	1	1	1	1	1	1	1	$M = 0, \pm 4$
B	1	-1	1	-1	1	-1	1	-1	$M = \pm 2$
E_+	1	i	-1	-i	1	i	-1	-i	M = 1, -3
E_{-}	1	-i	-1	i	1	-i	-1	i	M = -1, 3
$E_{1/2}$	1	ϵ	i	$-\epsilon^*$	-1	$-\epsilon$	-i	ϵ^*	M = 1/2
$E_{-1/2}$	1	ϵ^*	-i	$-\epsilon$	-1	$-\epsilon^*$	i	ϵ	M = -1/2
$E_{3/2}$	1	$-\epsilon^*$	-i	ϵ	-1	ϵ^*	i	$-\epsilon$	M = 3/2
$E_{-3/2}$	1	$-\epsilon$	i	ϵ^*	-1	ϵ	-i	$-\epsilon^*$	M = -3/2

with $\epsilon = e^{i \frac{\pi}{4}}$.

Product of irreps for the Four-fold rotational group

	A	B	E_+	E_{-}	$E_{1/2}$	$E_{-1/2}$	$E_{3/2}$	$E_{-3/2}$
A	A	В	E_+	E_{-}	$E_{1/2}$	$E_{-1/2}$	$E_{3/2}$	$E_{-3/2}$
В		A	E_{-}	E_+	$E_{-3/2}$	$E_{3/2}$	$E_{-1/2}$	$E_{1/2}$
E_+			В	A	$E_{3/2}$	$E_{1/2}$	$E_{-3/2}$	$E_{-1/2}$
E_{-}				E_+	$E_{-1/2}$	$E_{-3/2}$	$E_{1/2}$	$E_{3/2}$
$E_{1/2}$					E_+	A	В	E_{-}
$E_{-1/2}$						E_{-}	E_+	B
$E_{3/2}$							E_+	A
$E_{-3/2}$								E_+

The C_{3h} double group.

In this case, the calculation of the character of the horizontal mirror plane σ_h is not trivial for the spin functions. At a first glance, since σ_h does not affect the angle ϕ it may seem that $e^{iM\phi}$ is invariant under σ_h both, for integer and half-integer M. However, since $\mathcal{O}_R f(\mathbf{r}) = f(R^{-1}\mathbf{r})$, one may claim that σ_h change the sign of the z-axis and then that it may affect the functions. This is the case for $z, J_x \pm iJ_y$ that change their sign, while $J_z, x \pm iy$ keep invariant (character unity). What about the spin functions? Let's see first whether or not the character of σ_h for the spin irreps should be different from unit and, then, we will proceed to calculate its value.

We know that in C_{3h} the identity E and the rotation C_3^3 are the same transformation, as it is the two-fold application of σ_h , i.e., $E = C_3^3 = \sigma_h^2$. However, in the C_{3h} double group $C_3^3 = \bar{E}$ which character for the spin function irreducible representations is -1. Then, the character for σ_h^2 should be also -1, i.e., if the function F is double-evaluated in C_{3h} then, $\sigma_h^2 F = -F$. On the other hand, both C_{3h} and double- C_{3h} are abelian or commutative groups and, as a consequence, all their irreps are one-dimensional. Therefore, if $\sigma_h F = \lambda F$, it follows that $\sigma_h^2 F = \lambda^2 F$. And since we have just seen that $\sigma_h^2 F = -F$ we conclude that $\lambda^2 = -1$ and then $\lambda = \pm i$. The sign of the character depends on F, we show next that it is +i for $F = |1/2, -1/2\rangle$ and -i for $F = |1/2, 1/2\rangle$. Now we proceed to calculate them.

