

Symmetry in the man-made creations

Portada > Ciencia

ESTUDIO PUBLICADO EN 'PNAS'

El 'sex appeal', cuestión de simetría

Actualizado miércoles 20/08/2008 19:30 (CET)
ROSA M. TRISTÁN
MADRID.- La simetria corporal es un valor añadido fundamental para tener 'sex appeal'. Si es un varón, esa simetría debe incluir un torso grande, buenos hombros, pechos pequeños, piernas fuertes y una altura aceptable. En el caso femenino triunfan las piernas largas, el pecho considerable, hombros pequeños y una proporción cintura-cadera determinada.

Estas caracteristicas no son fortuitas ni se trata de modas. Estan directamente relacionadas con el potencial reproductor, la calidad de los genes, la capacidad competitiva y la salud, incluyendo la facultad para evitar a los parásitos con más facilidad.

Estas son las principales conclusiones de un exhaustivo

análisis realizado por expertos británicos en psicologia
evolutiva de la Universidad de Brunel (en Reino Unido), publicadas esta semana en la revista Proceedings of National Academy of Science (PNAS).

Paul Dirac
«The dominating idea in this application of mathematics to physics is that the equations representing the laws of motion should be of a simple form. The whole success of the scheme is due to the fact that equations of simple form do seem to work....

We now see that we have to change the principle of simplicity into a principle of mathematical beauty ... It often happens that the requirements of simplicity and of beauty are the same, but where they clash the latter must take precedence.»

Symmetry implies simplicity

Conservation laws and symmetries formulations:

The conservation of energy = uniformity of time.The conservation of linear momentum = homogeneity of space.The conservation of angular momentum = isotropy of space.
Teorema de Noether

Any symmetry of a physical system is associated with a physical quantity that is conserved in this system

This theorem allows to derive the conserved physical quantity from the condition of invariance which defines the symmetry. It also works in the opposite direction.

Example: (a) the invariance of physical systems with respect to spatial translation (translational symmetry) implies the conservation of linear momentum. (b) If the momentum of a system is conserved, this system must be invariant under spatial translations.

The set of the numerical values corresponding to compatible observables (invariants) defines the quantum state of a system

The quantum state of a system is labeled by the symmetry of its Hamiltonian

Nobel de Física 1957
«If you look at the history of 20th century physics, you will find that the symmetry concept has emerged as a most fundamental theme, occupying center stage in today's theoretical physics. We cannot tell what the 21st century will bring to us but I feel safe to say that for the next ten or twenty years many theoretical physicists will continue to try variations on the fundamental theme of symmetry at the very foundation of our theoretical understanding of the structure of the physical universe.»

«What an imperfect word it would be if every symmetry was perfect.»

B.G. Wybourne

Most of the symmetries of physics (and art) are not exact but are approximate ... Despite the fact that most of the dynamic symmetries are not exact, they provide us with the best tool we have for understanding complex structures.

Francesco Iachello

The Physics comes in the process of breaking the symmetry
B.G. Wybourne

Ninth Intl. School of Condensed Matter Physics,
Bialowieza 1995

- 1.3 Broken symmetry

In practice very few symmetries are 'exact' and in most cases we are led to consider 'approximate' symmetries. A symmetry need not be exact to be useful. Indeed I would assert the following:
Proposition: We should always strive to construct theories with the highest possible symmetry even if these are not exact symmetries of nature. The physics comes in the process of breaking the symmetry.

Outline of the course: Linear representations of groups.
Irreducible representations. Character tables.
Basis sets for a group representation: Normal modes.
Hybrid orbitals. Molecular orbitals.
Permutation group. Continuous Groups.
Products and powers of representations.
Selection rules. Electronic terms. Multipoles.
Dynamic groups...

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 1: Linear Representations of a Group

Josep Planelles
Dpt. Química Física i Analítica
Universitat Jaume I

Contents

1. Transformations of a system. Group. Group Table.
2. Group isomorphism. Homomorphism.
3. Conjugate elements and equivalence classes
4. Linear representation of a group
5. Equivalent representations. Unitary representations.
6. Reducible and irreducible representations
7. Basis for a group representation
8. Invariant vector spaces.
9. Irreducible representations. Character.
10. Theorems. Character Tables.

Group of transformations

The transformations that leave invariant a system (symmetries) form a group.

A group is a set, G, together with a composition law "•" fulfilling:
-Closure: $\forall a, b \in G, a \bullet b \in G$
\cdot Associative: $\forall a, b, c \in G,(a \bullet b) \bullet c=a \bullet(b \bullet c)$
\cdot Identity: $\forall a \in G, \exists e \in G / e \bullet a=a \bullet e=a$
\cdot Inverse: $\forall a \in G$, $\exists b \in G / a \bullet b=b \cdot a=e$
we say $b=a^{-1}$

An Abelian or commutative group is a group (G, \bullet) additionally fulfilling:
-Commutative: $\forall a, b \in G, a \bullet b=b \cdot a$

Group Table

The group structure can be grasped in the group or Cayley table.

Example.

| | E | A | B | |
| :---: | :---: | :---: | :---: | :--- | :--- |
| E | $E \cdot E$ | $E \cdot A$ | $E \cdot B$ | |
| A | $A \cdot E$ | $A \cdot A$ | $A \cdot B$ | |
| B | $B \cdot E$ | $B \cdot A$ | $B \cdot B$ | |$\quad \rightarrow$

	E	A	B
E	E	A	B
A	A	B	E
B	B	E	A

Caution! Left first and right then, the product may be not commutative

Subgroups

Subgroup: A subset $\boldsymbol{H} \subset G$ is called a subgroup of (G, \bullet) if (H, \bullet) is a group.
\boldsymbol{H} is a proper subgroup of a group \boldsymbol{G} if $\boldsymbol{H} \neq \boldsymbol{G}$.
H is a trivial subgroup of a group G if $H=\{E\}$
\boldsymbol{G} is sometimes called an overgroup (or supergroup) of \boldsymbol{H}

	E	C_{3}^{1}	C_{3}^{2}	σ_{1}	σ_{2}	σ_{3}
E	E	C_{3}^{1}	C_{3}^{2}	σ_{1}	σ_{2}	σ_{3}
C_{3}^{1}	C_{3}^{1}	C_{3}^{2}	E	σ_{3}	σ_{1}	σ_{2}
C_{3}^{2}	C_{3}^{2}	E	C_{3}^{1}	σ_{2}	σ_{3}	σ_{1}
σ_{1}	σ_{1}	σ_{2}	σ_{3}	E	C_{3}^{1}	C_{3}^{2}
σ_{2}	σ_{2}	σ_{3}	σ_{1}	C_{3}^{2}	E	C_{3}^{1}
σ_{3}	σ_{3}	σ_{1}	σ_{2}	C_{3}^{1}	C_{3}^{2}	E

$C_{3 v}$ proper subgroups:
$\{\boldsymbol{E}\},\left\{\boldsymbol{E}, \boldsymbol{C}_{3}{ }^{l}, \boldsymbol{C}_{3}{ }^{2}\right\},\left\{\boldsymbol{E}, \sigma_{I}, \sigma_{2}, \sigma_{3}\right\}$

Homomorphism (for pedestrian)

Homomorphism is like a movie:
you cannot see all but you can grasp what is going on...

Group isomorphism. Homomorphism

Homomorphism: is a map $h: G \rightarrow H$ between two groups $(G, *)$ and (H, \bullet) preserving the multiplication law, i.e., fulfilling: $h\left(u^{*} v\right)=h(u) \cdot h(v)$

Example: $\left\{\mathrm{E}, \mathrm{C}_{4}^{2}, \sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}\right\}$ and $\left\{\mathrm{E}, \sigma_{\mathrm{x}}\right\}$ are homomorphous

The mapping: $\mathrm{E}, \mathrm{C}_{4}^{2} \leftrightarrow \mathrm{E} ; \sigma_{\mathrm{x}}, \sigma_{\mathrm{v}} \leftrightarrow \sigma_{\mathrm{x}}$ preserves the
multiplication law: $\quad \mathrm{C}_{4}^{2} \cdot \sigma_{\mathrm{x}}=\sigma_{\mathrm{y}}, \mathrm{E} \cdot \sigma_{\mathrm{x}}=\sigma_{\mathrm{x}}$

$$
\mathrm{C}_{4}^{2} \cdot \sigma_{\mathrm{y}}=\sigma_{\mathrm{x}}, \mathrm{E} \cdot \sigma_{\mathrm{x}}=\sigma_{\mathrm{x}}
$$

Isomorphism: is an isomorphic or bijective homomorphism

Two groups with the same Cayley table are isomorphic

Conjugate elements and equivalence classes

Two elements a and b of G are called conjugate if $\exists g \in G: g a g^{-1}=b$
Conjugacy "~" is an equivalence relation, i.e.
-Reflexivity: $a \sim a$
-Symmetry: if $a \sim b$, then $b \sim a$
proof: $a \sim b \rightarrow g a g^{-1}=b ; \rightarrow g^{-1} g a g^{-1} g=a=g^{-1} b g=c b c^{-1} \longrightarrow b \sim a$
-Transitivity: if $a \sim b$ and $b \sim c$ then $a \sim c$

Conjugacy makes a partition of G into equivalence classes.
-Every element of class is a member of this and only this class.
-Identity forms a class by himself $\mathrm{A} \sim \mathrm{E} \leftrightarrow \mathrm{A}=\mathrm{T}^{-1} \cdot \mathrm{E} \cdot \mathrm{T}=\mathrm{T}^{-1} \cdot \mathrm{~T}=\mathrm{E} \rightarrow \mathrm{A}=\mathrm{E}$
-All classes of Abelian groups contains only an element
proof: $\mathrm{A} \sim \mathrm{B} \leftrightarrow \mathrm{A}=\mathrm{T}^{-1} \cdot \mathrm{~B} \cdot \mathrm{~T}=\mathrm{T}^{-1} \cdot \mathrm{~T} \cdot \mathrm{~B}=\mathrm{E} \cdot \mathrm{B}=\mathrm{B} \rightarrow \mathrm{A}=\mathrm{B}$

$\mathrm{C}_{3 \mathrm{v}}$ classes

$C_{3 v}$ contains three equivalence classes: $E, 2 C_{3}, 2 \sigma$

$$
\begin{array}{c|cccccc}
& \mathrm{E} & \mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{2} & \sigma_{1} & \sigma_{2} & \sigma_{3} \\
\hline \mathrm{E} & \mathrm{E} & \mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{2} & \sigma_{1} & \sigma_{2} & \sigma_{3} \\
\mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{2} & \mathrm{E} & \sigma_{3} & \sigma_{1} & \sigma_{2} \\
\mathrm{C}_{3}^{2} & \mathrm{C}_{3}^{2} & \mathrm{E} & \mathrm{C}_{3}^{1} & \sigma_{2} & \sigma_{3} & \sigma_{1} \\
\sigma_{1} & \sigma_{1} & \sigma_{2} & \sigma_{3} & \mathrm{E} & \mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{2} \\
\sigma_{2} & \sigma_{2} & \sigma_{3} & \sigma_{1} & \mathrm{C}_{3}^{2} & \mathrm{E} & \mathrm{C}_{3}^{1} \\
\sigma_{3} & \sigma_{3} & \sigma_{1} & \sigma_{2} & \mathrm{C}_{3}^{1} & \mathrm{C}_{3}^{2} & \mathrm{E}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{E}^{-1} \cdot \mathrm{C}_{3}^{1} \cdot \mathrm{E}=\mathrm{C}_{3}^{1} \quad \mathrm{E}^{-1} \cdot \sigma_{1} \cdot \mathrm{E}=\sigma_{1} \\
& \mathrm{C}_{3}^{1-1} \cdot \mathrm{C}_{3}^{1} \cdot \mathrm{C}_{3}^{1}=\mathrm{C}_{3}^{1} \quad \mathrm{C}_{3}^{1-1} \cdot \sigma_{1} \cdot \mathrm{C}_{3}^{1}=\sigma_{3} \\
& \mathrm{C}_{3}^{2-1} \cdot \mathrm{C}_{3}^{1} \cdot \mathrm{C}_{3}^{2}=\mathrm{C}_{3}^{1} \mathrm{C}_{3}^{2-1} \cdot \sigma_{1} \cdot \mathrm{C}_{3}^{2}=\sigma_{2} \\
& \sigma_{1}{ }^{-1} \cdot \mathrm{C}_{3}^{1} \cdot \sigma_{1}=\mathrm{C}_{3}^{2} \sigma_{1}{ }^{-1} \cdot \sigma_{1} \cdot \sigma_{1}=\sigma_{1} \\
& \sigma_{2}{ }^{-1} \cdot \mathrm{C}_{3}^{1} \cdot \sigma_{2}=\mathrm{C}_{3}^{2} \sigma_{2}^{-1} \cdot \sigma_{1} \cdot \sigma_{2}=\sigma_{3} \\
& \sigma_{3}{ }^{-1} \cdot \mathrm{C}_{3}^{1} \cdot \sigma_{3}=\mathrm{C}_{3}^{2} \sigma_{2}{ }^{-1} \cdot \sigma_{1} \cdot \sigma_{3}=\sigma_{1}
\end{aligned}
$$

Linear representation of a group

correspondence

correspondences:

$$
E=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad C_{3}^{1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \quad C_{3}^{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \quad \sigma_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad \sigma_{3}=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \sigma_{2}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

e.g.

$\equiv\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]=\left[\begin{array}{l}2 \\ 3 \\ 1\end{array}\right]$

[^0]

But ... what is a group representation?
What is to represent a group?

To represent a group is to establish a homomorphism between a group G and a group of operators $T(G)$. These operators $T(G)$ acquire matrix form when we represent them in a n-dimensional linear space V.

Warning! The set of matrices T not necessarily form a group. (different elements of G may have the same matrix representation T).

Equivalent representations of a group

M is the the matrix of the change-of-basis
G represents an automorphism
$\mathrm{G}^{\prime}=\mathrm{M} \mathrm{G} \mathrm{M}^{-1}$ is the same automorphism represented in the new basis
G and G^{\prime} are equivalent

Reducible and irreducible representations

$E=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] \quad C_{3}^{1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos 120 \operatorname{sen} 120 \\ 0 & -\operatorname{sen} 120 \cos 120\end{array}\right] \quad$ etc.

The (3×3) matrix representation is equivalent to the set of two smaller (1×1) and (2×2) matrix representations

In general:

$$
\left(\begin{array}{ccc}
\begin{array}{l}
\frac{T^{(1)}(A) \mid}{T^{(2)}(A)} \\
\underline{T^{(3)}(A)}
\end{array} & 0 \\
0 & \ldots
\end{array}\right) \begin{aligned}
& T(A)=a_{1} D^{1}(A) \oplus a_{2} D^{2}(A) \oplus \ldots=\sum_{\mu} a_{\mu} D^{\mu}(A) \\
& V(A)=V^{1}(A) \oplus V^{2}(A) \oplus \ldots=\sum_{\mu} V^{\mu}(A)
\end{aligned}
$$

Unitary representations

Orthogonal basis sets

$\mathrm{B}_{1} \quad\{|i\rangle\}$
$\langle i \mid j\rangle=\delta_{i j}$
$1=\sum_{i=1}^{N}|i\rangle\langle i|$
$\mathrm{B}_{2} \quad\{|\alpha\rangle\}$
$\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}$
$1=\sum_{\alpha=1}^{N}|\alpha\rangle\langle\alpha|$

Changing the basis set
$|\alpha\rangle=1|\alpha\rangle=\sum_{i}|i\rangle\langle i \mid \alpha\rangle=\sum_{i}|i\rangle U_{i \alpha}=\sum_{i}|i\rangle(\mathbf{U})_{i \alpha}$
$|i\rangle=1|i\rangle=\sum_{\alpha}{ }^{i}|\alpha\rangle\langle\alpha \mid i\rangle=\sum_{\alpha}^{i}|\alpha\rangle U_{i \alpha}^{*}=\sum_{\alpha}^{i}|\alpha\rangle\left(\mathbf{U}^{\dagger}\right)_{\alpha i}$
The basis sets transformation \boldsymbol{U} is unitary
$\delta_{i j}=\langle i \mid j\rangle=\sum_{\alpha}\langle i \mid \alpha\rangle\langle\alpha \mid j\rangle=\sum_{\alpha}(\mathbf{U})_{i \alpha}\left(\mathbf{U}^{\dagger}\right)_{\alpha j}=\left(\mathbf{U U}^{\dagger}\right)_{i j}$

We will chose orthogonal basis sets. We will always chose unitary representations

Reducible and Irreducible Representations

- If for a given representation $\left\{\mathcal{D}\left(g_{i}\right): i=1, \ldots, h\right\}$, an equivalent representation $\left\{\mathcal{D}^{\prime}\left(g_{i}\right): i=1, \ldots, h\right\}$ can be found that is block diagonal

$$
\mathcal{D}^{\prime}\left(g_{i}\right)=\left(\begin{array}{cc}
\mathcal{D}_{1}^{\prime}\left(g_{i}\right) & 0 \\
0 & \mathcal{D}_{2}^{\prime}\left(g_{i}\right)
\end{array}\right) \quad \forall g_{i} \in \mathcal{G}
$$

then $\left\{\mathcal{D}\left(g_{i}\right): i=1, \ldots, h\right\}$ is called reducible, otherwise irreducible.

- It is crucial that the same block diagonal form is obtained for all representation matrices $\mathcal{D}\left(g_{i}\right)$ simultaneously.
- Block-diagonal matrices do not mix, i.e., if $\mathcal{D}^{\prime}\left(g_{1}\right)$ and $\mathcal{D}^{\prime}\left(g_{2}\right)$ are block diagonal, then $\mathcal{D}^{\prime}\left(g_{3}\right)=\mathcal{D}^{\prime}\left(g_{1}\right) \mathcal{D}^{\prime}\left(g_{2}\right)$ is likewise block diagonal. \Rightarrow Decomposition of RRs into IRs allows one to decompose the problem into the smallest subproblems possible.

