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dl 
d 2  

9 1  
9 2  

X l  
2 2  
9 

Similarly the character of the antisymmetric part is 

1 1 1 1 1 1 1 
1 1 - 1  1 1 -1 -1 
4 0 0 1 - 1  - 1  2 
4 0 0 1 -1 1 -2 
5 1 - 1  -1 0 1 1 

1 1 - 1  0 -1 - 1  
6 -2 0 0 1 0 0 
5 

In  general it is found that the function x(R”) is generated from a cyclic permuta- 
tion of order n and that products of such functions correspond to compound 
permutation operations. In  the character tables of the permutation groups 
(9,J below, the elements have been denoted by the corresponding character 
functions preceded by the order of each class. The representations have been 
labelled in the notation of molecular spectroscopy as used in the isomorphic 
point groups [6-81. 

In  this form the component of a power of a representation which transforms as a 
given irreducible representation of a permutation group can be read off imme- 
diately using Equation (13). Thus the irreducible part of D5 spanning the 9 
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TABLE 11. The symmetrized cubes of the irreducible representations of 
non-centrosymmetric point groups. 

(Continued) 
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K 

likewise simplifies calculations, and the maximum value di = 5 (for an icosahed- 
ron) can only be exceeded in the case of truly spherical symmetry. 

The results for the centrosymmetric point groups and double point groups can 
be obtained by adding the appropriate {g, u}-subscripts to the representations 
of the point group obtained by deleting the inversion operation from the generat- 
ing elements. The results for the double-valued representations (Tables 5-7) 
were obtained without any additional theory, and have been included so that 
couplings of equivalent spins can be studied. Like the single-valued non-degener- 
ate representations, the double-valued B-type representations do not appear in the 
tables. 

5. Applications 

The symmetrized powers of group representations find uses in many branches 
of chemistry and physics, e.g, Landau and Lifshitz's theory of second-order phase 
transitions, vibrational spectroscopy, etc. The applications discussed here, however, 
will be confined to those relevant to quantum chemistry and are chosen to make 
use of the tables presented in this paper. 

A. Determination of spin states 
Configurations of equivalent spinning particles (i.e. electrons, nuclei, etc.) 

have definite permutation symmetry in that the wave function describing the spin 
state of the configuration must transform as an irreducible representation of the 
group of all allowed permutations of the particles. 

In the absence of strong spin-orbit coupling, each spin can be considered to be 
in a spherical environment, i.e. point symmetry K h .  According to Wigner, a 
function having spin quantum number CT will transform as the Do, representation 
of Kh ; CT is usually called S for electron spin and I for nuclear spin. The wave 
function of a configuration of n equivalent spins will span the nth power of the D,, 



732 L. L. BOYLE 

TABLE 111. The symmetrized fourth powers of the irreducible representations of 
non-centrosymmetric point groups. 

(Continued) 
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TABLE 111. (Continued) 

K 

G4 = { 2 A  4- + T2 + 3G + 4HI dl} + { A  I A,} 

+ { A  + G + 3 H J  r }  + {Tl + T, + G + HI y1} 
+ 3 { T 1  + 7'2 + G + H I  9 - 2 }  

H4  = {2A + 2 Tl + 2 T, + 4G + 8H 1 SB,} + { H  1 d2} 

+ {3A + Tl + T2 + 4G + 5HI r }  + { 3 T 1  + 3T2  + 3G 
+ 3HI TI} + { A  + 67'1 + 6T2 + 7G + 8HI T 2 }  

0: = {Do + D, + 0 4  I A l l  + {Do + D2 I "} + {Dl I Tl} 
+ {Dl + D2 + D3 I 9 - 2 1  

Dl = {DO + 2 0 ,  + 2 0 ,  + D5 + D6 + D, I Al} + {D2  I d2} 

+ ( 2 4  + 202  + 4 + 2 0 4  + D6 I "} 
+ (201 + 4 + ZD3 + D4 + D5 I Fl} + ( 2 0 ,  + 3 0 ,  + 2 0 ,  
+ 2 0 5  + D, + D, I F2} 

............................................................ 

representation of Kh . The reduction of this generally reducible representation 
can be found in one of the Tables 11-VII for n = 3,4, 5. 

As an example, four equivalent particles of spin 4 may be considered. These 
could be the four protons in methane or the four electrons in a p4 configuration. 
According to Table VI, where the expression for the non-centrosymmetric group 
K can be found 

i.e. the set forms one quintet, two singlets and three triplets. So much could have 
been deduced by drawing little arrows but this analysis shows directly that the 
two singlets form a permutationally degenerate pair, while the three triplets 
have a triple permutational degeneracy of type Y 2  (permutation group 8,, 
isomorphic with Fd). The permutation symmetry affects the mutual interaction 
energy of the spins and as such the allowed permutational states should obey the 
centre-of-gravity rule, the weighting factors being the permutational degeneracies. 
Any interaction of the spins with external magnetic fields should be independent 
of the permutation symmetry and depend only on the spin angular momentum. 
Further, transitions within Zeeman-split states should conserve the permutation 
symmetry. Both of these ideas are supported experimentally by the fact that the 
nuclear magnetic resonance spectrum of gaseous methane contains only one line. 
Discussion of electron spins must be preceded by the following discussion of orbital 
degeneracy. 