Let us consider the spin vector $\vec{\sigma} = (\sigma_x, \sigma_y, \sigma_z)$ with $\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ and $\sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. The action of the mirror symmetry σ_h transforms this vector into $\vec{\sigma}' = (\sigma_{x'}, \sigma_{y'}, \sigma_{z'}) = (-\sigma_x, -\sigma_y, \sigma_z,)$,¹ where $\sigma_{x'} = M^{\dagger}\sigma_x M$, $\sigma_{y'} = M^{\dagger}\sigma_y M$ and $\sigma_{z'} = M^{\dagger}\sigma_z M$, $M^{\dagger}M = \mathbb{I}$, being M the transformation matrix, corresponding to the the σ_h mirror symmetry plane, transforming the spin components. We are looking for a matrix M so that:

$$\sigma_{x'} = M^{\dagger} \sigma_x M = -\sigma_x$$

$$\sigma_{y'} = M^{\dagger} \sigma_y M = -\sigma_y$$

$$\sigma_{z'} = M^{\dagger} \sigma_z M = \sigma_z$$
(7)

I remind here some properties of the σ_i Pauli matrices that can be checked by replacing σ_i by its matrix representation: $\sigma_x \sigma_x = \sigma_y \sigma_y = \sigma_z \sigma_z = \mathbb{I}$, $\sigma_y \sigma_z = i\sigma_x$, $\sigma_z \sigma_y = -i\sigma_x$, $\sigma_z \sigma_x = i\sigma_y$, $\sigma_x \sigma_z = -i\sigma_y$. Finally, $\sigma_i^{\dagger} = \sigma_i$, i = x, y, z. These relations prompt the matrix M to be $M = -i\sigma_z$ ($M^{\dagger} = i\sigma_z$), as we check now:

 $M^{\dagger}\sigma_{z}M = (i)(-i)\sigma_{z}\sigma_{z}\sigma_{z} = \sigma_{z}$

¹Please realize that spin is not a polar but an axial vector. A mirror symmetry plane containing an axial vector change its direction while a perpendicular mirror leaves the vector invariant. Then, since the σ_h mirror symmetry plane contains σ_x and σ_y and it is perpendicular to σ_z , it changes the sign of the first two components and leaves the last one invariant.

$$M^{\dagger}\sigma_{x}M = \sigma_{z}\sigma_{x}\sigma_{z} = \sigma_{z}(-i\sigma_{y}) = -i(-i\sigma_{x}) = -\sigma_{x}$$

$$M^{\dagger}\sigma_{y}M = \sigma_{z}\sigma_{y}\sigma_{z} = \sigma_{z}(i\sigma_{x}) = i(i\sigma_{y}) = -\sigma_{y}$$
(8)

Next we consider the action of M on the spin functions $|1/2, 1/2\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $|1/2, -1/2\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$:

$$M|1/2, 1/2\rangle = -i \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i \begin{pmatrix} 1 \\ 0 \end{pmatrix} = -i |1/2, 1/2\rangle$$
$$M|1/2, -1/2\rangle = -i \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} = -i \begin{pmatrix} 0 \\ -1 \end{pmatrix} = i |1/2, -1/2\rangle$$
(9)

Therefore, the mirror σ_h character for the irrep with basis $|1/2, 1/2\rangle$ is $\chi(\sigma_h) = -i$, while the character corresponding toe $|1/2, -1/2\rangle$ is $\chi(\sigma_h) = i$.

In order to calculate the remaining characters, we take into account general definitions or properties like: $S_3^+ = \sigma_h C_3^+$, then $\chi(S_3^+) = \chi(\sigma_h)\chi(C_3^+)$; $\bar{\sigma}_h = \bar{E}\sigma_h$; $\bar{S}_3^+ = \bar{C}_3^+\sigma_h$, etc.² resulting:

	E	C_3^+	C_3^-	σ_h	S_3^+	S_3^-	\bar{E}	\bar{C}_3^+	\bar{C}_3^-	$\bar{\sigma}_h$	\bar{S}_3^+	\bar{S}_3^-	basis	
$E_{1/2}$	1	$-\omega^*$	ω	-i	$i\omega^*$	$-i\omega$	-1	ω^*	$-\omega$	i	$-i\omega^*$	$i\omega$	$ 1/2, 1/2\rangle$	(10)
$E_{-1/2}$	1	$-\omega$	ω^*	i	$-i\omega$	$i\omega^*$	-1	ω	$-\omega^*$	-i	$i\omega$	$-i\omega^*$	$ 1/2, -1/2\rangle$	