Decomposition of a reducible representation

A representation $\Gamma^{(f)}$ can be reduced or decomposed into a sum of representations if there exist a non-singular matrix A that turns every $\Gamma^{(f)}$ matrix in an equivalent block matrix form, i.e.,

$$
\forall \hat{R} \in \mathcal{G} \quad \underline{\mathrm{AD}}^{(f)}\left(\hat{{ }^{(f)}}\right) \underline{\mathrm{A}}^{-1}=\left(\begin{array}{cccc}
\underline{\underline{\mathrm{D}}}^{(a)}(\hat{R}) & \underline{\underline{0}} & \cdots & \underline{0} \\
\underline{\underline{0}} & \underline{\underline{\mathrm{D}}}^{(b)}(\hat{R}) & \cdots & \underline{\underline{0}} \\
\vdots & \vdots & \ddots & \vdots \\
\underline{\underline{0}} & \underline{\underline{0}} & \cdots & \underline{\underline{D}}^{(z)}(\hat{R})
\end{array}\right)
$$

This equivalence transformation reduces $\Gamma^{(f)}$ into a direct sum of representations $\Gamma^{(a)}, \Gamma^{(b)} \ldots \Gamma^{(z)}$:

$$
\Gamma^{(f)}=\Gamma^{(a)} \oplus \Gamma^{(b)} \oplus \ldots \oplus \Gamma^{(z)}
$$

The representations that cannot by simplified this way are referred to as irreducible representations (irreps)

Character of a representation

How can we characterize equivalent representations?

Hint: the trace of a matrix is invariant under equivalence transformations
\longrightarrow The character of two equivalent representations is the same
(The character $\chi^{\mu}(R)$ is trace of the representation μ of the symmetry element R)
Proof:
Equivalent transformation: $\mathrm{T}^{\prime}(\mathrm{A})=\mathrm{S}^{-1} \cdot \mathrm{~T}(\mathrm{~A}) \cdot \mathrm{S} \quad$ Character: $\quad \chi^{\prime}(\mathrm{A})=\sum_{\mathrm{i}} \mathrm{T}_{\mathrm{ii}}^{\prime}(\mathrm{A})$
$\mathrm{T}_{\mathrm{ii}}^{\prime}(\mathrm{A})=\sum_{\mathrm{kl}} \mathrm{S}_{\mathrm{ik}}^{-1} \cdot T_{\mathrm{kl}}(A) \cdot \mathrm{S}_{\mathrm{li}}$

$$
\begin{aligned}
\longrightarrow \chi^{\prime}(A) & =\sum_{i} \sum_{k l} S_{i k}^{-1} \cdot T_{k l}(A) \cdot S_{l i}=\sum_{k l} T_{k l}(A) \sum_{i} S_{l i} \cdot S_{i k}^{-1}= \\
& =\sum_{k l} T_{k l}(A) \cdot \delta_{k l}=\sum_{k} T_{k k}(A)=\chi(A)
\end{aligned}
$$

Corollary: The conjugate elements (those in the same class) have the same character.

Character Tables

The decomposition of a group into non-equivalent irreps and into equivalence classes is unique.

Character table of a group: is a table containing all characters of nonequivalent irreps of a group, where the irreps (Γ^{i}) label the rows and the classes (C_{j}) the columns.

$\mathrm{C}_{3 \mathrm{v}}$ Character Table

$\mathrm{d}_{\mathrm{xy}}, \mathrm{d}_{\mathrm{xz}}, \mathrm{d}_{\mathrm{yz},}$ as $\mathrm{xy}, \mathrm{xz}, \mathrm{yz}$
$d_{x-y}^{2}{ }^{2}$ behaves as $x^{2}-y^{2}$
d_{z}^{2} behaves as $2 z^{2}-\left(x^{2}+y^{2}\right)$
$\mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{p}_{\mathrm{z}}$ behave as $\mathrm{x}, \mathrm{y}, \mathrm{z}$
s behaves as $x^{2}+y^{2}+z^{2}$

The Great Orthogonality Theorem

Let $\Gamma^{(f)}$ and $\Gamma^{(g)}(\mathbb{R})$ any two irreps of a group G of h elements, then:

$$
\sum_{\hat{R}} D_{i j}^{(f)}(\hat{R}) D_{k l}^{(g)}\left(\hat{R}^{-1}\right)=\frac{h}{d_{f}} \delta_{f g} \delta_{i l} \delta_{j k}
$$

where the sum is extended to all group elements and d_{f} is the dimension of $I^{[f)}$.
Using unitary representation: $D_{k l}\left(\hat{R}^{-1}\right)=D_{l k}^{*}(\hat{R})$

Corollary: The Little Orthogonality Theorem (row orthogonality)

$$
\sum_{\hat{R} \in \mathcal{G}} \chi^{(f)}(\hat{R})\left[\chi^{(g)}(\hat{R})\right]^{*} \equiv \sum_{i} \eta_{i} \chi_{i}^{(f)} \chi_{i}^{(g) *}=h \delta_{f g}
$$

where η_{i} is the dimension of i-th class.

The Great Orthogonality Theorem (cont.)

Column orthogonality in the character table: $\sum_{f} \chi_{i}^{(f)}\left[\chi_{j}^{(f)}\right]^{*}=\frac{h}{\eta_{i}} \delta_{i j}$
Square in a row of the character table: $\quad \sum_{\hat{R}}|\chi(\hat{R})|^{2}=\sum_{i} \eta_{i}\left|\chi_{i}\right|^{2}=h$.

Another relevant corollary: Decomposition of a reducible representation as a sum of irreps:

$$
\Gamma=\sum_{f} a_{f} \Gamma^{(f)} \longrightarrow a_{f}=\frac{1}{h} \sum_{\hat{R} \in \mathcal{G}} \chi(\hat{R}) \chi^{(f) *}(\hat{R})=\frac{1}{h} \sum_{i}^{\text {classes }} \eta_{i} \chi_{i} \chi_{i}^{(f) *}
$$

Mulliken notation

- One-dimensional irreducible representations are called A or B.
- The difference between A and B is that the character for a rotation Cn is always 1 for A and $\mathbf{- 1}$ for B.
- The subscripts 1, 2, 3 etc. are arbitrary labels.
- Subscripts g and u stands for gerade and ungerade, meaning symmetric or antisymmetric with respect to inversion.
- Superscripts 'and " denotes symmetry or antisymmetry with respect to reflection through a horizontal mirror plane.
- Two-dimensional irreducible representations are called E.
- Three-dimensional irreducible representations are called $\boldsymbol{T}(\boldsymbol{F})$.

In some groups there are couples of one-dimensional irreps complex conjugate of each other. Sometimes they are represented together as a two-dimensional irrep.

\mathcal{C}_{3}	\hat{E}	\hat{C}_{3}^{1}	\hat{C}_{3}^{2}	$\epsilon=e^{2 \pi i / 3}$	
A	1	1	1	z, R_{z}	$x^{2}+y^{2}, z^{2}$
E	$\left\{\begin{array}{cc}1 & \epsilon \\ 1 & \epsilon^{*} \\ \epsilon^{*}\end{array}\right\}$	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(y z, x z)$		

\mathcal{C}_{3}	\hat{E}	\hat{C}_{3}^{1}	\hat{C}_{3}^{2}	$\theta=2 \cos (2 \pi / 3)$	
A	1	1	1	z, R_{z}	$x^{2}+y^{2}, z^{2}$
E	2	θ	θ	$(x, y)\left(R_{x}, R_{y}\right)$	$\left(x^{2}-y^{2}, x y\right)(y z, x z)$

The character table of $C_{\infty v}$ and $D_{\infty \rho}$ employ the angular momentum notation:

$\left\|M_{L}\right\|$	0	1	2	3	\cdots
irrep	Σ	Π	Δ	Φ	\cdots

Example: The complete $\mathrm{C}_{4 \mathrm{v}}$ character table

These are basis functions for the irreducible representations. They have the same symmetry properties as the atomic orbitals with the same names.

The functions space as a basis set for irreps

How can we do a 45 degrees rotation on the sine function?

The functions space as a basis set for irreps

Rotating a function:

We define rotated function to the function which looks like the original when the original one is referred to the coordinates axes that have been backward rotated:

$$
\mathbf{O}_{R} f(x)=f\left(R^{-1} x\right)
$$

Rotating the functions vs. rotating its argument

$$
\begin{aligned}
& \text { O }{ }_{R} f(x)=f\left(R^{-1} x\right) \\
& f(x, y)=x^{2} y \\
& f(x, y)=x^{2} y=2 \\
& O_{\pi / 2} f(x, y)=f\left(R_{-\pi / 2}(x, y)\right)=f(-y, x)=(-y)^{2}(x)=y^{2} x
\end{aligned}
$$

Some examples of functions as basis for irreps

$C_{4 v}=\left\{E, 2 C_{4}(z), C_{2}(z), 2 \sigma_{v} 2 \sigma_{d}\right\}$ acting on $f(x, y)=x^{2} y$
$\hat{E}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$\hat{\mathrm{C}}_{4}^{1}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{y} \\ -\mathrm{x}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$

$$
\mathbf{o}_{\hat{E}} f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f\left(\hat{\mathbf{E}}\left[\begin{array}{l}
x \\
y
\end{array}\right]\right)=f\left(\left[\begin{array}{l}
x \\
y
\end{array}\right]\right.
$$

$\hat{\mathrm{C}}_{4}^{3}\left[\begin{array}{c}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}-\mathrm{y} \\ \mathrm{x}\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$\mathbf{o}_{\hat{C}_{4}^{1}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{C}_{4}^{3}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{c}-y \\ x\end{array}\right]\right)=y^{2} x \equiv g$
$\hat{C}_{2}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}-x \\ -y\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$\mathbf{O}_{\hat{C}_{4}^{3}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{C}_{4}^{1}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{c}y \\ -x\end{array}\right]\right)=-y^{2} x \equiv-g$
$\hat{\sigma}_{1}\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-x \\ y\end{array}\right]=\left[\begin{array}{cc}-1 & 0\end{array}\right]\left[\begin{array}{c}x \\ 0\end{array} 1\right]\left[\begin{array}{c}y\end{array}\right]$
$\mathbf{o}_{\hat{C}_{2}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{C}_{2}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{l}-x \\ -y\end{array}\right]\right)=-x^{2} y \equiv-f$
$\hat{\sigma}_{2}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{c}\mathrm{x} \\ -\mathrm{y}\end{array}\right]=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$\mathbf{O}_{\hat{\sigma}_{1}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{\sigma}_{1}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{c}-x \\ y\end{array}\right]\right)=x^{2} y=f$
$\hat{\sigma}_{3}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]=\left[\begin{array}{l}\mathrm{y} \\ \mathrm{x}\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$\hat{\sigma}_{4}\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]\left[\begin{array}{c}-\mathrm{y} \\ -\mathrm{x}\end{array}\right]=\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]\left[\begin{array}{l}\mathrm{x} \\ \mathrm{y}\end{array}\right]$
$\boldsymbol{O}_{\hat{o}_{2}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{\sigma}_{2}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{c}x \\ -y\end{array}\right]\right)=-x^{2} y \equiv-f$
$\mathbf{O}_{\hat{\sigma}_{3}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{\sigma}_{3}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{l}y \\ x\end{array}\right]\right)=y^{2} x \equiv g$
$\mathbf{O}_{\hat{\sigma}_{4}} f\left(\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\hat{\sigma}_{4}\left[\begin{array}{l}x \\ y\end{array}\right]\right)=f\left(\left[\begin{array}{l}-y \\ -x\end{array}\right]\right)=-y^{2} x \equiv-g$
$C_{4 v}$ acting on $g(x, y)=y^{2} x$
$\mathbf{O}_{\hat{\mathrm{E}}} \mathrm{g}=\mathrm{g} ; \mathbf{O}_{\hat{\mathrm{C}}_{4}^{1}} \mathrm{~g}=-\mathrm{f} ; \mathbf{O}_{\hat{\mathrm{C}}_{4}^{3}} \mathrm{~g}=\mathrm{f} ; \mathbf{O}_{\hat{C}_{2}} \mathrm{~g}=-\mathrm{g} ;$
$\mathbf{O}_{\hat{\sigma}_{1}} \mathrm{~g}=-\mathrm{g} ; \mathbf{O}_{\hat{\sigma}_{2}} \mathrm{~g}=\mathrm{g} ; \mathbf{O}_{\hat{\sigma}_{3}} \mathrm{~g}=\mathrm{f} ; \mathbf{O}_{\hat{\sigma}_{4}} \mathrm{~g}=-\mathrm{f}$
$\mathbf{O}_{\hat{\sigma}_{1}} \mathrm{~g}=-\mathrm{g} ; \mathbf{O}_{\hat{\mathrm{O}}_{2}} \mathrm{~g}=\mathrm{g} ; \mathbf{O}_{\hat{\mathrm{O}}_{3}} \mathrm{~g}=\mathrm{f} ; \mathbf{O}_{\hat{\sigma}_{4}} \mathrm{~g}=-\mathrm{f}$

$$
\begin{aligned}
& \mathbf{o}_{\hat{\mathrm{E}}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]=\left[\begin{array}{ll}
\mathbf{1} & 0 \\
\mathbf{0} & 1
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \quad \mathbf{O}_{\hat{\sigma}_{1}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{c}
\mathrm{f} \\
-\mathrm{g}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{1} & 0 \\
\mathbf{0} & -1
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{o}_{\hat{\mathrm{C}}_{4}^{1}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{c}
\mathrm{g} \\
-\mathrm{f}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & \mathbf{1} \\
-\mathbf{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{O}_{\hat{\mathrm{o}}_{2}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{c}
-\mathrm{f} \\
\mathrm{~g}
\end{array}\right]=\left[\begin{array}{cc}
-\mathbf{1} & 0 \\
\mathbf{0} & \mathbf{1}
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{O}_{\hat{\mathrm{C}}_{4}^{3}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{c}
-\mathrm{g} \\
\mathrm{f}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & -\mathbf{1} \\
\mathbf{1} & \mathbf{0}
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{O}_{\hat{\sigma}_{3}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right)\right)=\left[\begin{array}{l}
\mathrm{g} \\
\mathrm{f}
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{o}_{\hat{C}_{2}}\left(\left[\begin{array}{c}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{c}
-\mathrm{f} \\
-\mathrm{g}
\end{array}\right]=\left[\begin{array}{cc}
-\mathbf{1} & \mathbf{0} \\
\mathbf{0} & -\mathbf{1}
\end{array}\right]\left[\begin{array}{c}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right] \\
& \mathbf{O}_{\hat{\sigma}_{4}}\left(\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]\right)=\left[\begin{array}{l}
-\mathrm{g} \\
-\mathrm{f}
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{0} & -\mathbf{1} \\
-\mathbf{1} & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{f} \\
\mathrm{~g}
\end{array}\right]
\end{aligned}
$$

$$
\chi(\mathrm{E})=\mathbf{2}, \chi\left(\mathrm{C}_{4}^{1}\right)=\chi\left(\mathrm{C}_{4}^{3}\right)=\mathbf{0}, \chi\left(\mathrm{C}_{2}\right)=-\mathbf{2}, \chi\left(\sigma_{1}\right)=\chi\left(\sigma_{2}\right)=\chi\left(\sigma_{3}\right)=\chi\left(\sigma_{4}\right)=\mathbf{0}
$$

The p atomic orbitals as a basis set for $\mathrm{C}_{4 \mathrm{v}}$

$$
\left\{\begin{array}{l}
\mathrm{p}_{\mathrm{x}}=\mathrm{N}_{\mathrm{xy}}(\mathrm{r}) \sin \theta \cos \varphi \\
\mathrm{p}_{\mathrm{y}}=\mathrm{N}_{\mathrm{xy}}(\mathrm{r}) \sin \theta \sin \varphi \\
\mathrm{p}_{\mathrm{z}}=\mathrm{N}_{\mathrm{z}}(\mathrm{r}) \cos \theta
\end{array}\right.
$$

The coordinates (r, θ) are invariant under $C_{4 v}$
The p_{z} by itself forms a basis set for a fully
symmetric one-dimensional irrep of $C_{4 v}$

$C_{4 v}$ acting on the variable φ :

The p atomic orbitals as a basis set for $\mathrm{C}_{4 \mathrm{v}}$

$$
\begin{aligned}
& \hat{\mathrm{E}} \varphi=\varphi ; \hat{\mathrm{C}}_{4}^{1} \varphi=\frac{\pi}{2}+\varphi ; \hat{\mathrm{C}}_{4}^{3} \varphi=\frac{3 \pi}{2}+\varphi ; \hat{\mathrm{C}}_{2} \varphi=\pi+\varphi ; \\
& \hat{\sigma}_{1} \varphi=\pi-\varphi ; \hat{\sigma}_{2} \varphi=-\varphi ; \hat{\sigma}_{3} \varphi=\frac{\pi}{2}-\varphi ; \hat{\sigma}_{4} \varphi=\frac{3 \pi}{2}-\varphi .
\end{aligned}
$$

$\mathbf{O}_{\hat{\mathrm{E}}} \sin \varphi=\sin \varphi ;$
$\mathbf{o}_{\hat{C}_{4}} \sin \varphi=\sin \left[\hat{\mathrm{C}}_{4}^{3} \varphi\right]=\sin \left[\frac{3 \pi}{2}+\varphi\right]=-\cos \varphi ;$