B. Construction of atomic states 
In an entirely analogous manner to that of the previous discussion on spin 

degeneracies, configurations of equivalent electrons having orbital degeneracy 
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TABLE IV. The symmetrized fifth powers of the irreducible representations of 
non-centrosymmetric point groups. 

(Continued) 
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TABLE IV. (Continued) 

Z 

K 
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TABLE V. The symmetrized cubes of the double-valued representations of 
non-centrosymmetric double groups. 

(Continued) 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

may be described by wave functions having definite permutation symmetry. 
The point group relevant to an atom is the spherical group Kh . The irreducible 
representation of this group for which the (s, p ,  d, f, * - .> orbital functions are 
bases are respectively {Dog ,  D,, , DZg , D3, , - * ->. The spatial wave function of 
a p4 configuration will therefore appear to be of symmetry D:, which from Table 
I11 is 

(24) Of ,  = {Dog + D,, + D4g I + {Dog + D20 I S> {Die I Ti} 
+ {Dl, + D2g + D39 I T 2 )  

However, the Pauli exclusion principle requires that the total wave function, which 
includes both space and spin co-ordinates, must be antisymmetric to interchange 
of two equivalent particles since molecules obey Fermi statistics. This antisym- 
metry is a permutational requirement and is simply that the permutational state 
must span the determinantally antisymmetric irreducible representation of the 
permutation group, i.e. d" of 8,, d2  of P3,  8, and g5.  To satisfy this 
requirement, the permutational representations spanned by the spatial and spin 
factors must be dual, i.e. contain the determinantally antisymmetric representa- 
tion in their product. Duality of two representations is denoted by the symbol * 
in Table VIII where all cases relevant to this paper are listed. 

The d" or d2 representation never occurs more than once in the product 
of two irreducible representations so that the precise number of allowed states 
can now be determined for the p4 configuration under discussion. The calculation 
may be presented as in Table IX where the first column denotes the possible 
symmetry of the spin functions, the second that of the corresponding spatial 
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TABLE VI. The symmetrized fourth powers of the double-valued representations 
of non-centrosymmetric point groups. 

(Continued) 
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TABLE VI. (Continued) 

k“ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

function with dual permutation symmetry, and the third column the resulting 
states where {S, , P ,  , D, , F, , * * .} have been written for orbital { D o g ,  D1,, D2,, 
Dsg , *}  states and the spin multiplicity, 2S + 1, has been denoted as a super- 
script. 

I t  is to be noted that the quintet spin state was automatically omitted because 
there was no orbital state with d2  permutation symmetry: this can be justified 
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TABLE VII. The symmetrized fifth powers of the double-valued representations 
of non-centrosymmetric double groups. 

C ;  

c;, 9 DB 
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TABLE VII. (Continued) 
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TABLE VII. (Continued) 

both physically and by the discussion following Equation (22) of this paper. 
Further, the method has given the same results as would be obtained for ap2 config- 
uration, justifying the “equivalence of hole and particle” formalism which is 
often useful though, strictly speaking, unnecessary. Further, the method is appli- 
cable to electronic states which cannot be thought of as isomorphic to an atomic 
angular momentum state so that it is more generally applicable than Slater’s 
“method of sums”. The latter is important historically, however, since it dates 
back to 1929, i.e. before group theory was in vogue. 

C .  Conzgurations of strongly spin-orbit coupled electrons 
The simplest example of this calculation is to consider the e3 configuration 

in tetrahedral symmetry, knowing the result must be the same as for the e l  config- 
uration. In  the absence of spin-orbit coupling, the calculation gives from Tables 
V a n d  I1 

(26) E 3  = ( 2 A  + E I d1} + { E  1 8} 
and by reference to Table VIII  the only duality present is the self-duality of 
the & representation of g 3 ( = W 3 J ,  hence the only allowed state is 2E. If there is 

TABLE VIII. Dual representations of permutation groups. 

Isomorphic point 
Permutation group groupa Dualities 

9 2  
9 3  

9 4  

4 

‘1, d’ t+ d” 
v 3 v  dl t-) d2 ; I self-dual 
F a  @ ‘ I t - )  d2 ; I self-dual 
99 dl t ,  d 2  ; 3,- ’ 2  ; 2 1 -  P2  ; 

9 self-dual 

a 9f is a four-dimensional point group. See Bibliography [7] for further details. 