Next we consider $|3/2, \pm 3/2\rangle$. In order to calculate the characters we take into account that $|3/2, 3/2\rangle = |1, 1\rangle|1/2, 1/2\rangle$ and $|3/2, -3/2\rangle = |1, -1\rangle|1/2, -1/2\rangle$. Therefore, we just multiply irreps, i.e., $E_{3/2} = E'_+ \otimes E_{1/2}$ and $E_{-3/2} = E'_- \otimes E_{-1/2}$, yielding e.g.,

	E	C_3^+	C_3^-	σ_h	S_3^+	S_3^-	\bar{E}	\bar{C}_3^+	\bar{C}_3^-	$\bar{\sigma}_h$	\bar{S}_3^+	\bar{S}_3^-	basis	
E'_+	1	ω	ω^*	1	ω	ω^*	1	ω	ω^*	1	ω	ω^*	$ 1,1\rangle$	(11)
$E_{1/2}$	1	$-\omega^*$	ω	-i	$i\omega^*$	$-i\omega$	-1	ω^*	$-\omega$	i	$-i\omega^*$	$i\omega$	$ 1/2,1/2\rangle$	(11)
$E_{3/2}$	1	-1	1	-i	i	-i	-1	1	-1	i	-i	i	3/2,3/2 angle	

The irrep $E_{-3/2}$ is the dual or complex conjugate of $E_{3/2}$ (in the same way that E'_+ , E'_- on the one side and $E_{1/2}$, $E_{-1/2}$ on the other hand, are duals.

One can alternatively build all angular momentum irreps from that of $|1/2, \pm 1/2\rangle$ just by calculating the different powers. For example for positive components we have that

$$|1,1\rangle = |1/2,1/2\rangle |1/2,1/2\rangle$$

²Also we realize some angular identities like $e^{i\frac{2\pi}{6}} = -e^{-i\frac{2\pi}{3}} = -\omega^*$, $e^{i\frac{4\pi}{6}} = e^{i\frac{2\pi}{3}} = \omega$, etc.

$$|3/2, 3/2\rangle = |1/2, 1/2\rangle |1/2, 1/2\rangle |1/2, 1/2\rangle |2, 2\rangle = |1/2, 1/2\rangle |1/2, 1/2\rangle |1/2, 1/2\rangle |1/2, 1/2\rangle, \text{ etc.}$$
(12)

Therefore the characters are:

	E	C_3^+	C_3^-	σ_h	S_3^+	S_3^-	\bar{E}	\bar{C}_3^+	\bar{C}_3^-	$\bar{\sigma}_h$	\bar{S}_3^+	\bar{S}_3^-	basis	
$ 1/2,1/2\rangle$	1	$-\omega^*$	ω	-i	$i\omega^*$	$-i\omega$	-1	ω^*	$-\omega$	i	$-i\omega^*$	$i\omega$	$ 1/2, 1/2\rangle$	
$ 1/2,1/2\rangle^2$	1	ω	ω^*	-1	$-\omega$	$-\omega^*$	1	ω	ω^*	-1	$-\omega$	$-\omega^*$	$ 1,1\rangle$	
$ 1/2,1/2\rangle^3$	1	-1	1	i	-i	i	$^{-1}$	1	-1	-i	i	-i	$ 3/2,3/2\rangle$	(13)
$ 1/2,1/2\rangle^4$	1	ω^*	ω	1	ω^*	ω	1	ω^*	ω	1	ω^*	ω	$ 2,2\rangle$	
$ 1/2,1/2\rangle^5$	1	$-\omega$	ω^*	-i	$i\omega$	$-i\omega^*$	$^{-1}$	ω	$-\omega^*$	i	$-i\omega$	$i\omega^*$	$ 5/2,5/2\rangle$	
$ 1/2,1/2\rangle^6$	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	3,3 angle	