$\mathbf{O}_{\hat{C}_{4}} \sin \varphi=\sin \left[\hat{C}_{4}^{3} \varphi\right]=\sin \left[\frac{3 \pi}{2}+\varphi\right]=-\cos \varphi ;$		$\mathbf{O}_{\hat{\sigma}_{1}}\left[\begin{array}{c}p_{\mathrm{x}} \\ \mathrm{p}_{\mathrm{y}}\end{array}\right]=\left[\begin{array}{c}-\mathrm{p}_{\mathrm{x}} \\ \mathrm{p}_{\mathrm{y}}\end{array}\right] ;$
$\mathbf{O}_{\hat{\mathrm{C}}}^{4} \operatorname{Son}^{\sin \varphi}=\sin \left[\hat{\mathrm{C}}_{4}^{1} \varphi\right]=\sin \left[\frac{\pi}{2}+\varphi\right]=\cos \varphi ;$	$\mathrm{O}_{\hat{\mathrm{E}}} \mathrm{P}_{\mathrm{p}}$	
$\mathbf{O}_{\hat{C}_{2}} \sin \varphi=\sin \left[\hat{\mathrm{C}}_{2} \varphi\right]=\sin [\pi+\varphi]=-\sin \varphi ;$		$\mathbf{O}_{\hat{\sigma}_{2}}\left[\begin{array}{c}p_{\mathrm{p}} \\ \mathrm{p}_{\mathrm{y}}\end{array}\right]=\left[\begin{array}{c}p_{\mathrm{x}} \\ -\mathrm{p}_{\mathrm{y}}\end{array}\right] ;$
$\begin{aligned} & \mathbf{O} \hat{\sigma}_{1} \sin \varphi=\sin \left[\hat{\sigma}_{1} \varphi\right]=\sin [\pi-\varphi]=\sin \varphi ; \\ & \mathbf{O} \hat{\sigma}_{2} \sin \varphi=\sin \left[\hat{\sigma}_{2} \varphi\right]=\sin [-\varphi]=-\sin \varphi ; \end{aligned}$,	
$\mathbf{O}_{\hat{\sigma}_{3}} \sin \varphi=\sin \left[\hat{\sigma}_{3} \varphi\right]=\sin \left[\frac{\pi}{2}-\varphi\right]=\cos \varphi$;	$\mathrm{C}_{4}-\mathrm{Pr}_{\mathrm{y}}=\left[\mathrm{P}_{\mathrm{x}}\right.$ -	
$\mathbf{O}_{\hat{\sigma}_{4}} \sin \varphi=\sin \left[\hat{\sigma}_{4} \varphi\right]=\sin \left[\frac{3 \pi}{2}-\varphi\right]=-\cos \varphi$.	$\left.\mathrm{O}_{\mathrm{C}_{2}} \mathrm{p}_{\mathrm{p}}\right]=\left[-\mathrm{p}_{\mathrm{y}}\right]$;	

The p atomic orbitals as a basis set for $C_{4 v}$

$$
\mathbf{o}_{\hat{\mathrm{E}}}\left[\begin{array}{l}
\mathrm{p}_{x} \\
\mathrm{p}_{\mathrm{y}}
\end{array}\right]=\left[\begin{array}{l}
\mathrm{p}_{x} \\
\mathrm{p}_{\mathrm{y}}
\end{array}\right] ;
$$

$\mathbf{O}_{\hat{\sigma}_{1}}\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{c}-p_{x} \\ p_{y}\end{array}\right] ;$
$\mathbf{o}_{\hat{C}_{4}^{1}}\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{c}p_{y} \\ -\mathrm{p}_{x}\end{array}\right] ;$
$\boldsymbol{O}_{\hat{\sigma}_{2}}\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{c}p_{x} \\ -p_{y}\end{array}\right] ;$
$\{x, y\}$ and $\left\{p_{x} p_{y}\right\}$ have same transformation properties
$\mathbf{o}_{\hat{C}_{4}^{3}}\left[\begin{array}{c}p_{x} \\ p_{y}\end{array}\right]=\left[\begin{array}{c}-p_{y} \\ p_{x}\end{array}\right] ;$
$\boldsymbol{o}_{\hat{\sigma}_{3}}\left[\begin{array}{l}p_{x} \\ p_{\mathrm{y}}\end{array}\right]=\left[\begin{array}{l}p_{\mathrm{y}} \\ \mathrm{p}_{\mathrm{x}}\end{array}\right] ;$
$\mathbf{o}_{\mathrm{C}_{2}}\left[\begin{array}{l}\mathrm{p}_{\mathrm{x}} \\ \mathrm{p}_{\mathrm{y}}\end{array}\right]=\left[\begin{array}{l}-\mathrm{p}_{\mathrm{x}} \\ -\mathrm{p}_{\mathrm{y}}\end{array}\right] ;$
$\mathbf{O}_{\hat{\sigma}_{4}}\left[\begin{array}{l}\mathrm{p}_{\mathrm{x}} \\ \mathrm{p}_{\mathrm{y}}\end{array}\right]=\left[\begin{array}{l}-\mathrm{p}_{\mathrm{y}} \\ -\mathrm{p}_{\mathrm{x}}\end{array}\right]$.

Symmetry of Atomic Orbitals

p_{x} orbitals have the same symmetry as x (positive in half the quadrants, negative in the other half).

$d_{x y}$ orbitals have the same symmetry as the function $x y$ (sign of the function in the four quadrants).

Angular part of atomic orbitals in Cartesian coordinates

$$
\begin{array}{ll}
p_{z}=N_{1}^{c} \frac{z}{r}=Y_{1}^{0} & \\
p_{x}=N_{1}^{c} \frac{x}{r}=\frac{1}{\sqrt{2}}\left(Y_{1}^{1}-Y_{1}^{-1}\right) & N_{1}^{c}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \\
p_{y}=N_{1}^{c} \frac{y}{r}=i \frac{1}{\sqrt{2}}\left(Y_{1}^{1}+Y_{1}^{-1}\right) & \\
d_{z^{2}}=N_{2}^{c} \frac{c z^{2}-r^{2}}{2 r^{2} \sqrt{3}}=Y_{2}^{0} & \\
d_{x z}=N_{2}^{c} \frac{x z}{r^{2}}=-\frac{1}{\sqrt{2}}\left(Y_{2}^{1}-Y_{2}^{-1}\right) & N_{2}^{c}=\left(\frac{15}{4 \pi}\right)^{1 / 2} \\
d_{y z}=N_{2}^{c} \frac{y z}{r^{2}}=\frac{i}{\sqrt{2}}\left(Y_{2}^{1}+Y_{2}^{-1}\right) & \\
d_{x y}=N_{2}^{c} \frac{x y}{r^{2}}=-\frac{i}{\sqrt{2}}\left(Y_{2}^{2}-Y_{2}^{-2}\right) & \\
d_{x^{2}-y^{2}}=N_{2}^{c} \frac{x^{2}-y^{2}}{2 r^{2}}=\frac{1}{\sqrt{2}}\left(Y_{2}^{2}+Y_{2}^{-2}\right) &
\end{array}
$$

Axial vectors as basis for irreps

An axial vector is a quantity that transforms like a vector under a proper rotation, but gains an additional sign flip under an improper rotation such as a reflection.

Axial vectors are represented as a cross product of two polar vectors:

$$
\vec{L}=\vec{r} \wedge \vec{p} \quad \vec{\omega}=\vec{r} \wedge \vec{v} / r^{2} \quad \vec{B}=\vec{\nabla} \wedge \vec{A}
$$

$$
R_{z}=P_{x} Q_{y}-P_{y} Q_{x}
$$

The components of an axial vector $\vec{R}=\vec{P} \wedge \vec{Q}$ are: $R_{x}=P_{y} Q_{z}-P_{z} Q_{y}$

$$
R_{y}=P_{z} Q_{x}-P_{x} Q_{z}
$$

Axial vectors as basis for irreps

$C_{3 v}=\left\{E, 2 C_{3}(z), 3 \sigma_{v}\right\}$ acting on $R_{z}=P_{x} Q_{y}-P_{y} Q_{x}$,

We assume that P and Q are polar vectors, i.e., transform like $r=(x, y, z)$

$$
E\left(R_{z}\right)=R_{z}
$$

$$
\sigma_{y z}\left(R_{z}\right)=\sigma_{y z} P_{x} \sigma_{y z} Q_{y}-\sigma_{y z} P_{y} \sigma_{y z} Q_{x}=-P_{x} Q_{y}-P_{y}\left(-Q_{x}\right)=-R z
$$

$$
C_{3}^{1}\left(R_{z}\right)=\left(P_{x} \cos \theta+P_{y} \sin \theta\right)\left(-Q_{x} \sin \theta+Q_{y} \cos \theta\right)-
$$

$$
=P_{x} Q_{y}-P_{y} Q_{x}=R_{z}
$$

The obtained characters are: $\chi^{\mu}(E)=1, \chi^{\mu}\left(C_{3}\right)=1, \chi^{\mu}\left(\sigma_{v}\right)=-1$, corresponding to the irrep A_{2}.

Operators as basis for irreps

An example: rotation of the $2 D$ kinetic energy operator: $\mathcal{H}=-\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)$

The Hamiltonian is invariant if $\mathscr{H}(\alpha, \beta)=\mathscr{H}(x, y)$

Let's consider a rotation $\theta[$ from (α, β) to $(x, y)]$

$\frac{\partial}{\partial \alpha}=\frac{\partial x}{\partial \alpha} \frac{\partial}{\partial x}+\frac{\partial y}{\partial \alpha} \frac{\partial}{\partial y}=\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y} ;$
$\frac{\partial^{2}}{\partial \alpha^{2}}=\frac{\partial}{\partial \alpha} \frac{\partial}{\partial \alpha}=\frac{\partial x}{\partial \alpha} \frac{\partial\left(\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}\right)}{\partial x}+\frac{\partial y}{\partial \alpha} \frac{\partial\left(\cos \theta \frac{\partial}{\partial x}+\sin \theta \frac{\partial}{\partial y}\right)}{\partial y}$
$\frac{\partial^{2}}{\partial \alpha^{2}}=\cos ^{2} \theta \frac{\partial^{2}}{\partial x^{2}}+2 \cos \theta \sin \theta \frac{\partial^{2}}{\partial x \partial y}+\sin ^{2} \theta \frac{\partial^{2}}{\partial y^{2}} ;$
$\frac{\partial^{2}}{\partial \beta^{2}}=\sin ^{2} \theta \frac{\partial^{2}}{\partial x^{2}}-2 \cos \theta \sin \theta \frac{\partial^{2}}{\partial x \partial y}+\cos ^{2} \theta \frac{\partial^{2}}{\partial y^{2}}$
$\mathcal{O}_{R_{z}}(\theta)[\mathcal{H}(x, y)]=\mathcal{H}(x, y)$
$\frac{\partial^{2}}{\partial \alpha^{2}}+\frac{\partial^{2}}{\partial \beta^{2}}=\left(\cos ^{2} \theta+\sin ^{2} \theta\right)\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)=\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}} ; \quad \longrightarrow \mathcal{H}(\alpha, \beta)=\mathcal{H}(x, y)$

Alternatively

$$
\begin{array}{ll}
\begin{array}{l}
\mathcal{O}_{R} \mathcal{H} \Psi=E \mathcal{O}_{R} \Psi \\
\\
\mathcal{O}_{R} \mathcal{H O}_{R}^{-1} \mathcal{O}_{R} \Psi=E \mathcal{O}_{R} \Psi \\
\\
\mathcal{H}^{\prime} \Phi=E \Phi \quad
\end{array} \quad \begin{array}{c}
\\
\\
\text { if }\left[\mathcal{H}, \mathcal{O}_{R}\right]=0 \\
\\
\\
\\
\\
\end{array} \quad \rightarrow \mathcal{O}_{R} \mathcal{H} \mathcal{O}_{R}=\mathcal{O}_{R} \mathcal{H} \mathcal{O}_{R}^{-1}=\mathcal{H}
\end{array}
$$

The Hamiltonian is invariant in case it commute with the symmetry transformation

Example:
if $\left[\mathcal{H}, \mathcal{O}_{R_{z}}(\theta)\right]=0$ where $\mathcal{O}_{R_{z}}(\theta)=e^{-i \theta \hat{L}_{z}}$ then, L_{z} is a constant of motion

Invariant vector spaces: some remarks

In terms of vector and linear spaces, reducing a representation as a sum of irreps is equivalent to determine the subspaces of the vector space spanning the reducible representation which are invariant under the group transformations.

Invariant vector subspace means that the action of the group on the subspace is closed, i.e., the action of every symmetry element of the group upon any vector of this subspace yields another vector in it.

The representation of a group on a vector space V is irreducible if V does not contain any (non-trivial) invariant space under the group transformations. Otherwise, the representation is reducible.

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 2: Normal modes as basis sets for irreps.

Josep Planelles
Dpt. Química Física i Analítica
Universitat Jaume I

Normal Modes: one-dimensional diatomic molecule

$$
\underset{r=y-x}{\boldsymbol{x}} \underset{r_{e q}=0}{y} y=\frac{1}{2} r^{2}=\frac{1}{2}(y-x)^{2}=\frac{1}{2}\left(\begin{array}{ll}
x & y
\end{array}\right)\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]\binom{x}{y}
$$

$m_{x}=m_{y}=1 \quad k=1 \quad$ Orthogonal change of coordinates

$$
\left[\begin{array}{c}
t \\
v
\end{array}\right]=\left[\begin{array}{ll}
o_{x x} & o_{x y} \\
o_{y x} & o_{y y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

Normal modes: Orthogonal coordinates diagonalizing the V matrix: $\mathcal{O} V \mathcal{O}^{t}=\Lambda$
$\operatorname{det}\left[\begin{array}{cc}1-\lambda & -1 \\ -1 & 1-\lambda\end{array}\right]=0$
$\longrightarrow\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right] \rightarrow\left[\begin{array}{l}t \\ v\end{array}\right]=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
$\lambda=0 \quad \lambda=2$

Normal Modes and symmetry

In terms of normal modes:

$$
\mathrm{V}=\frac{1}{2} \sum_{i} \mathrm{k}^{\prime}{ }_{\mathrm{ii}} \alpha_{\mathrm{i}}^{2}
$$

Theorem: Two normal modes associated to different force constants can not belong to the same irrep.

$$
\mathbf{O}_{\mathrm{R}} \mathrm{~V}\left(\alpha_{\mathrm{i}}\right)=\mathrm{V}\left(\alpha_{\mathrm{i}}\right)=\mathrm{V}\left(\mathrm{R}^{-1} \alpha_{\mathrm{i}}\right)
$$

The potential energy is a scalar \rightarrow invariant under symmetry transformations

$$
2 \mathrm{~V}=\sum_{\mathrm{i}} \mathrm{k}^{\prime}{ }_{\mathrm{i}} \alpha_{\mathrm{i}}^{2}=\sum_{\mathrm{ijk}} \mathrm{k}^{\prime}{ }_{\mathrm{i}} \mathrm{D}_{\mathrm{ji}} \mathrm{D}_{\mathrm{ki}} \alpha_{\mathrm{j}} \alpha_{\mathrm{k}}
$$

Equation valid for all α_{i}. In particular, it is valid for $\alpha_{i}=0$ when $i \neq 0$

$$
\mathrm{k}_{0}^{\prime} \alpha_{0}^{2}=\sum_{\mathrm{i}} \mathrm{k}^{\prime}{ }_{\mathrm{i}} \mathrm{D}_{0 \mathrm{i}}^{2} \alpha_{0}^{2} \quad \mathrm{D} \text { is a unitary matrix: } \sum_{\mathrm{i}} \mathrm{D}_{0 \mathrm{i}}^{2}=1
$$

$$
\rightarrow \sum_{i}\left(\frac{\mathrm{k}_{\mathrm{i}}^{\prime}}{\mathrm{k}_{0}^{\prime}}-1\right) \mathrm{D}_{0 \mathrm{i}}^{2}=0 \rightarrow\left\{\begin{array}{c}
\mathrm{k}_{\mathrm{i}}^{\prime}=\mathrm{k}^{\prime} 0 \quad \forall \mathrm{i} \\
\mathrm{D}_{0 \mathrm{i}}^{2}=0 \quad \forall i \neq 0
\end{array}\right.
$$

$$
\left\{\begin{array}{cll}
\mathrm{k}^{\prime} \mathrm{i}=\mathrm{k}^{\prime} 0 \quad \forall \mathrm{i} & \longrightarrow & \text { Against the hypothesis } \mathrm{i} \neq 0 \\
\mathrm{D}_{0 \mathrm{i}}^{2}=0 \quad \forall \mathrm{i} \neq 0 & \longrightarrow & \boldsymbol{\alpha}_{\mathrm{i}} \text { and } \boldsymbol{\alpha}_{0} \text { do not mix } \longrightarrow \\
& \text { belong to basis of different representations }
\end{array}\right.
$$

If $k_{1}=k_{0}$, then $\left\{\alpha_{1}, \alpha_{0}\right\}$ can be mixed by a symmetry transformation, i.e., $\{a 1, a 0\}$ belong to the same basis of a multidimensional group representation (intrinsic degeneration)

It must be point out that two normal modes associated to the same force constant could not be mixed by any of the symmetry transformations of the system (accidental degeneracy). However, it is almost impossible finding out an exact accidental degeneracy.

If we ignore the possible occurrence of accidental degeneration, we can assume that the group representations of the normal modes are irreducible. Why?

