Table of Direct Products of Irreducible Representations

General Rules

$A \ge A = A$	$B \ge B = A^{\mathcal{I}}$	$A \ge B = B$
$A \ge E = E$	$A \ge E_1 = E_1$	$A \ge E_2 = E_2$
$B \ge E = E$	$B \ge E_1 = E_2$	$B \ge E_2 = E_1$
$A \ge T = T$	$B \ge T = T$	

Superscripts and Subscripts

Doubly degenerate representations[¶]

For C₃, C_{3h}, C_{3v}, D₃, D_{3h}, D_{3d}, C₆, C_{6h}, C_{6v}, D₆, D_{6h}, S₆, O, O_h, T, T_d, T_h $E_1 \ge E_2 \ge E_2 \ge A_1 + [A_2] + E_2$ $E_1 \ge E_2 = B_1 + [B_2] + E_1$

For C_4 , C_{4v} , C_{4h} , D_{2d} , D_4 , D_{4h} , S_4 $E \ge A_1 + [A_2] + B_1 + B_2$

(If no subscripts on A, B, or E, read as $A_1 = A_2 = A$ etc.)

Triply degenerate representations[¶]

For T_d , O, O_h $E \ge T_1 = E \ge T_2 = T_1 + T_2$ $T_1 \ge T_1 \ge T_2 \ge T_2 = A_1 + E + [T_1] + T_2$ $T_1 \ge T_2 = A_2 + E + T_1 + T_2$

Linear molecules $(C_{\infty\nu}, D_{\infty h})^{\P}$

 $\prod \mathbf{x} \Delta = \prod + \Phi$

[‡] Except in the groups D_2 and D_{2h} : $B_1 \ge B_2 \ge B_3$, $B_2 \ge B_3$, $B_3 \ge B_1$, $B_3 \ge B_1 = B_2$. [§] Except in the groups D_2 and D_{2h} : $_1 x_2 = _3, _2 x_3 = _1, _1 x_3 = _2$.

[¶]The direct product of a degenerate species with itself may be resolved into a symmetric direct product, and an anti-symmetric direct product. In vibrational spectroscopy, the symmetry species of the overtones of a degenerate fundamental are obtained from the symmetric direct products. In the determination of electronic terms, the symmetric and antisymmetric direct products for orbital angular momentum are taken with the appropriate spin functions to ensure that the total wave functions are anti-symmetric. The anti-symmetric component of the direct products are placed within [] in the table above.