When we compare the results obtained by one and another method, e.g. referred to $|3/2, 3/2\rangle$, we find out two different results (!) In particular, we see that the character of the horizontal mirror symmetry σ_h are different. The reason is that C_{3h} introduces an additional symmetry to the angular momentum symmetry. Now we have two different $|3/2, 3/2\rangle$ functions. Those we may call bonding (invariants under σ_h) and those we call anti-bonding, that have a node at σ_h . Since the σ_h character of $|1/2, 1/2\rangle$ is -i, the one of $|1/2, 1/2\rangle^2$ is -1, i.e. anti-bonding, while the function $x + iy \equiv e^{i\phi}$ is invariant under σ_h (bonding). The bonding J = 1angular momentum functions are like the antibonding where X, Y, and Z are replaced by J_x, J_y , and J_z , e.g $|3/2, 3/2^a\rangle = -\frac{1}{\sqrt{2}}|(X + iY)\uparrow\rangle$ vs. $|3/2, 3/2^b\rangle = -\frac{1}{\sqrt{2}}|(J_x + iJ_y)\uparrow\rangle$. Next we enclose the complete character table.

\bar{C}_{3h}	E	C_3^+	C_3^-	σ_h	S_3^+	S_3^-	\bar{E}	\bar{C}_3^+	\bar{C}_3^-	$\bar{\sigma}_h$	\bar{S}_3^+	\bar{S}_3^-	basis
K1	1	1	1	1	1	1	1	1	1	1	1	1	J_z
K2	1	ω	ω^*	1	ω	ω^*	1	ω	ω^*	1	ω	ω^*	x + iy
K3	1	ω^*	ω	1	ω^*	ω	1	ω^*	ω	1	ω^*	ω	x - iy
K4	1	1	1	-1	-1	-1	1	1	1	-1	-1	-1	z
K5	1	ω	ω^*	-1	$-\omega$	$-\omega^*$	1	ω	ω^*	-1	$-\omega$	$-\omega^*$	$J_x + iJ_y$
K6	1	ω^*	ω	-1	$-\omega^*$	$-\omega$	1	ω^*	ω	-1	$-\omega^*$	$-\omega$	$J_x - iJ_y$
K7	1	$-\omega$	ω^*	i	$-i\omega$	$i\omega^*$	-1	ω	$-\omega^*$	-i	$i\omega$	$-i\omega^*$	$J_{-1/2}$
K8	1	$-\omega^*$	ω	-i	$i\omega^*$	$-i\omega$	$^{-1}$	ω^*	$-\omega$	i	$-i\omega^*$	$i\omega$	$J_{1/2}$
K9	1	$-\omega$	ω^*	-i	$i\omega$	$-i\omega^*$	$^{-1}$	ω	$-\omega^*$	i	$-i\omega$	$i\omega^*$	
K10	1	$-\omega^*$	ω	i	$-i\omega^*$	$i\omega$	-1	ω^*	$-\omega$	-i	$i\omega^*$	$-i\omega$	
K11	1	-1	1	i	-i	i	$^{-1}$	1	-1	-i	i	-i	
K12	1	-1	1	-i	i	-i	-1	1	$^{-1}$	i	-i	i	

and the table of products of irreps.

	K	K.	K.	K.	$K_{\rm c}$	K.	K.	K_{\cdot}	K_{\cdot}	K	K	$K_{\pm\pm}$
	Λ_1	Λ_2	Λ_3	Λ_4	Λ_5	Λ_6	Λ_7	Λ8	N 9	Λ_{10}	N ₁₁	Λ_{12}
K_1	K_1	K_2	K_3	K_4	K_5	K_6	K_7	K_8	K_9	K_{10}	K_{11}	K_{12}
K_2		K_3	K_1	K_5	K_6	K_4	K_{10}	K_{12}	K_8	K_{11}	K_7	K_9
K_3			K_2	K_6	K_4	K_5	K_{11}	K_9	K_{12}	K_7	K_{10}	K_8
K_4				K_1	K_2	K_3	K_9	K_{10}	K_7	K_8	K_{12}	K_{11}
K_5					K_3	K_1	K_8	K_{11}	K_{10}	K_{12}	K_9	K_7
K_6						K_2	K_{12}	K_7	K_{11}	K_9	K_8	K_{10}
K_7							K_6	K_1	K_3	K_4	K_5	K_2
K_8								K_5	K_4	K_2	K_3	K_6
K_9									K_6	K_1	K_2	K_5
K_{10}										K_5	K_6	K_3
K_{11}											K_4	K_1
K_{12}												K_4

(15)