Symmetry transformations upon Cartesian coordinates

$$
\begin{aligned}
& x\left(C_{2}\right)=-1 \\
& \begin{array}{l}
C_{2}\left(\begin{array}{l}
O_{1} \\
H_{2} \\
H_{3}
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)\left(\begin{array}{l}
o_{1} \\
H_{2} \\
H_{3}
\end{array}\right) \\
C_{2}\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{rrr}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)
\end{array} \\
& x\left(C_{2}\right)=(1+0+0)(-1-1+1)=-1
\end{aligned}
$$

Normal Modes: el methane CH_{4} case

\mathcal{T}_{d}	E	$8 C_{3}$	$3 C_{2}$	$6 S_{4}$	$6 \sigma_{d}$	$h=24$
A_{1}	1	1	1	1	1	$x^{2}+y^{2}+z^{2}$
A_{2}	1	1	1	-1	-1	
E	2	-1	2	0	0	$\left(3 z^{2}-r^{2}, x^{2}-y^{2}\right)$
T_{1}	3	0	-1	1	-1	$\left(R_{x}, R_{y}, R_{z}\right)$
T_{2}	3	0	-1	-1	1	$(x, y, z),(y z, x z, x y)$
$\chi^{x y z}$	3	0	-1	-1	1	
$N_{\hat{\hat{R}}}$	5	2	1	1	3	
$\chi^{(3 N)}$	15	0	-1	-1	3	

Normal Modes

Symmetry $v\left(\mathrm{~cm}^{-1}\right)$

1	A_{1}	2917.0
2	E	1533.6
3	T_{2}	3019.5
4	T_{2}	1306.2

Methane Normal Modes

Direct product of representations

Let f_{α} belonging to the irrep " i " and g_{β} to the irrep " j ".

$$
\mathbf{R} \mathrm{f}_{\alpha}=\sum_{\mu}^{\mathrm{n}} \mathrm{D}_{\mu \alpha}^{\mathrm{i}}(\mathbf{R}) \mathrm{f}_{\mu} \quad \mathbf{R} \mathrm{g}_{\beta}=\sum_{v}^{\mathrm{m}} \mathrm{D}_{\nu \beta}^{\mathrm{j}}(\mathbf{R}) \mathrm{g}_{v}
$$

Then, we build up the Cartesian products: $f_{\mu} g_{v}$

$$
\mathbf{R}\left(\mathrm{f}_{\alpha} \mathrm{g}_{\beta}\right)=\mathbf{R}\left(\mathrm{f}_{\alpha}\right) \mathbf{R}\left(\mathrm{g}_{\beta}\right)=\sum_{\mu}^{\mathrm{n}} \sum_{v}^{\mathrm{m}} \mathrm{D}_{\mu \alpha}^{\mathrm{i}}(\mathbf{R}) \mathrm{D}_{v \beta}^{\mathrm{j}}(\mathbf{R}) \mathrm{f}_{\mu} \mathrm{g}_{v}
$$

We unify indexes by defining: $\mathrm{h}_{\sigma}=\mathrm{f}_{\mu} \mathrm{g}_{v}, \mathrm{~h}_{\rho}=\mathrm{f}_{\alpha} \mathrm{g}_{\beta}$

$$
\longrightarrow \mathrm{D}_{\sigma \rho}^{\mathrm{i} \otimes \mathrm{j}}(\mathbf{R})=\mathrm{D}_{\mu \mathrm{o}}^{\mathrm{i}}(\mathbf{R}) \mathrm{D}_{\mathrm{v} \mathrm{\beta}}^{\mathrm{j}}(\mathbf{R})
$$

$$
\longrightarrow \chi^{\mathrm{i} \otimes \mathrm{j}}(\mathbf{R})=\sum_{\sigma} \mathrm{D}_{\sigma \sigma}^{\mathrm{i} \otimes \mathrm{j}}(\mathbf{R})=\sum_{\mu} \sum_{v} D_{\mu \mu}^{\mathrm{i}}(\mathbf{R}) D_{v v}^{\mathrm{j}}(\mathbf{R})=\chi^{\mathrm{i}}(\mathbf{R}) \chi^{\mathrm{j}}(\mathbf{R})
$$

Direct product of representations

Then, from two representations Γ^{i} and Γ^{j} of a group G with dimensions d_{f} and d_{g}, respectively, we have defined the so-called direct or Cartesian product of them, $\Gamma^{i \otimes j}=\Gamma^{i} \otimes \Gamma^{\mathrm{j}}$, which is a $\left(\mathrm{d}_{\mathrm{i}} \times \mathrm{d}_{\mathrm{j}}\right)$ dimensional representation with matrix elements:

$$
\forall R \in G \quad\left[D^{i \otimes j}(R)\right]_{(\mu v),(\alpha \beta)}=D_{\mu \alpha}^{i}(R) D_{v \beta}^{j}(R) \quad \mu, \alpha=1 \ldots d_{i} v, \beta=1 \ldots d_{j}
$$

In this equation (ik) labels a single index ranging from one up to $d_{f} x d_{g^{\prime}}$, as also (jl) does.
The product yields a new, a priori reducible representation with characters:

$$
\chi^{i \otimes j}(R)=\chi^{i}(R) \chi^{j}(R)
$$

Example:

$\mathcal{C}_{4 v}$	\hat{E}	$2 \hat{C}_{4}$	\hat{C}_{2}	$2 \hat{\sigma}_{v}$	$2 \hat{\sigma}_{d}$	
B_{2}	1	-1	1	-1	1	
E	2	0	-2	0	0	
$B_{2} \otimes B_{2}$	1	1	1	1	1	$=A_{1}$
$E \otimes E$	4	0	4	0	0	$=A_{1} \oplus A_{2} \oplus B_{1} \oplus B_{2}$

Teorem: The decomposition of the product of two irreps contains the representation totally symmetric (A1) only if both are identical (except for conjugation, in case of complex irreps)

Proof: Just consider the theorem of the orthogonality of characters

$$
\mathrm{a}_{1}=\frac{1}{\mathrm{~g}} \sum_{\mathrm{c}} \mathrm{n}_{\mathrm{c}}\left[\chi^{v}(\mathrm{c}) \chi^{\mu}(\mathrm{c})^{*}\right](1)=\delta_{\mu \nu}
$$

Eigenvectors of an irreducible representation

A vector ψ_{i}^{f} belongs or is transformed according to the i-th basis of the irrep Γ^{f} if $\forall R \in G$:

$$
\hat{R} \psi_{i}^{f}=\sum_{j=1}^{d_{f}} \psi_{j}^{f} D_{j i}^{f}(\hat{R})
$$

The set of vectors $\left\{\psi_{1}^{f}, \psi_{2}^{f}, \ldots \psi_{d_{f}}^{f}\right\}$ form a basis.

Teorem: If $\psi_{i}^{f}, \psi_{j}^{g}$ belong to bases of different irreps, they are orthogonal

$$
\left\langle\psi_{i}^{f} \mid \psi_{j}^{g}\right\rangle=\delta_{f g} C
$$

Prior to prove this theorem, we are must clarify what does "a symmetry transformation acting upon an integral" means (an integral is a just a real or complex number...).

Vanishing Integrals

Consider the action of a rotation on the integral $\mathbf{I}=\int \mathrm{f}_{\mu}^{\Gamma}(\mathrm{x}, \mathrm{y}) \mathrm{dx} \mathrm{d} y$

An integral (which is a number) must be invariant under any symmetry transformation.
Rotate an integral must mean calculating the integral once the function is rotated in the opposite direction.

$$
\mathbf{O}_{R} f(x)=f\left(R^{-1} x\right) .
$$

Teorema: If $\mathrm{f}_{\mu}^{\Gamma}$ is not a basis for the fully symmetric representation, then $1=0$
Prof: $\quad \mathbf{R} \mathbf{I}=\mathbf{I} \longrightarrow \frac{1}{\mathrm{~g}} \sum_{\mathbf{R}} \mathbf{R} \mathbf{I}=\mathbf{I}$

$$
\begin{aligned}
\mathbf{I} & =\frac{1}{\mathrm{~g}} \sum_{\mathbf{R}} \mathbf{R} \mathbf{I}=\frac{1}{\mathrm{~g}} \sum_{\mathbf{R}} \int \mathbf{O}_{\mathbf{R}} \mathrm{f}_{\mu}^{\Gamma}(\mathrm{x}) \mathrm{dx}=\frac{1}{\mathrm{~g}} \sum_{\mathbf{R}} \int \sum_{v} \mathrm{D}_{v \mu}^{\Gamma}(\mathbf{R}) \mathrm{f}_{v}^{\Gamma}(\mathrm{x}) \mathrm{dx} \\
& =\sum_{v}\left(\frac{1}{\mathrm{~g}} \sum_{\mathbf{R}} \mathrm{D}_{v \mu}^{\Gamma}(\mathbf{R})\right) \int \mathrm{f}_{v}^{\Gamma}(\mathrm{x}) \mathrm{dx}=\sum_{v} \delta_{\Gamma A_{1}} \delta_{\mu v} \delta_{\mu 1} \int \mathrm{f}_{\mu}^{\Gamma}(\mathrm{x}) \mathrm{dx} \\
& \longrightarrow \mathbf{I}=\mathbf{I} \delta_{\Gamma A_{1}} \delta_{\mu 1}
\end{aligned}
$$

Vanishing Integrals (cont.)

Teorem: if $\psi_{i}^{f}, \psi_{j}^{g}$ belong to bases of different irreps, they are orthogonal

$$
\left\langle\psi_{i}^{f} \mid \psi_{j}^{g}\right\rangle=\delta_{f g} C
$$

Proof: Just consider that if the irreps are different, the decomposition of their product does not contain the fully symmetric irrep and hence the integral must be zero.

Spectroscopic selection rules $\quad \int \psi_{i}(\mathrm{r}){ }^{*} \overrightarrow{\mathrm{r}} \psi_{\mathrm{f}}(\mathrm{r}) \mathrm{dr}$

Selection rules of diatomic molecules in microwaves

$$
\begin{aligned}
& \text { Absorption }<\mathrm{Y}_{\mathrm{JM}}|\vec{\mu}| \mathrm{Y}_{J^{\prime} \mathrm{M}^{\prime}}> \\
& \mathrm{D}_{\mathrm{J}, \varepsilon(\mathrm{~J})} \otimes \mathrm{D}_{\mathrm{lu}} \otimes \mathrm{D}_{\mathrm{J}^{\prime}, \varepsilon(\mathrm{J})} \\
& \mathrm{D}_{\mathrm{J}} \otimes \mathrm{D}_{\mathrm{J}^{\prime}}= \mathrm{D}_{\mathrm{J}+\mathrm{J}^{\prime}} \oplus \mathrm{D}_{\mathrm{J}+\mathrm{J}^{\prime}-1} \oplus \mathrm{D}_{\mathrm{J}+\mathrm{J}^{\prime}-2} \oplus \ldots \oplus \mathrm{D}_{\mathrm{J}-\mathrm{J}^{\prime} \mid} \\
& \mathrm{g} \otimes \mathrm{~g}=\mathrm{u} \otimes \otimes \mathrm{u}=\mathrm{g} ; \mathrm{g} \otimes \mathrm{u}=\mathrm{u} \otimes \mathrm{~g}=\mathrm{u} \\
& \longrightarrow \Delta \mathrm{~J}= \pm 1 \\
& \longrightarrow<\mathrm{Y}_{\mathrm{JM}} \mid \xlongequal{\alpha \mid \mathrm{Y}_{\mathrm{J}^{\prime} \mathrm{M}^{\prime}}>} \\
&\left(\mathrm{D}_{\mathrm{J}, \varepsilon \mathrm{~J})} \otimes \mathrm{D}_{\mathrm{J}^{\prime}, \varepsilon\left(\mathrm{J}^{\prime}\right)}\right) \otimes\left(\mathrm{D}_{0 \mathrm{~g} \oplus} \oplus \mathrm{D}_{2 \mathrm{~g}}\right) \\
& \text { Raman } \Delta \mathrm{J}=0 \pm 2
\end{aligned}
$$

Vibrational (IR) spectra

$B F_{3}$ is a planar $\left(D_{3 h}\right)$ or a pyramidal $\left(C_{3 v}\right)$ molecule?

cm^{-1}	IR	Raman
482,0	Strong	Medium
719,5	Strong	-
888,0	-	Strong

| $\mathrm{A}^{\prime}{ }_{1}\left(888 \mathrm{~cm}^{-1}\right.$, stretching $)$ |
| :--- | :--- |
| $\mathrm{A}^{\prime \prime} 2\left(719 \mathrm{~cm}^{-1}\right.$, stretching+bending $)$ |
| $\mathrm{E}^{\prime}\left(482 \mathrm{~cm}^{-1}\right.$, bending $)$ |$|$

pyramidal $\left(C_{3 v}\right) \Gamma_{\mathrm{V}}=2 \mathrm{~A}_{1} \oplus 2 \mathrm{E}$
planar $\left(D_{3 h}\right) \quad \Gamma_{\mathrm{V}}=\mathrm{A}^{\prime}{ }_{1} \oplus \mathrm{~A}^{\prime \prime}{ }_{2} \oplus 2 \mathrm{E}^{\prime}$
$\mathrm{A}^{\prime \prime}{ }_{2} \oplus \mathrm{E}^{\prime}$
$\mathrm{A}^{\prime}{ }_{1} \oplus \mathrm{E}^{\prime} \oplus \mathrm{E}^{\prime \prime}$

PLANAR

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 4: Atomic and molecular orbitals.

Projection and shift operators

Action of the symmetry operation R on the μ-th function of the irrep Γ
$\mathbf{R} f_{\mu}^{\Gamma}=\sum_{\nu} \mathbf{D}_{\nu \mu}^{\Gamma}(\mathbf{R}) f_{\nu}^{\Gamma}$

Some manipulation \qquad $\mathbf{D}_{\sigma \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{R} f_{\mu}^{\Gamma}=\sum_{\nu} \mathbf{D}_{\sigma \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{D}_{\nu \mu}^{\Gamma}(\mathbf{R}) f_{\nu}^{\Gamma}$ $\longrightarrow \frac{n_{\Gamma}}{g} \sum_{\mathbf{R}} \mathbf{D}_{\sigma \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{R} f_{\mu}^{\Gamma}=\sum_{\nu} \frac{n_{\Gamma}}{g} \sum_{\mathbf{R}} \mathbf{D}_{\sigma \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{D}_{\nu \mu}^{\Gamma}(\mathbf{R}) f_{\nu}^{\Gamma}=\sum_{\nu} f_{\nu}^{\Gamma} \delta_{\nu \sigma}=f_{\sigma}^{\Gamma}$

Then, we define: $\mathbf{P}_{\sigma \mu}^{\Gamma}=\frac{n_{\Gamma}}{g} \sum_{\mathbf{R}} \mathbf{D}_{\sigma \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{R} \longrightarrow \mathbf{P}_{\sigma \mu}^{\Gamma} f_{\nu}^{\Gamma}=f_{\sigma}^{\Gamma} \delta_{\mu \nu}$

$$
\begin{aligned}
& \mathbf{P}_{\mu \mu}^{\Gamma}=\frac{n_{\Gamma}}{g} \sum_{\mathbf{R}} \mathbf{D}_{\mu \mu}^{\Gamma}(\mathbf{R})^{*} \mathbf{R} \longrightarrow \mathbf{P}_{\mu \mu}^{\Gamma} f_{\nu}^{\Gamma}=f_{\mu}^{\Gamma} \delta_{\mu \nu} \\
& \mathbf{P}^{\Gamma}=\sum_{\mu} \mathbf{P}_{\mu \mu}^{\Gamma}=\frac{n_{\Gamma}}{g} \sum_{\mathbf{R}} \chi^{\Gamma}(\mathbf{R})^{*} \mathbf{R} \longrightarrow \mathbf{P}^{\Gamma} f_{\mu}^{\Gamma}=f_{\mu}^{\Gamma}
\end{aligned}
$$

Híbrid Orbitals $\left(s^{2}\right)$

$$
C_{3}^{1}=\left[\begin{array}{cc}
-\frac{1}{2} & \frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right] \quad C_{3}^{2}=\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]
$$

$E \longrightarrow$

$$
\sigma_{1}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right]
$$

$$
\sigma_{2}=\left[\begin{array}{cc}
\frac{1}{2} & \frac{\sqrt{3}}{2} \\
\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]
$$

$$
\sigma_{3}=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & -\frac{1}{2}
\end{array}\right]
$$

$$
\begin{aligned}
& P_{11}^{A_{1}}=\frac{1}{6}\left(E+C_{3}^{1}+C_{3}^{2}+\sigma_{1}+\sigma_{2}+\sigma_{3}\right) \\
& P_{11}^{E}=\frac{2}{6}\left(E-\frac{1}{2} C_{3}^{1}-\frac{1}{2} C_{3}^{2}-\sigma_{1}+\frac{1}{2} \sigma_{2}+\frac{1}{2} \sigma_{3}\right) \quad P_{12}^{E}=\frac{2}{6}\left(\frac{\sqrt{3}}{2} C_{3}^{1}-\frac{\sqrt{3}}{2} C_{3}^{2}+\frac{\sqrt{3}}{2} \sigma_{2}-\frac{\sqrt{3}}{2} \sigma_{3}\right) \\
& P_{21}^{E}=\frac{2}{6}\left(-\frac{\sqrt{3}}{2} C_{3}^{1}+\frac{\sqrt{3}}{2} C_{3}^{2}+\frac{\sqrt{3}}{2} \sigma_{2}-\frac{\sqrt{3}}{2} \sigma_{3}\right) \quad P_{22}^{E}=\frac{2}{6}\left(E-\frac{1}{2} C_{3}^{1}-\frac{1}{2} C_{3}^{2}+\sigma_{1}-\frac{1}{2} \sigma_{2}-\frac{1}{2} \sigma_{3}\right)
\end{aligned}
$$

$$
P_{11}^{\mathrm{A}_{1}} \mathrm{~h}_{1}=\frac{1}{3}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}\right) \quad \mathrm{P}_{11}^{\mathrm{E}} \mathrm{~h}_{1}=0 \quad \mathrm{P}_{12}^{\mathrm{E}} \mathrm{~h}_{1}=0
$$

$$
P_{21}^{E} h_{1}=\frac{\sqrt{3}}{3}\left(h_{3}-h_{2}\right) \quad P_{22}^{E} h_{1}=\frac{1}{3}\left(2 h_{1}-h_{2}-h_{3}\right)
$$

$$
\left[\begin{array}{c}
\mathrm{s} \\
\mathrm{p}_{\mathrm{y}} \\
\mathrm{p}_{\mathrm{x}}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
2 / \sqrt{6} & -1 / \sqrt{6} & -1 / \sqrt{6} \\
0 & -1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{h}_{1} \\
\mathrm{~h}_{2} \\
\mathrm{~h}_{3}
\end{array}\right] \quad\left[\begin{array}{l}
\mathrm{h}_{1} \\
\mathrm{~h}_{2} \\
\mathrm{~h}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{3} & 2 / \sqrt{6} & 0 \\
1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
\mathrm{s} \\
\mathrm{p}_{\mathrm{y}} \\
\mathrm{p}_{\mathrm{x}}
\end{array}\right]
$$

Using Projectors (only characters are now needed):

$$
\begin{array}{ll}
P^{A_{1}}=\frac{1}{6}\left(E+C_{3}^{1}+C_{3}^{2}+\sigma_{1}+\sigma_{2}+\sigma_{3}\right) & s=\frac{1}{\sqrt{3}}\left(h_{1}+h_{2}+h_{3}\right) \\
P^{E}=\frac{2}{6}\left(2 E-C_{3}^{1}-C_{3}^{2}\right)
\end{array}
$$

Non-orthogonality problem:

$$
\begin{array}{lll}
P^{E} h_{1}=\frac{1}{3}\left(2 h_{1}-h_{2}-h_{3}\right) & \text { orthogonalitzation: } & \frac{1}{\sqrt{6}}\left(2 h_{1}-h_{2}-h_{3}\right) \\
P^{E} h_{2}=\frac{1}{3}\left(2 h_{2}-h_{3}-h_{1}\right) & \longrightarrow & \frac{1}{\sqrt{2}}\left(h_{2}-h_{3}\right)
\end{array}
$$

Molecular Orbitals: the water molecule case

Molecular Orbitals: the benzene case

$\left|\begin{array}{llllll}\mathrm{x} & 1 & 0 & 0 & 0 & 1 \\ 1 & \mathrm{x} & 1 & 0 & 0 & 0 \\ 0 & 1 & \mathrm{x} & 1 & 0 & 0 \\ 0 & 0 & 1 & \mathrm{x} & 1 & 0 \\ 0 & 0 & 0 & 1 & \mathrm{x} & 1 \\ 1 & 0 & 0 & 0 & 1 & \mathrm{x}\end{array}\right|=0$

Polynomial equation of degree $6 \rightarrow x= \pm 1, \pm 1, \pm 2$. Then, we should find the associated eigenvectors

The set of 6 AOs $2 p z$ form a basis for a reducible representation of the D6h group and also of its subgroups (D6, C6h, C6)

D_{6}	E	$2 \mathrm{C}_{6}$	$2 \mathrm{C}_{3}$	C_{2}	$3 \mathrm{C}_{2}^{\prime}$	$3 \mathrm{C}_{2}{ }_{2}$
Γ	6	0	0	0	-2	0

$$
\Gamma=\mathrm{A}_{2} \oplus \mathrm{~B}_{2} \oplus \mathrm{E}_{1} \oplus \mathrm{E}_{2}
$$

We can calculate the D6 symmetry adapted basis set by means of projectors:

```
P}\mp@subsup{\textrm{A}}{2}{}=\textrm{E}+\mp@subsup{\textrm{C}}{6}{1}+\mp@subsup{\textrm{C}}{6}{5}+\mp@subsup{\textrm{C}}{3}{1}+\mp@subsup{\textrm{C}}{3}{2}+\mp@subsup{\textrm{C}}{2}{}
    -\mp@subsup{C}{2}{\prime}}2(1)-\mp@subsup{\textrm{C}}{2}{\prime}(2)-\mp@subsup{\textrm{C}}{2}{\prime}(3)-\mp@subsup{\textrm{C}}{2}{\prime2}(1)-\mp@subsup{\textrm{C}}{2}{\prime}(2)-\mp@subsup{\textrm{C}}{2}{\prime2}(3
P}\mp@subsup{}{}{\mp@subsup{B}{2}{}}=\textrm{E}-\mp@subsup{\textrm{C}}{6}{1}-\mp@subsup{C}{6}{5}+\mp@subsup{C}{3}{1}+\mp@subsup{C}{3}{2}-\mp@subsup{C}{2}{}
    -C'2(1)-\mp@subsup{C}{}{\prime}}2(2)-\mp@subsup{C}{}{\prime}2(3)+\mp@subsup{C}{}{\prime\prime}2(1)+\mp@subsup{C}{2}{2}(2)+\mp@subsup{C}{}{\prime\prime}2(3
etc.
```

$\mathrm{P}^{\mathrm{A}_{2}} \phi_{1}=2\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right)=\varphi_{1}$
$\mathrm{P}^{\mathrm{B}_{2}} \phi_{1}=2\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6}\right)=\varphi_{2}$
$\mathrm{P}^{\mathrm{E}_{1}} \phi_{1}=2 \phi_{1}+\phi_{2}-\phi_{3}-2 \phi_{4}-\phi_{5}+\phi_{6}=\varphi_{3}$
$\mathrm{P}^{\mathrm{E}_{1}} \phi_{2}=\phi_{1}+2 \phi_{2}+\phi_{3}-\phi_{4}-2 \phi_{5}-\phi_{6}=\varphi_{4}$
$\mathrm{P}^{\mathrm{E}_{2}} \phi_{1}=2 \phi_{1}-\phi_{2}-\phi_{3}+2 \phi_{4}-\phi_{5}-\phi_{6}=\varphi_{5}$
$\mathrm{P}^{\mathrm{E}_{2}} \phi_{2}=-\phi_{1}+2 \phi_{2}-\phi_{3}-\phi_{4}+2 \phi_{5}-\phi_{6}=\varphi_{6}$
Problem: the projections upon multidimensional irreps are not automatically calculated orthogonal

$$
<\varphi_{3}\left|\varphi_{4}>\neq 0 \quad<\varphi_{5}\right| \varphi_{6}>\neq 0
$$

Symmetric Orthogonalitzation

$$
\begin{aligned}
& \Psi_{1}\left(\mathrm{~A}_{2}\right)=\frac{1}{\sqrt{6}}\left(\phi_{1}+\phi_{2}+\phi_{3}+\phi_{4}+\phi_{5}+\phi_{6}\right) \\
& \Psi_{2}\left(\mathrm{E}_{1}\right)=\frac{1}{2 \sqrt{3}}\left(\phi_{1}-\phi_{2}-2 \phi_{3}-\phi_{4}+\phi_{5}+2 \phi_{6}\right) \\
& \Psi_{3}\left(\mathrm{E}_{1}\right)=\frac{1}{2}\left(\phi_{1}+\phi_{2}-\phi_{4}-\phi_{5}\right) \\
& \Psi_{4}\left(\mathrm{E}_{2}\right)=\frac{1}{2 \sqrt{3}}\left(\phi_{1}+\phi_{2}-2 \phi_{3}+\phi_{4}+\phi_{5}-2 \phi_{6}\right) \\
& \Psi_{5}\left(\mathrm{E}_{2}\right)=\frac{1}{2}\left(\phi_{1}-\phi_{2}+\phi_{4}-\phi_{5}\right) \\
& \Psi_{6}\left(\mathrm{~B}_{2}\right)=\frac{1}{\sqrt{6}}\left(\phi_{1}-\phi_{2}+\phi_{3}-\phi_{4}+\phi_{5}-\phi_{6}\right)
\end{aligned}
$$

The C6 group is Abelian

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 5: The symmetric or permutation group.

Symmetric group of permutations

$$
\begin{aligned}
\binom{1234}{4132} x_{1} x_{2} x_{3} x_{4}=x_{4} x_{1} x_{3} x_{2} & \binom{1234}{4132}=(142)(3)=(142) \\
\text { Example 1: } & (142) x_{1} x_{2} x_{3} x_{4}=x_{4} x_{1} x_{3} x_{2} \\
\text { Example 2: } \quad A=x_{1}^{2} x_{2} x_{3}+2 x_{2}^{2} x_{3}^{4} & (12) A=x_{2}^{2} x_{1} x_{3}+2 x_{1}^{2} x_{3}^{4}
\end{aligned}
$$

Item 1. Disjoint cycles commute

$$
(123)(45)=\binom{12345}{23154}=\binom{45123}{54231}=(45)(123)
$$

Item 2. Cyclic permutation, e.g. (123)=(231)=(312)

$$
(123)=\binom{123}{231}=\binom{231}{312}=(231)
$$

Item 3. decomposition of a cycle as product of transpositions (ab)
$\left.\begin{array}{l}(123) x_{1} x_{2} x_{3}=x_{2} x_{3} x_{1} \\ (12)(23) x_{1} x_{2} x_{3}=(12) x_{1} x_{3} x_{2}=x_{2} x_{3} x_{1}\end{array}\right\} \quad(123)=(12)(23)$
Caution to the ordering!
(23)(12) $x_{1} x_{2} x_{3}=(23) x_{2} x_{1} x_{3}=x_{3} x_{1} x_{2}=(132) x_{1} x_{2} x_{3}$
$(23)(12)=(32)(21)=(321)=(132)$
Item 4. The product of two cycles in reverse order yields the neutral element

$$
\begin{aligned}
& (12)(21) x_{1} x_{2} x_{3}=(12) x_{2} x_{1} x_{3}=x_{1} x_{2} x_{3}=e x_{1} x_{2} x_{3} \\
& (123)(321)=(12)(23)(32)(21)=(12) e(21)=(12)(21)=e
\end{aligned}
$$

Item5. Products of two cycles with repeated elements
$(12)(324)=(12)(243)=(1243)$
Definition. A permutation is even (odd) if the number of transpositions it contains is even (odd)
e is even (zero transpositions)
$(123)(67)=(12)(23)(67)$ és odd (3 transpositions)
$(246)=(24)(46)$ és even (2 transpositions)

Conjugation relation and equivalence classes

$q \sim p \Leftrightarrow q=t^{-1} p t$
reflexivity: $a \sim a\left(a=e a e^{-1}=e a e=e a=a\right)$
symmetry : $a \sim b \Leftrightarrow b \sim a \quad\left(a=t^{-1} b t \Leftrightarrow t a t^{-1}=t t^{-1} b t t^{-1}=b\right)$
transitivity : $a \sim b, b \sim c \Rightarrow a \sim c\left(a=t^{-1} b t=t^{-1} s^{-1} c s t=(s t)^{-1} c s t=r^{-1} c r\right)$

Example: S_{3} (3 classes):
$\begin{array}{lll}\text { - } & \xi_{1}=\{\mathrm{e}\} & \text { identity } \\ \text { - } & \xi_{2}=\{(12),(23),(31)\} & \text { 2-cycles } \\ \text { - } & \xi_{3}=\{(123),(321)\} & \text { 3-cycles }\end{array}$

Permutations with the same cyclic structure belong to the same class

$\underline{\text { Number of elements in a class }} \quad(v) \equiv\left(\begin{array}{lll}1_{1} & 2^{V_{2}} & \ldots \mathrm{n}^{\nu} \mathrm{n}\end{array}\right)$

$e=(1)(2)(3): \frac{3!}{1^{3} 3!\cdot 2^{0} 0!\cdot 3^{0} 0!}=1$
(12): $\frac{3!}{1^{1} 1!\cdot 2^{1} 1!\cdot 3^{0} 0!}=3$
(123) : $\frac{3!}{1^{0} 0!\cdot 2^{0} 0!\cdot 3^{1} 1!}=2$

Partitions and classes $(v) \equiv\left(\begin{array}{lll}v_{1} & 2^{v_{2}} \ldots v_{n}\end{array}\right) \longrightarrow \quad n=v_{1}+2 v_{2}+\ldots . n v_{n}$

$$
\begin{aligned}
& v_{1}+v_{2}+\ldots v_{\mathrm{n}}=\lambda_{1} \\
& v_{2}+\ldots v_{\mathrm{n}}=\lambda_{2} \\
& \ldots \\
& v_{\mathrm{n}}=\lambda_{\mathrm{n}}
\end{aligned} \longrightarrow \begin{aligned}
& \lambda_{1}+\lambda_{2}+\ldots . \lambda_{\mathrm{n}}=\mathrm{n} \\
& \lambda_{1} \geq \lambda_{2} \geq \ldots \lambda_{\mathrm{n}} \geq 0
\end{aligned}
$$

Label of class $(v) o[\lambda]: \quad\left(\begin{array}{lllll}1_{1} & 2^{\vee_{2}} & \ldots n^{\vee}\end{array}\right) \quad\left[\begin{array}{lll}\lambda 1 & \lambda_{2} \ldots & \lambda_{n}\end{array}\right]$

Example S_{4}
partitions of 4:

$$
4=4=3+1=2+2=2+1+1=1+1+1+1
$$

classes of 4:
$\left(1^{4}\right) \quad\left(21^{2}\right)\left(2^{2}\right) \quad(31) \quad e$
classes of 4:
[4] [31]
$\left[\begin{array}{ll}22\end{array} \quad\left[\begin{array}{ll}12\end{array}\right]\right.$ [14]

Example $\mathrm{S}_{4} \quad$ partitions of 4: 4, 3+1,2+2,2+1+1,1+1+1+1

[4].- e: (1) (2) (3) (4)			1	$\left(1^{4}\right)$	$\frac{4!}{4!}=1$
[3 1].- Cicles de 2 : (12); (13); (14); (23); (24); (34)			6	(212)) $\frac{4!}{2!21!}=6$
[2²].- (12) (34); (13) (24); (14) (23)			3	$\left(2^{2}\right)$	$\frac{4!}{2!2^{2}}=3$
[2 12].- (123); (132); (124); (142); (134); (143); (234); (243)			8	(31)	$\frac{4!}{1!31!}=8$
[14].- (1234); (1243); (1324); (1342); (1423); (1432)			6		$\frac{4!}{4!!}=6$
Partition	Cycles structure	Cardinal c	lass		Example
[4]	$\left(1^{4}\right)$	1			e
[14]	(4^{1})	6			(1432)
[2 ${ }^{2}$]	(2^{2})	3			(14)(32)
[212]	$\left(1^{1} 3^{1}\right)$	8			(132)
[31]	$\left(1^{2} 2^{1}\right)$	6			(12)

Classes and Young Tableaux

$\begin{aligned} & \lambda_{1}+\lambda_{2}+\ldots . \lambda_{\mathrm{n}}=\mathrm{n} \\ & \lambda_{1} \geq \lambda_{2} \geq \ldots . \lambda_{\mathrm{n}} \geq 0 \end{aligned}$	s_{λ}							$\lambda_{1}$$\lambda_{2}$	Ex. Partition		$\left[21^{2}\right]$
											1
								:		\square	1

Example S_{4}

Caracter Tables

We build them by using the orthogonality theorem, as with the point symmetry groups

S_{2}	${ }^{1}\left(1^{2}\right)$	${ }^{1}(2)$
$[2]$	1	1
$\left[1^{2}\right]$	1	-1

S_{3}	${ }^{1}\left(1^{3}\right)$	${ }^{3}(21)$	${ }^{2}(3)$
$[3]$	1	1	1
$[21]$	2	0	-1
$\left[1^{3}\right]$	1	-1	1

s_{4}	${ }^{1}\left(1^{4}\right)$	${ }^{6}\left(21^{2}\right)$	${ }^{3}\left(2^{2}\right)$	${ }^{8}(31)$	${ }^{6}(4)$
\square	1	1	1	1	1
\square	3	1	-1	0	-1
\square	2	0	2	-1	0
\square	3	-1	-1	0	1
$日$	1	-1	1	1	-1
$母$					

$$
\begin{gathered}
\square \square \\
\square
\end{gathered} \begin{gathered}
B \\
\text { Conjugates } \\
\boxminus \\
\text { Selfconjugate }
\end{gathered}
$$

Theorem The decomposition of the tensorial product of two irreps of the symmetric group contains the fully antisymmetric irrep $\left[1^{n}\right]$ if and only if the irreps in the product are dual of each other. In this case, the multiplicity is 1 , i.e., the $\left[1^{n}\right]$ irrep appears only once.

Remainder:

$$
\begin{aligned}
& \chi^{\mu \otimes v}(\mathrm{P})=\chi^{\mu}(\mathrm{P}) \chi^{v}(\mathrm{P}) \\
& \chi^{\left[1^{\mathrm{n}}\right]}(\mathrm{P})=(-1)^{p} \\
& \chi^{\tilde{\mu}}(\mathrm{P})=(-1)^{p} \chi^{\mu}(\mathrm{P})
\end{aligned}
$$

Proof: $\quad \quad_{\left[1^{\mathrm{n}}\right]}=\frac{1}{\mathrm{n}!} \sum_{\mathrm{P}} \chi^{\mu \otimes v}(\mathrm{P}) \chi^{\left[1^{\mathrm{n}}\right]}(\mathrm{P})$
$=\frac{1}{n!} \sum_{\mathrm{P}} \chi^{\mu}(\mathrm{P}) \chi^{v}(\mathrm{P})(-1)^{p}$
$=\frac{1}{n!} \sum_{\mathrm{P}} \chi^{\mu}(\mathrm{P}) \chi^{\tilde{v}}(\mathrm{P})=\delta_{\mu \tilde{v}}$

Obtaining spin-adapted functions

 (using shift operators)
Spin functions:

$\Theta_{1}=\left\lvert\, \frac{1}{2}\right., \frac{1}{2}, 1>=2 \alpha \alpha \beta-\alpha \beta \alpha-\beta \alpha \alpha$
$\Theta_{2}=\left|\frac{1}{2}, \frac{1}{2}, 2\right\rangle=\alpha \beta \alpha-\beta \alpha \alpha$
Orbital functions: (ijk represents $\left.\phi_{i}(1) \phi_{\mathrm{j}}(2) \phi_{\mathrm{k}}(3)\right): \quad(123)=(12)(23)=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)=\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ -\frac{\sqrt{3}}{2} & -\frac{1}{2}\end{array}\right)$

$$
\begin{aligned}
& \chi_{1}=\mathrm{ijk}+\mathrm{jik}-\frac{1}{2} \mathrm{ikj}-\frac{1}{2} \mathrm{kji}-\frac{1}{2} \mathrm{jki}-\frac{1}{2} \mathrm{kij} \\
& \chi_{2}=\mathrm{ikj}-\mathrm{kji}+\mathrm{jki}-\mathrm{kij} \\
& \xi_{2}=\mathrm{ijk}-\mathrm{jik}+\frac{1}{2} \mathrm{ikj}+\frac{1}{2} \mathrm{kji}-\frac{1}{2} \mathrm{jki}-\frac{1}{2} \mathrm{kij} \\
& \xi_{1}=\mathrm{ikj}-\mathrm{kji}-\mathrm{jki}+\mathrm{kij}
\end{aligned}
$$

Total wave functions: $\left(\Psi=\sum \chi_{\mathrm{k}} \Theta_{\mathrm{k}}\right)$:

$$
\begin{aligned}
& \Psi_{\frac{11}{2} 1}(1,2,3)=\left(\chi_{1} \Theta_{1}+\chi_{2} \Theta_{2}\right) \\
& \Psi_{\frac{11}{2} 2}(1,2,3)=\left(\xi_{1} \Theta_{1}+\xi_{2} \Theta_{2}\right)
\end{aligned}
$$

S_{4}	(12)	(23)	(34)
[4]	1	1	1
[31]	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} \\ 0 & \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{ccc}-\frac{1}{3} & \frac{\sqrt{8}}{3} & 0 \\ \frac{\sqrt{8}}{3} & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$
[2^{2}]	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$	$\left(\begin{array}{cc}-\frac{1}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2}\end{array}\right)$	$\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$
[21²]	$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$	$\left(\begin{array}{ccc}-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 \\ 0 & 0 & -1\end{array}\right)$	$\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -\frac{1}{3} & \frac{\sqrt{8}}{3} \\ 0 & \frac{\sqrt{8}}{3} & \frac{1}{3}\end{array}\right)$
[14]	-1	-1	-1

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 6: Symmetrized powers of group representations

Powers of irreps An example:

$C_{3 v}$	E	$2 C_{3}$	$3 \sigma_{v}$		
A_{1}	1	1	1	z	$z^{2}, x^{2}+y^{2}$
A_{2}	1	1	-1	R_{z}	
E	2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right)(x z, y z)$
$E \otimes E$	4	1	0		$(x x, x y, y x, y y)$

$E \otimes E=A_{1} \oplus A_{2} \oplus E$				symmetric		
S_{2}	${ }^{1}\left(1^{2}\right)$			$x^{2}+y^{2}$	\rightarrow	A_{1}
[2]	1	1	$E \otimes E=3[2] \oplus\left[1^{2}\right]$	$x y+y x$	\rightarrow	E
[1^{2}]		-1	$P^{ \pm}=\frac{1}{2}\left(E \pm P_{12}\right)$		mmetric	
$E \otimes E$	4	2	(xx, xy, $\mathrm{y} \times \mathrm{y}, \mathrm{yy}$)	$\mathrm{R}_{\mathrm{z}}=$	\rightarrow	A_{2}

$E \otimes E=A_{1} \oplus\left[A_{2}\right] \oplus E$

The basis set of the second power of an irreducible representation can always be decomposed as a direct sum of two subspaces stable (invariant) under the S2 permutation symmetry (symmetric and antisymmetric). Each of these subspaces can in turn be decomposed into subspaces stable under the point symmetry group.

$\mathrm{C}_{3 v}$	E	$2 \mathrm{C}_{3}$	$3 \sigma_{v}$		
$\mathrm{~A}_{1}$	1	1	1	+	
A_{2}	1	1	-1	E	$\mathrm{E}=\mathrm{A}_{1} \oplus \mathrm{E}$
E	2	-1	0	$\mathrm{E} \otimes \mathrm{E}=\mathrm{A}_{2}$	
$\mathrm{~A}_{1} \oplus \mathrm{E}$	3	0	1		

$$
\begin{aligned}
& \chi_{\mu^{2}}^{[2]}(\mathrm{R})=\frac{1}{2}\left[\chi_{\mu}^{2}(\mathrm{R})+\chi_{\mu}\left(\mathrm{R}^{2}\right)\right] \\
& \chi_{\mu^{2}}^{\left[\mathrm{L}^{2}\right]}(\mathrm{R})=\frac{1}{2}\left[\chi_{\mu}^{2}(\mathrm{R})-\chi_{\mu}\left(\mathrm{R}^{2}\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& x_{E}^{ \pm}(E)=\frac{1}{2}\left[x_{E}^{2}(E) \pm x_{E}\left(E^{2}\right)\right]=\frac{1}{2}(4 \pm 2)=\frac{3}{1} \\
& x_{E}^{ \pm}\left(C_{3}\right)=\frac{1}{2}\left[x_{E}^{2}\left(C_{3}\right) \pm x_{E}\left(C_{3}^{2}\right)\right]=\frac{1}{2}(1 \pm(-1))=\begin{array}{c}
0 \\
1
\end{array} \\
& x_{E}^{ \pm}\left(\sigma_{v}\right)=\frac{1}{2}\left[x_{E}^{2}\left(\sigma_{v}\right) \pm x_{E}\left(\sigma_{3}^{2}\right)\right]=\frac{1}{2}(0 \pm 2)=\begin{array}{c}
1 \\
-1
\end{array}
\end{aligned}
$$

In general:
$\chi_{\mu^{n}}^{[\lambda]}(R)=\frac{\ell_{[\lambda]}}{n!} \sum_{C \in S_{n}} \chi^{[\lambda]}(C) m_{C} \prod_{i=1}^{n} \chi^{v_{i}}\left(R^{i}\right)$
n the power
$[\lambda] \quad$ irrep of S_{n}
$\ell_{[\lambda]} \quad$ dimension of $[\lambda]$
C class of S_{n}
$m_{c} \quad$ number of elements of class C
$\chi^{[\lambda]}(C)$ character of the irrep $[\lambda]$ of Sn
$\chi(R) \quad$ character of the irrep μ of the point group
$v_{i} \quad$ number of i-elements cycles of C

Boyle Tables (Int.J.Quantum Chem. 6 (1972) 725-746):

Table II. The symmetrized cubes of the irreducible representations of non-centrosymmetric point groups.

$T_{d} \mathrm{O}, \quad E^{3}=\left\{A_{1}+A_{2}+E \mid \mathscr{A}_{1}\right\}+\{E \mid \mathscr{E}\}$
$T_{1}^{3}=\left\{A_{2}+2 T_{1}+T_{2} \mid \mathscr{A}_{1}\right\}+\left\{A_{1} \mid \mathscr{A}_{2}\right\}+\left\{E+T_{1}+T_{2} \mid \mathscr{E}\right\}$
$T_{2}^{3}=\left\{A_{1}+T_{1}+2 T_{2} \mid \mathscr{A}_{1}\right\}+\left\{A_{1} \mid \mathscr{A}_{2}\right\}+\left\{E+T_{1}+T_{2} \mid \mathscr{E}\right\}$
$K \quad D_{1}^{3}=\left\{D_{1}+D_{3} \mid \mathscr{A}_{1}\right\}+\left\{D_{0} \mid \mathscr{A}_{2}\right\}+\left\{D_{1}+D_{2} \mid \mathscr{\mathscr { E }}\right\}$
$D_{2}^{3}=\left\{D_{0}+D_{2}+D_{3}+D_{4}+D_{6} \mid \mathscr{A}_{1}\right\}+\left\{D_{1}+D_{3} \mid \mathscr{A}_{2}\right\}$ $+\left\{D_{1}+2 D_{2}+D_{3}+D_{4}+D_{5} \mid \mathscr{E}\right\}$

Boyle Tables (cont): Terms of electronic atomic configurations
Table II. The symmetrized cubes of the irreducible representations of K

$$
\begin{aligned}
& D_{1}^{3}=\left\{D_{1}+D_{3} \mid \mathscr{A}_{1}\right\}+\left\{D_{0} \mid \mathscr{A}_{2}\right\}+\left\{D_{1}+D_{2} \mid \delta\right\} \\
& D_{2}^{3}=\left\{D_{0}+D_{2}+D_{3}+D_{4}+D_{6} \mid \mathscr{A}_{1}\right\}+\left\{D_{1}+D_{3} \mid \mathscr{A}_{2}\right\} \\
& +\left\{D_{1}+2 D_{2}+D_{3}+D_{4}+D_{5} \mid \text { E }\right\} \\
& D_{1 / 2}^{3}=\left\{D_{3 / 2} \mid \mathscr{A}_{1}\right\}+\left\{D_{1 / 2} \mid \mathscr{E}\right\} \\
& D_{3 / 2}^{3}=\left\{D_{3 / 2}+D_{5 / 2}+D_{9 / 2} \mid \mathscr{A}_{1}\right\}+\left\{D_{3 / 2} \mid \mathscr{A}_{2}\right\}+\left\{D_{1 / 2}+D_{3 / 2}\right. \\
& \left.+D_{5 / 2}+D_{7 / 2} \mid \mathscr{E}\right\} \\
& D_{5 / 2}^{3}=\left\{D_{3 / 2}+D_{5 / 2}+D_{7 / 2}+D_{9 / 2}+D_{11 / 2}+D_{15 / 2} \mid \mathscr{A}_{1}\right\} \\
& +\left\{D_{3 / 2}+D_{5 / 2}+D_{9 / 2} \mid \mathscr{A}_{2}\right\} \\
& +\left\{D_{1 / 2}+D_{3 / 2}+2 D_{5 / 2}+2 D_{7 / 2}+D_{8 / 2}+D_{11 / 2}+D_{13 / 2} \mid \mathcal{E}\right\}
\end{aligned}
$$

Terms of p^{3} configuration

${ }^{2} P,{ }^{2} D,{ }^{4} S$

Terms of d^{3} configuration
$D_{2}^{3}=\left\{D_{0}+D_{2}+D_{3}+D_{4}+D_{6} \mid \mathscr{A}_{1}\right\}+\left\{D_{1}+D_{3} \mid \mathscr{A}_{2}\right\}$ $+\left\{D_{1}+2 D_{2}+D_{3}+D_{4}+D_{5} \mid \varepsilon\right\}$

$$
D_{1 / 2}^{3}=\left\{D_{3 / 2} \mid \mathscr{A}_{1}\right\}+\left\{D_{1 / 2} \mid \overrightarrow{8}\right\}
$$

$$
{ }^{4} P,{ }^{4} F,{ }^{2} P,{ }^{2} D(2),{ }^{2} F,{ }^{2} G,{ }^{2} H
$$

Boyle Tables (cont): Terms of electronic molecular configurations

configuration t_{2}^{3} :
$\mathrm{t}_{2}^{3}=\left\{\mathrm{A}_{1}+\mathrm{T}_{1}+2 \mathrm{~T}_{2} \mid[3]\right\} \oplus\left\{\mathrm{A}_{2} \mid\left[1^{3}\right]\right\} \oplus\left\{\mathrm{E}+\mathrm{T}_{1}+\mathrm{T}_{2} \mid[21]\right\}$
$\mathrm{D}_{1 / 2}^{3}=\left\{\mathrm{D}_{3 / 2} \mid[3]\right\} \oplus\left\{\mathrm{D}_{1 / 2} \mid[21]\right\}$

$$
{ }^{4} \mathrm{~A}_{2}+{ }^{2} \mathrm{E}+{ }^{2} \mathrm{~T}_{1}+{ }^{2} \mathrm{~T}_{2}
$$

configuration $\mathrm{t}_{2}^{2} \mathrm{e}$:

$$
\begin{aligned}
\text { subconfiguration } \mathrm{t}_{2}^{2}: & \mathrm{t}_{2}^{2}=\mathrm{A}_{1}+\mathrm{E}+\left[\mathrm{T}_{1}\right]+\mathrm{T}_{2} \\
& \mathrm{D}_{1 / 2}^{2}=\mathrm{D}_{1} \oplus\left[\mathrm{D}_{0}\right] \\
\longrightarrow & { }^{3} \mathrm{~T}_{1}+{ }^{1} \mathrm{~T}_{2}+{ }^{1} \mathrm{E}+{ }^{1} \mathrm{~A}_{1}
\end{aligned}
$$

subconfiguration e: ${ }^{2} \mathrm{E}$
Terms in the configuration $\mathrm{t}_{2}^{2} \mathrm{e}$:

$$
\begin{aligned}
\left({ }^{3} \mathrm{~T}_{1}\right. & \left.+{ }^{1} \mathrm{~T}_{2}+{ }^{1} \mathrm{E}+{ }^{1} \mathrm{~A}_{1}\right) \otimes{ }^{2} \mathrm{E}= \\
& ={ }^{4} \mathrm{~T}_{1}+{ }^{4} \mathrm{~T}_{2}+{ }^{2} \mathrm{~T}_{1}(2)+{ }^{2} \mathrm{~T}_{2}(2)+{ }^{2} \mathrm{~A}_{1}+{ }^{2} \mathrm{~A}_{2}+{ }^{2} \mathrm{E}(2)
\end{aligned}
$$

configuration $\mathrm{t}_{2} \mathrm{e}^{2} \quad{ }^{4} \mathrm{~T}_{1}+{ }^{2} \mathrm{~T}_{1}(2)+{ }^{2} \mathrm{~T}_{2}(2)$
configuration e^{3} :

$$
\begin{array}{ll}
\mathrm{e}^{3}=\left\{\mathrm{A}_{1}+\mathrm{A}_{2}+\underset{\underset{\sim}{\mathrm{E}} \mid[3]\}}{\underset{\sim}{*}} \underset{\{\mathrm{E} \mid[21]\}}{\downarrow}\right. \\
\mathrm{D}_{1 / 2}^{3}=\left\{\mathrm{D}_{3 / 2} \mid[3]\right\} \oplus\left\{\mathrm{D}_{1 / 2} \mid[21]\right\} & { }^{2} \mathrm{E} \\
\hline
\end{array}
$$

Correlation diagrams (Tanabe-Sugano) d^{2} configuration

Tanabe-Sugano diagram for the $\mathrm{Ni}(\mathrm{II}) 3 \mathrm{~d}^{8}$ in octahedral CF. vertical dashed line indicates the CF strength for $\mathrm{MgO}: \mathrm{Ni}^{2+}$.

N. Mironova-Ulmanea,M.G. Brikb, I. Sildos Journal of Luminescence 135 (2013) 74-78
V^{3+} (d^{2} configuration) ion in $\alpha-\mathrm{ZnAl}_{2} \mathrm{~S}_{4}$ host crystal.
S. Anghela, G. Boulonb,L. Kulyuka, K. Sushkevichc

Physica B: Condensed Matter 406 (2011) 4600-4603

POINT SYMMETRY

Unit 7: Continuous symmetry: Lie groups

Josep Planelles

The group of rotations around an axis: $C_{\infty} o \quad S O(2)$

This group has infinite number of elements, $\phi \in(0,2 \pi)$. It is a commutative group, i.e. has an infinite number of classes. Then, its character table cannot be derived from the orthogonality theorems, used for finite groups.
infinitesimal rotation $C_{z}^{\delta \phi}$ on $f(\theta)$:
$C_{z}^{\delta \phi} f(\theta)=f(\theta-\delta \phi)=f(\theta)-\delta \phi \frac{d f(\theta)}{d \theta}=\left(1-\delta \phi \frac{d}{d \theta}\right) f(\theta)$

Remember: $\quad \hat{L}_{z}=-i \hbar \frac{d}{d \theta}$

$$
C_{z}^{\delta \phi}=\left(1-i \frac{\delta \phi}{\hbar} \hat{L}_{z}\right)
$$

Finite rotation : $C_{z}^{\phi}=\lim _{N \rightarrow \infty}\left(C_{z}^{\delta \phi}\right)^{N} \quad$ with $\quad \delta \phi=\lim _{N \rightarrow \infty} \frac{\phi}{N}$
Remember: $\quad e=\lim _{N \rightarrow \infty}\left(1+\frac{1}{N}\right)^{N}$
$C_{z}^{\phi}=\lim _{N \rightarrow \infty}\left(C_{z}^{\delta \phi}\right)^{N}=\lim _{N \rightarrow \infty}\left[\left(1+\frac{1}{\frac{i N \hbar}{\phi \hat{L}_{z}}}\right)^{\frac{i N \hbar}{\phi \hat{L}_{z}}}\right]^{\frac{\phi \hat{L}_{z}}{i \hbar}}=e^{-i \phi \hat{L}_{z} / \hbar}$

The eigenfunctions of \hat{L}_{Z} are eigenfunctions of C_{Z}^{ϕ}

$$
\begin{aligned}
C_{z}^{\phi} e^{i M \theta} & =e^{-i \phi \hat{L}_{z} / \hbar} f(\theta)=\left[1-\frac{i \phi}{\hbar} \hat{L}_{z}+\frac{1}{2}\left(\frac{i \phi}{\hbar} \hat{L}_{z}\right)^{2}+\ldots\right] e^{i M \theta} \\
& =\left[1-i \phi M+\frac{1}{2}(-i \phi M)^{2}+\ldots\right] e^{i M \theta}
\end{aligned}
$$

\rightarrow The eigenfunctions of Lz are bases for the irreps of the SO(2) group.

The line group $S O(2)$ or $\boldsymbol{C} \boldsymbol{C}: \quad C_{z}^{\phi} e^{i M \theta}=e^{-i M \phi} e^{i M \theta}$

\mathcal{C}_{∞}	(també $S O(2))$	E	C_{z}^{ϕ}	Bases
0	Σ	1	1	$1, z, R_{z}$
± 1	$\Pi\{$	1	$e^{-i \phi}$	$\left.e^{i \theta} \quad\right\}(x, y)$
		1	$e^{i \phi}$	$\left.e^{-i \theta} \quad\right\} \quad$
± 2	$\Delta\{$	1	$e^{-2 i \phi}$	$e^{2 i \theta}$
\ldots	\ldots	\ldots	\ldots	$e^{-2 i \theta}$
		\ldots		

The symmetry group of the sphere K or $\mathrm{SO}(3)$
(special orthogonal 3D group)

Since $L_{z}=\vec{L} \cdot \vec{k}$ the rotation operator around the z axis (defined by the vector k) is: $C_{z}^{\phi}=e^{-i \frac{\phi}{\hbar} \vec{L} \cdot \vec{k}}$

The symmetry group of the sphere K or $\mathrm{SO}(3)$
(special orthogonal 3D group)
Finite rotation around an axis defined by the vector $u: \quad C_{u}^{\phi}=e^{-i \frac{\phi}{\hbar} \vec{L} \cdot \vec{u}}$
The sphere group K includes all rotations around all sphere symmetry axes.
K is not a commutative group. Rotations of the same angle around different axes belong to the same class.
Since rotations cannot change the length of the angular momentum (since $L \pm=L x \pm i$ Ly and $\mid L M>$ is an eigenfunciton of $L z$).
Then, the complete set of functions $\{\mid L M>, M=-L, \ldots, L\}$ are basis for the irreps of K

K	(també $S O(3))$	E	∞C_{u}^{ϕ}
S	D_{0}	1	1
P	D_{1}	3	$1+2 \cos \phi$
D	D_{2}	5	$1+2 \cos \phi+2 \cos 2 \phi$
F	D_{3}	7	$1+2 \cos \phi+2 \cos 2 \phi+2 \cos 3 \phi$
\ldots	\cdots	\ldots	\ldots

Decomposition of the direct product of representations

The same than that of angular momentum

$$
\mathrm{D}^{1_{1}} \otimes \mathrm{D}^{1_{2}}=\mathrm{D}^{1_{1}+1_{2}} \oplus \mathrm{D}^{1_{1}+1_{2}-1} \oplus \ldots \ldots \oplus \mathrm{D}^{\left|1_{1}-1_{2}\right|}
$$

Symmetric and antisymmetric part $\left\{\begin{array}{c}\mathrm{D}_{1 \otimes 1}^{[+]}=\mathrm{D}^{21} \oplus \mathrm{D}^{21-2} \oplus \mathrm{D}^{21-4} \oplus \ldots \\ \mathrm{D}_{1 \otimes 1}^{[-1}=\mathrm{D}^{21-1} \oplus \mathrm{D}^{21-3} \oplus \mathrm{D}^{21-5} \oplus \ldots\end{array}\right.$

$$
\mathrm{D}^{1} \otimes \mathrm{D}^{1}=\mathrm{D}^{21} \oplus\left[\mathrm{D}^{21-1}\right] \oplus \mathrm{D}^{21-2} \oplus\left[\mathrm{D}^{21-3}\right] \oplus \mathrm{D}^{21-4} \oplus \ldots .
$$

Group of the CO molecule: $C_{\infty v}$

In a similar way to:

$$
C_{3 v}=\sigma_{v} \otimes C_{3}
$$

$\mathrm{C}_{3 \mathrm{v}}$	C_{3}	E	$2 \mathrm{C}_{3}$	$3 \sigma_{\mathrm{v}}$
A	$\left\{\begin{array}{c}\mathrm{A}_{1} \\ \\ \mathrm{~A}_{2}\end{array}\right.$	1	1	1
E	$\mathrm{E}\left\{_{-}^{+}\right.$	2	$2 \cos 2 \pi / 3$	-1

We have:

$$
\mathcal{C}_{\infty v}=\sigma_{v} \otimes \mathcal{C}_{\infty}
$$

$\mathcal{C}_{\infty v}$	E	C_{z}^{ϕ}	$\infty \sigma_{v}$	Bases
Σ^{+}	1	1	1	z
Σ^{-}	1	1	-1	R_{z}
Π	2	$2 \cos \phi$	0	(x, y)
Δ	2	$2 \cos 2 \phi$	0	
\ldots	\cdots	\cdots	\cdots	\ldots

Decomposition of the direct product of representations

$1+\cos 2 \phi=2 \cos ^{2} \phi \quad \longrightarrow \quad 4 \cos ^{2} \phi=2+2 \cos 2 \phi$
$\longrightarrow \Pi \otimes \Pi=\Sigma^{+} \oplus \Sigma^{-} \oplus \Delta$

Alternatively: | | 1 | -1 | |
| :---: | :---: | :---: | :---: |
| | 1 | 2 | 0 |
| | -1 | 0 | -2 |

Grup de translacions

Translation operator: $\hat{T}_{n} f(x)=f(x+n a)$
Linear momentum as generator of translations $\hat{T}_{n}=e^{i a n \hat{p}}$
Proof:

$$
e^{i a n \hat{p}} f(x)=\sum_{j}^{\infty} \frac{(a n)^{j}}{j!} \frac{d^{j} f(x)}{d x^{j}}=f(x+a n)
$$

Since $\boldsymbol{n} \in \mathbb{Z}$ the translation group has infinite number of elements.
It is an abelian group $\hat{T}_{n} \hat{T}_{m}=\hat{T}_{m} \hat{T}_{n}=e^{i a(n+m) \hat{p}}$
Then, it has an infinite numbers of one-dimensional irreps

The eigenfunctions of the linear momentum are also eigenfunctions of the translation operator. Then, we may employ the eigenfunctions $\exp (i k x)$ of the linear momentum to calculate the character table.
$\hat{T}_{n} e^{i k x}=\sum_{q}^{\infty} \frac{(i a n)^{q}}{q!} \hat{p}^{q} e^{i k x}=\sum_{q}^{\infty} \frac{(i a n k)^{q}}{q!} e^{i k x}=e^{i a n k} e^{i k x}$

The eigenvalue k is not bounded. However, the eigenfunctions associated with $k^{\prime}=k+2 \pi m / a, m \in Z$ are equivalent (have the same characters).

The fully symmetric A_{1} irrep corresponds to $k=0$. Therefore, it is convenient to definek $\in(-\pi d a$, $\pi a)$ This region is called the First Brillouin zone

The Bloch functions $\Psi_{\mathbf{k}}(\mathbf{r})=e^{i \mathbf{k r}} u(\mathbf{r})$, on $u(\mathbf{r}+\mathbf{a})=u(\mathbf{r})$
are also bases of the irreps of this group.

POINT SYMMETRY

Unit 8: Spin functions and double groups

Josep Planelles
Dpt. Química Física i Analítica
Universitat Jaume I

Spin functions and double groups

Let's consider C_{2} :

\mathcal{C}_{2}	E	C_{2}	
A	1	1	z
B	1	-1	x, y

Since the eigenfunctions of L_{2} are bases of the irreps of C_{∞} they must also be bases of the irreps of C_{2}

$$
\begin{gathered}
E e^{i m \theta}=e^{i m \theta} \\
C_{2} e^{i m \theta}=e^{i m(\theta-\pi)}=e^{-i m \pi} e^{i m \theta} \quad m=0 \pm 1 \pm 2 \ldots
\end{gathered}
$$

The eigenfunctions with even " m " are basis for the irrep A, those of odd " m " are basis of the irrep B.

Consider the action of C_{2} on the function $f(\theta)=\operatorname{Exp}(-i \theta / 2)$

$$
E e^{-i \theta / 2}=e^{-i \theta / 2}
$$

$C_{2} e^{-i \theta / 2}=e^{-i(\theta-\pi) / 2}=i e^{i \theta / 2}$

\mathcal{C}_{2}	E	C_{2}	
A	1	1	z
B	1	-1	x, y

\mathcal{C}_{2}	E	C_{2}	
Γ	1	i	$e^{-i \theta / 2}$

The one-dimensional Γ representation is obviously not reducible, but it is neither A nor B !
The paradox comes from the fact that when acting on these functions $C_{2}^{2} \neq E$
We define $Q=C_{2}^{2} \neq E$ and complete the group by carrying out all the products:

$$
\mathcal{C}_{2}^{*}=\left\{E, C_{2}, Q=C_{2}^{2}, Q \otimes C_{2}=C_{2}^{3}\right\}
$$

The resulting group is abelian and it is isomorphic to C_{4}

The abelian group obtained, isomorphic to C_{4} is referred to as double group of $C_{2}\left(C_{2}^{*}\right)$

\mathcal{C}_{2}^{*}	E	C_{2}	Q	$Q \otimes C_{2}$
Γ_{1}	1	1	1	1
Γ_{2}	1	-1	1	-1
Γ_{3}	1	i	-1	$-i$
Γ_{4}	1	$-i$	-1	i

Consider the action of this group on the functions $z, x, e^{-i \theta / 2}$ and $e^{i \theta / 2}$.

It is immediate to check that they are basis of the irreps $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ and Γ_{4}, respectively.
Furthermore, if we remove Q and $Q \otimes C_{2}$ (and therefore we remove Γ_{3} and Γ_{4}), the functions z and x, basis of Γ_{1} and Γ_{2}, become basis of A and B of the group C_{2}, as we already knew.

Why are we interested in building up double groups? Because like the functions $e^{ \pm i \theta / 2}$, the spin functions flip the sign if we rotate them an angle 2π.

$$
e^{-i 2 \pi \hat{S}_{z} / \hbar}|\alpha\rangle=e^{-i 2 \pi(\hbar / 2) / \hbar}|\alpha\rangle=-|\alpha\rangle
$$

Summarizing: $\quad R(\theta+2 \pi)=R(\theta)$ If $f(\theta) \neq f(\theta+2 \pi)$ but $f(q) \neq f(\theta+2 \pi m)$ we say that $f(\theta)$ is m-evaluated.

The multi-evaluated functions cannot be used as basis to represent a group because $O_{R} f(\theta) \neq f\left(R^{-1} \theta\right)$.

The multi-evaluated representations cannot be ignored because they are important in Physics! (e.g. the spin functions)

The strategy followed to build $C_{2}{ }^{*}$ shows that we always can construct a group G^{*} with all representations single-evaluated starting from a group G having multi-evaluated representations.

Every irrep of G (single- or multi-evaluated) is single-evaluated in G^{*}.
The orthogonality theorems are applicable to double groups G^{*}

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 9: Dynamic and degeneration groups

Dynamic groups: An example
The Heisenberg group and the harmonic oscillator

Heisenberg algebra

Elements: $\{\mathbf{1}, \mathbf{p}, \mathbf{q}\} \quad$ Commutations: $\left\{\begin{array}{l}{[p, 1]=0} \\ {[q, 1]=0} \\ {[p, q]=-i}\end{array}\right.$

$$
\left.\begin{array}{ll}
\text { Alternatively: } & b^{+}=\frac{1}{\sqrt{2}}\left(q-\frac{d}{d q}\right)=\frac{1}{\sqrt{2}}(q-i p) \\
& b=\frac{1}{\sqrt{2}}\left(q+\frac{d}{d q}\right)=\frac{1}{\sqrt{2}}(q+i p)
\end{array}\right] \begin{aligned}
& {\left[b^{+}, 1\right]=0} \\
& {[b, 1]=0} \\
& {\left[b, b^{+}\right]=1}
\end{aligned}
$$

HO Hamiltonian: $\mathcal{H}=\frac{1}{2}\left(p^{2}+q^{2}\right)$
$[\mathcal{H}, b]=-b] \quad\left[\mathcal{H}, \frac{b+b^{+}}{\sqrt{2}}\right]=[\mathcal{H}, q]=\frac{1}{\sqrt{2}}\left(-b+b^{+}\right)=-i p$
$\left.\left[\mathcal{H}, b^{+}\right]=b^{+}\right] \quad\left[\mathcal{H}, \frac{b-b^{+}}{i \sqrt{2}}\right]=[\mathcal{H}, p]=\frac{1}{i \sqrt{2}}\left(-b-b^{+}\right)=i q$

Group element:

The Heisenberg group as a dynamic group: $\left\{\begin{array}{l}|v\rangle=\frac{1}{\sqrt{v!}}\left(b^{+}\right)^{v}|0\rangle \\ |0\rangle=\frac{1}{\sqrt{v!}} b^{v}|v\rangle\end{array}\right.$

The $\mathrm{SO}(4,2)$ as dynamic group for the Hydrogen atom B.G. Wybourne, Classical groups for physicists, cap 21.

Degeneracy groups: An example
The $S O(4)$ or $R(4)$ group and the Hydrogen atom

The SO(4) Group

3 rotation $(x, y, z) \quad A_{1}=z \partial_{y}-y \partial_{z} \quad A_{2}=x \partial_{z}-z \partial_{x} \quad A_{3}=y \partial_{x}-x \partial_{y}$
4D rotation $(x, y, z, t) \quad B_{1}=x \partial_{t}-t \partial_{x} \quad B_{2}=y \partial_{t}-t \partial_{y} \quad B_{3}=z \partial_{t}-t \partial_{z}$

Commutations

$\left[A_{i}, B_{i}\right]=0$

$$
\left[A_{1}, B_{2}\right]=B_{3} \quad\left[A_{1}, B_{3}\right]=-B_{2}
$$

$\left[A_{i}, A_{i+1}\right]=A_{i+2} \quad\left[A_{2}, B_{1}\right]=-B_{3}\left[A_{2}, B_{3}\right]=B_{1}$
$\left[B_{i}, B_{i+1}\right]=A_{i+2} \quad\left[A_{3}, B_{1}\right]=B_{2} \quad\left[A_{3}, B_{2}\right]=-B_{1}$

Define: $\quad J_{i}=\frac{1}{2}\left(A_{i}+B_{i}\right) \quad K_{i}=\frac{1}{2}\left(A_{i}-B_{i}\right)$
$\left[J_{i}, J_{i+1}\right]=J_{i+2} \longrightarrow$ Angular momentum algebra \mathscr{B}_{1} $\left[K_{i}, K_{i+1}\right]=K_{i+2} \longrightarrow \quad$ Angular momentum algebra \mathscr{B}_{1}^{\prime}

$$
\left[J_{i}, K_{j}\right]=0 \quad \mathscr{D}_{2}=\mathscr{B}_{1} \oplus \mathscr{B}_{1}^{\prime}
$$

$\left\{J_{i}\right\}$ and $\left\{K_{j}\right\}$ span two disjoint subalgebras $\left(\left[J_{i}, K_{j}\right]=0\right)$

We define (analogy with angular momentum algebra)

$$
\begin{aligned}
H_{1} & =\frac{i}{\sqrt{2}} J_{3} & H_{2} & =\frac{i}{\sqrt{2}} K_{3} \\
E_{ \pm \alpha} & =\frac{i}{2}\left(J_{1} \pm i J_{2}\right) & E_{ \pm \beta} & =\frac{i}{2}\left(K_{1} \pm i K_{2}\right)
\end{aligned}
$$

The associated Casimir operators (L^{2} analog.)

$$
\begin{aligned}
& F_{1}=H_{1}^{2}+E_{\alpha} E_{-\alpha}+E_{-\alpha} E_{\alpha} \\
& F_{2}=H_{2}^{2}+E_{\beta} E_{-\beta}+E_{-\beta} E_{\beta}
\end{aligned}
$$

Casimir operators acting upon functions:

$$
\begin{aligned}
& F_{1}\left|j_{1} m_{1}\right\rangle=\frac{1}{2} j_{1}\left(j_{1}+1\right)\left|j_{1} m_{1}\right\rangle \\
& F_{2}\left|j_{2} m_{2}\right\rangle=\frac{1}{2} j_{2}\left(j_{2}+1\right)\left|j_{2} m_{2}\right\rangle
\end{aligned}
$$

Define symmetric anti-symmetric part: $\left\{\begin{array}{l}C=F_{1}+F_{2} \\ F_{1}-F_{2}=0 \longrightarrow j_{1}=j_{2}\end{array}\right.$

$$
\begin{aligned}
& C\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=\frac{1}{2}\left[j_{1}\left(j_{1}+1\right)+j_{2}\left(j_{2}+1\right)\right]\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle \\
& \quad j(j+1)=j^{2}+j=\frac{1}{4}\left[(2 j+1)^{2}-1\right]=\frac{1}{4}\left[n^{2}-1\right] \\
& n=1,2,3, \ldots \\
& \text { Degeneracy: } n^{2}
\end{aligned}
$$

Lowering symmetry: $\mathrm{SO}(4) \Longrightarrow S O(3)$

$$
\begin{align*}
& j_{1} \otimes j_{2}=\left(j_{1}+j_{2}\right) \oplus\left(j_{1}+j_{2}-1\right) \oplus \cdots \oplus\left|j_{1}+j_{2}\right| \\
& n=1 \quad j_{1}=j_{2}=0 \quad D_{00} \rightarrow D_{0} \tag{1s}\\
& n=2 \quad j_{1}=j_{2}=\frac{1}{2} \quad D_{\frac{1}{2} \frac{1}{2}} \rightarrow D_{1} \oplus D_{0} \\
& (2 s+2 p) \\
& n=3 \quad j_{1}=j_{2}=1 \quad D_{11} \rightarrow D_{2} \oplus D_{1} \oplus D \\
& (3 s+3 p+3 d)
\end{align*}
$$

Is SO(4) the degeneration group of the Hydrogen atom?

Hydrogen Hamiltonian: $\quad \mathcal{H}=\frac{p^{2}}{2 m}-\frac{Z}{r}$

$$
\begin{aligned}
\text { Invariants: } & L=r \times p \quad[\mathcal{H}, L]=0 \\
& R=\frac{1}{2}(L \times p-p \times L)+Z \frac{\mathbf{r}}{r} \quad[\mathcal{H}, R]=0
\end{aligned}
$$

We define:

$$
\begin{array}{ccc}
A_{1}=-i L_{x} & A_{2}=-i L_{y} & A_{3}=-i L_{z} \\
B_{1}=\frac{i}{\sqrt{-2 E}} R_{x} & B_{2}=\frac{i}{\sqrt{-2 E}} R_{y} & B_{3}=\frac{i}{\sqrt{-2 E}} R_{z}
\end{array}
$$

In front of the subspace $\{|n, \ell, m\rangle, \ell=0,1, \ldots(n-1), m=-\ell, \ldots 0, \ldots \ell\}$ $A_{\dot{v}} B_{i}$ behaves like in $\operatorname{SO}(4)$ (same commutation rules)

Casimir operators :

$C=F_{1}+F_{2}=\ldots=-\frac{1}{4}\left(A_{1}^{2}+A_{2}^{2}+A_{3}^{2}+B_{1}^{2}+B_{2}^{2}+B_{3}^{2}\right)=\ldots=\frac{1}{4}\left(L^{2}-\frac{R^{2}}{2 E}\right)$

We have: $R^{2}=2 \mathcal{H} L^{2}+2 \mathcal{H}+Z^{2}$

$$
\longrightarrow C=-\frac{Z^{2}}{8 \mathcal{H}}-\frac{1}{4}
$$

Eigenvalues de C:

$$
\frac{1}{4}\left(n^{2}-1\right)=-\frac{Z^{2}}{8 E}-\frac{1}{4} \rightarrow \frac{1}{4} n^{2}=-\frac{Z^{2}}{8 E} \rightarrow E=-\frac{Z^{2}}{2 n^{2}}
$$

degeneration: n^{2}

Coordinate representation

Spherical coordinates are naturally adapted to $S O(3)$
SO(4) is more easily exhibited in parabolic coordinates:

$$
x=\sqrt{\xi \eta} \cos \varphi, \quad y=\sqrt{\xi \eta} \sin \varphi, \quad z=\frac{1}{2}(\xi-\eta)
$$

Schrodinger equation in parabolic coordinates:
$-\frac{\hbar^{2}}{2 M}\left\{\frac{4}{\xi+\eta}\left[\frac{\partial}{\partial \xi}\left(\xi \frac{\partial}{\partial \xi}\right)+\frac{\partial}{\partial \eta}\left(\eta \frac{\partial}{\partial \eta}\right)\right]+\frac{1}{\xi \eta} \frac{\partial^{2}}{\partial \varphi^{2}}\right\} \psi-\frac{2 e^{2}}{\xi+\eta} \psi=E \psi$
From above, the basic algebra operators: $\quad A_{j}=-i L_{j} \quad B_{j}=\frac{i}{\sqrt{-2 E}} R_{j}$
From them we defined: $\quad J_{i}=\frac{1}{2}\left(A_{i}+B_{i}\right) \quad K_{i}=\frac{1}{2}\left(A_{i}-B_{i}\right)$
And the creators and annihilators:

$$
J_{ \pm}=\frac{i}{2}\left(J_{1} \pm i J_{2}\right) \quad K_{ \pm}=\frac{i}{2}\left(K_{1} \pm i K_{2}\right)
$$

L and R can be expressed s a function of x, y, z coordinates.

So, can be expressed as a function of parabolic coordinates

$$
\begin{aligned}
J_{+} & =\hbar \mathrm{e}^{\mathrm{i} \phi}\left(\sqrt{u} \frac{\partial}{\partial u}+\frac{\mathrm{i}}{2 \sqrt{u}} \frac{\partial}{\partial \phi}+\frac{\sqrt{u}}{2}\right) & K_{+} & =-\hbar \mathrm{e}^{\mathrm{i} \phi}\left(\sqrt{u} \frac{\partial}{\partial u}+\frac{\mathrm{i}}{2 \sqrt{u}} \frac{\partial}{\partial \phi}-\frac{\sqrt{u}}{2}\right) \\
& \times\left(\sqrt{v} \frac{\partial}{\partial v}+\frac{\mathrm{i}}{2 \sqrt{v}} \frac{\partial}{\partial \phi}-\frac{\sqrt{v}}{2}\right), & & \times\left(\sqrt{v} \frac{\partial}{\partial v}+\frac{\mathrm{i}}{2 \sqrt{v}} \frac{\partial}{\partial \phi}+\frac{\sqrt{v}}{2}\right), \\
J_{-} & =\hbar \mathrm{e}^{-\mathrm{i} \phi}\left(\sqrt{u} \frac{\partial}{\partial u}-\frac{\mathrm{i}}{2 \sqrt{u}} \frac{\partial}{\partial \phi}-\frac{\sqrt{u}}{2}\right) & K_{-} & =-\hbar \mathrm{e}^{-\mathrm{i} \phi}\left(\sqrt{u} \frac{\partial}{\partial u}-\frac{\mathrm{i}}{2 \sqrt{u}} \frac{\partial}{\partial \phi}+\frac{\sqrt{u}}{2}\right) \\
& \times\left(\sqrt{v} \frac{\partial}{\partial v}-\frac{\mathrm{i}}{2 \sqrt{v}} \frac{\partial}{\partial \phi}+\frac{\sqrt{v}}{2}\right), & & \times\left(\sqrt{v} \frac{\partial}{\partial v}-\frac{\mathrm{i}}{2 \sqrt{v}} \frac{\partial}{\partial \phi}-\frac{\sqrt{v}}{2}\right),
\end{aligned}
$$

Torres et al, Rev. Mex. Fis. 54 (2008) 454
They act upon the states: $\left|j m_{1} m_{2}\right\rangle$
In particular: $J_{+}|j, j, j\rangle=0, \quad K_{+}|j, j, j\rangle=0$

$$
\longrightarrow \psi_{j, j, j}=N \mathrm{e}^{-(u+v) / 2}(u v)^{j} \mathrm{e}^{\mathrm{i} 2 j \phi}
$$

etc.

POINT SYMMETRY

Unit 10: Tensors as basis set of group representations

Irreducible tensor operators

The character of a physical magnitude and its associated quantum mechanical operator is defined by its rotational properties

Generators of the rotational group: $\left\{J_{z}, J_{\sharp}\right\}^{\prime}$
Every rotation $R_{\mathbf{u}}(\phi)=\exp [-i \phi(\mathbf{J} \cdot \mathbf{u}) / \hbar]$
If an operator commutes with $\left\{J_{z}, J_{\sharp}\right\}$ is an invariant under rotations

Scalar and scalar operator:

A quantity is called scalar if it is invariant under all rotations.
It is basis of the irreducible D_{0} representation of the rotation group.
Examples: mass, length, energy ... and every scalar product of two polar vectors

Vector (polar vector) and vector operator

A vector V and a vector operator V have magnitude and direction.
They have components and behave as the vector position r and like r form a basis of the irrep. D_{1}.
We may use Cartesian $\left(V_{x}, V_{y} V_{z}\right)$ or spherical $\left(V_{l}, V_{0}, V_{-1}\right)$ coordinates.
Spherical coordinates are invariants under rotations generated by the associated generator: $\left[J_{z}, V_{0}\right]=\left[J_{+}, V_{+1}\right]=\left[J_{.}, V_{-1}\right]=0$

$$
V_{1}=-\frac{V_{x}+i V_{y}}{\sqrt{2}}, \quad V_{0}=V_{z}, \quad V_{-1}=\frac{V_{x}-i V_{y}}{\sqrt{2}}
$$

We may consider the full sphere group. Then, we have two possible representations: $D_{J} \rightarrow D_{J g}$ and $D_{J u}$

Scalars are invariants, then they are basis of $\boldsymbol{D}_{0_{g}}$

Polar vector change its sign with inversion, , then they are basis of $D_{I u}$

Axial vector and Axial vector operator:

An axial vector is invariant under inversion.
Examples: Magnetic field, angular momentum, etc.
We may see them as a cross product of two polar vectors: $L=r \times p$
They for basis for the irrep. $D_{I g^{\prime}}$.
Actually, they are second order zero trace anti-symmetric tensors

Peudoscalar and pseudoscalar operator:

A pseudoscalar change its sign under inversion and it is invariant under rotations. It is then basis of the irreducible $D_{0 u}$.
We may see them as a scalar product of a polar times an axial vector.
Example: magnetic flux : $\boldsymbol{\Phi}=\boldsymbol{B} \cdot \boldsymbol{S}$

Spherical tensor with $2 \omega+1$ components operator

It forms a base for the irrep. D_{ω}
Then, its component transforms into a linear combination of themselves:

$$
\mathcal{R} T_{\mu}^{(\omega)} \mathcal{R}^{-1}=\sum_{\nu} T_{\nu}^{(\omega)} D(R)_{\nu \mu}^{[\omega]}
$$

As with vectors, we may use Cartesian, $T_{x y}$, or spherical, T_{m}, coordinates.
Rotations transforms $T_{x y}$ as they transforms the polynomial xy:

$$
\mathcal{R} T_{x y} \mathcal{R}^{-1}=\sum_{i, j} T_{i j} D(R)_{x, i} D(R)_{y, j} \equiv \sum_{\alpha} T_{\alpha} D(R)_{\beta, \alpha}
$$

Second order Cartesian tensors can be built as direct product of two polar vectors, then they form a basis for the reducible representation:

$$
D_{1 u} \otimes D_{1 u}=D_{0 g} \oplus D_{1 g} \oplus D_{2 g}
$$

Then, we may consider the Cartesian tensor as a sum of three spherical tensors

Decomposition of a cartessian tensor into sum of spherical tensors

$$
D_{1 u} \otimes D_{1 u}=D_{0 g} \oplus D_{1 g} \oplus D_{2 g}
$$

$\boldsymbol{D}_{0 g} \rightarrow$ The trace $\operatorname{Tr}(T)=T_{x x}+T_{y y}+T_{z z}$ is this invariant.
$D_{1 g} \rightarrow$ We should extract a traceless anti-symmetric tensor

$$
A_{x}=\frac{1}{2}\left(T_{y z}-T_{z y}\right) A_{y}=\frac{1}{2}\left(T_{z x}-T_{x z}\right) A_{z}=\frac{1}{2}\left(T_{x y}-T_{y x}\right)
$$

$D_{2 g} \rightarrow$ We form a traceless symmetric second order tensor

$$
S_{i j}=\frac{1}{2}\left(T_{i j}+T_{j i}\right)-\frac{1}{3} \operatorname{Tr}(T)
$$

Alternatively we may choose the most common basis for $\boldsymbol{D}_{2 g}$

$$
\left\{S_{x y}, S_{y z}, S_{z x}, S_{x x}-S_{y y}, 2 S_{z z}-S_{x x}-S_{y y}\right\}
$$

$$
\begin{aligned}
\mathbb{T} & =\left(\begin{array}{lll}
x_{1} x_{2} & x_{1} y_{2} & x_{1} z_{2} \\
y_{1} x_{2} & y_{1} y_{2} & y_{1} z_{2} \\
z_{1} x_{2} & z_{1} y_{2} & z_{1} z_{2}
\end{array}\right) \\
& =\frac{1}{3} \operatorname{Tr}(\mathbb{T}) \mathbb{I}+\frac{1}{2}\left(\begin{array}{ccc}
0 & x_{1} y_{2}-y_{1} x_{2} & x_{1} z_{2}-z_{1} x_{2} \\
y_{1} x_{2}-x_{1} y_{2} & 0 & y_{1} z_{2}-z_{1} y_{2} \\
z_{1} x_{2}-x_{1} z_{2} & z_{1} y_{2}-y_{1} z_{2} & 0
\end{array}\right) \\
& +\frac{1}{2}\left(\begin{array}{ccc}
x_{1} x_{2}+x_{2} x_{1}-\frac{2}{3} \operatorname{Tr}(\mathbb{T}) & x_{1} y_{2}+y_{1} x_{2} & x_{1} z_{2}+z_{1} x_{2} \\
y_{1} x_{2}+x_{1} y_{2} & y_{1} y_{2}+y_{2} y_{1}-\frac{2}{3} \operatorname{Tr}(\mathbb{T}) & y_{1} z_{2}+z_{1} y_{2} \\
z_{1} x_{2}+x_{1} z_{2} & z_{1} y_{2}+y_{1} z_{2} & z_{1} z_{2}+z_{2} z_{1}-\frac{2}{3} \operatorname{Tr}(\mathbb{T})
\end{array}\right) \\
& =\frac{1}{3} \operatorname{Tr}(\mathbb{T}) \mathbb{I}+\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right)+\left(\begin{array}{ccc}
D_{1} & A & B \\
A & D_{2} & C \\
B & C & D_{3}
\end{array}\right) \\
& \mathbb{T}^{(0)}=\operatorname{Tr}(\mathbb{T}) \quad \mathbb{T}^{(1)}=\{a, b, c\}\left(\begin{array}{cc}
\\
\mathbb{T}^{(2)}=\left\{A, B, C, D_{1}, D_{2}\right\}
\end{array}\right.
\end{aligned}
$$

Building a secon order tensor as a product of polar vectors in spherical coordinates

$$
\begin{aligned}
& T_{0}=\sum_{\mu}(-1)^{\mu} V_{\mu} U_{\mu}^{*}=\sum_{\mu}(-1)^{\mu} V_{\mu} U_{-\mu} \\
& T_{ \pm 1}^{[1]}=V_{ \pm 1} U_{0}-V_{0} U_{ \pm 1} \\
& T_{0}^{[1]}=V_{1} U_{-1}-V_{-1} U_{1} \\
& T_{ \pm 2}^{[2]}=V_{ \pm 1} U_{ \pm 1} \\
& T_{ \pm 1}^{[2]}=V_{ \pm 1} U_{0}+V_{0} U_{ \pm 1} \\
& T_{0}^{[2]}=2 V_{0} U_{0}+V_{1} U_{-1}+V_{-1} U_{1}
\end{aligned}
$$

Example 1

$Y_{00}=\frac{1}{\sqrt{4 \pi}}$	$Y_{20}=\frac{1}{\sqrt{4 \pi}}\left[\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right]$
$Y_{10}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta$	$Y_{2 \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi}$
$Y_{1 \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi}$	$Y_{2 \pm 2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi}$

$$
D_{1 u} \otimes D_{1 u}=D_{0 g} \oplus D_{1 g} \oplus D_{2 g}
$$

$$
\begin{aligned}
T_{0}=\sum_{\mu}(-1)^{\mu} V_{\mu} U_{\mu}^{*} \quad T_{0} & =(-1)^{0} Y_{10} Y_{10}^{*}+(-1)^{ \pm 1}\left(Y_{11} Y_{1-1}^{*}+Y_{1-1} Y_{11}^{*}\right) \\
& =\frac{3}{4 \pi} \cos ^{2} \theta+2 \frac{3}{8 \pi} \sin ^{2} \theta=\frac{3}{4 \pi} \quad D_{0 g}
\end{aligned}
$$

$$
\left\{Y_{10} Y_{1 \pm 1}\right\} D_{1 u}
$$

$$
\begin{aligned}
& T_{ \pm 1}^{[1]}=V_{ \pm 1} U_{0}-V_{0} U_{ \pm 1} \\
& T_{0}^{[1]}
\end{aligned}=V_{1} U_{-1}-V_{-1} U_{1} \quad \mathbf{U} \wedge \mathbf{V}=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
U_{0} & U_{+} & U_{-} \\
V_{0} & V_{+} & V_{-}
\end{array}\right]=
$$

$$
D_{1 g}
$$

$$
=\mathbf{i}\left(U_{+} V_{-}-U_{-} V_{+}\right)+\mathbf{j}\left(U_{0} V_{-}-U_{-} V_{0}\right)+\mathbf{k}\left(U_{0} V_{+}-U_{+} V_{0}\right)
$$

$$
\left.\begin{array}{ll}
\hline Y_{00}=\frac{1}{\sqrt{4 \pi}} & Y_{20}=\frac{1}{\sqrt{4 \pi}}\left[\frac{3}{2} \cos ^{2} \theta-\frac{1}{2}\right] \\
Y_{10}=\left(\frac{3}{4 \pi}\right)^{1 / 2} \cos \theta & Y_{2 \pm 1}=\mp\left(\frac{15}{8 \pi}\right)^{1 / 2} \sin \theta \cos \theta e^{ \pm i \phi} \\
Y_{1 \pm 1}=\mp\left(\frac{3}{8 \pi}\right)^{1 / 2} \sin \theta e^{ \pm i \phi} & Y_{2 \pm 2}=\left(\frac{15}{32 \pi}\right)^{1 / 2} \sin ^{2} \theta e^{ \pm 2 i \phi}
\end{array}\right] . \begin{aligned}
& Y_{1 \pm 1}^{2}=\frac{3}{8 \pi} \sin ^{2} \theta e^{ \pm 2 i \phi} \\
& \\
& Y_{1 \pm 1} Y_{10}=\mp \frac{3}{4 \pi \sqrt{2}} \sin \theta \cos \theta e^{ \pm i \phi} \\
& T_{ \pm 2}^{[2]}=V_{ \pm 1} U_{ \pm 1} \\
& T_{ \pm 1}^{[2]}=V_{ \pm 1} U_{0}+V_{0} U_{ \pm 1} \\
& T_{0}^{[2]}=2 V_{0} U_{0}+V_{1} U_{-1}+V_{-1} U_{1} \\
& \\
& \\
&
\end{aligned}
$$

$\underline{\text { Example } 2} \quad D_{1 u} \otimes D_{1 u}=D_{0 g} \oplus D_{1 g} \oplus D_{2 g}$
Cartesian $\quad\{x, y, z\} \quad$ Spherical $\quad\left\{-\frac{x+i y}{\sqrt{2}}, \frac{x-i y}{\sqrt{2}}, z\right\}$
$\begin{array}{lll}\hat{L}_{x}=-i\left(y \partial_{z}-z \partial_{y}\right) & \hat{L}_{x} x=0 & \hat{L}_{x} y=(-i)(-z)=i z\end{array}$
$\hat{L}_{y}=-i\left(z \partial_{x}-x \partial_{z}\right) \quad \hat{L}_{y} y=0 \quad \hat{L}_{y} x=-i z$
$\hat{L}_{z}=-i\left(x \partial_{y}-y \partial_{x}\right) \quad \hat{L}_{ \pm}|\ell m\rangle=\sqrt{(\ell+1)+m(m \pm 1)}|\ell m \pm 1\rangle$
$\hat{L}_{+} x=\left(\hat{L}_{x}+i \hat{L}_{y}\right) x=i(-i) z=z$

$$
\hat{L}_{+}\left(-\frac{x+i y}{\sqrt{2}}\right)=0
$$

$\hat{L}_{-} x=\left(\hat{L}_{x}-i \hat{L}_{y}\right) x=-z$ $\hat{L}_{-}\left(-\frac{x+i y}{\sqrt{2}}\right)=\sqrt{2} z$
$\hat{L}_{+} y=\left(\hat{L}_{x}+i \hat{L}_{y}\right) y=i z$
$\hat{L}_{+}\left(\frac{x-i y}{\sqrt{2}}\right)=\sqrt{2} z$
$\hat{L}_{-} y=\left(\hat{L}_{x}-i \hat{L}_{y}\right) y=i z$
$\hat{L}_{-}\left(\frac{x-i y}{\sqrt{2}}\right)=0$

$$
\begin{aligned}
& T_{0}=\sum_{\mu}(-1)^{\mu} V_{\mu} U_{\mu}^{*} \\
& \left\{-\frac{x+i y}{\sqrt{2}}, \frac{x-i y}{\sqrt{2}}, z\right\} \\
& T_{0}^{(0)}=z^{2}+(-1)\left(-\frac{1}{2}\right)\left[(x+i y)^{2}+(x+i y)^{2}\right] \\
& =z^{2}+x^{2}+y^{2}=r^{2} \\
& T_{ \pm 2}^{[2]}=V_{ \pm 1} U_{ \pm 1} \quad T_{ \pm 2}^{(2)}=\frac{(x \pm i y)^{2}}{2}=\frac{1}{2} r^{2} e^{ \pm 2 i \phi} \\
& T_{ \pm 1}^{[2]}=V_{ \pm 1} U_{0}+V_{0} U_{ \pm 1} \quad T_{ \pm 1}^{(2)}=2 \frac{(x \pm i y)^{2}}{\sqrt{2}} z=\sqrt{2} r z e^{ \pm i \phi} \\
& T_{0}^{[2]}=2 V_{0} U_{0}+V_{1} U_{-1}+V_{-1} U_{1} \quad T_{0}^{(2)}=z^{2}+\frac{1}{2}(x+i y)(x-i y) \cdot 2=r^{2} \\
& T_{ \pm 11}^{[1]}=V_{ \pm 1} U_{0}-V_{0} U_{ \pm 1} \quad \mathbf{r}(1) \times \mathbf{r}(2)=\left[\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
r_{0}(1) & r_{+}(1) & r_{-}(1) \\
r_{0}(2) & r_{+}(2) & r_{-}(2)
\end{array}\right] \\
& =\mathbf{i}\left[r_{+}(1) r_{-}(2)-r_{-}(1) r_{+}(2)\right] \\
& +\mathbf{j}\left[r_{0}(1) r_{-}(2)-r_{-}(1) r_{0}(2)\right] \\
& +\mathbf{k}\left[r_{0}(1) r_{+}(2)-r_{+}(1) r_{0}(2)\right]
\end{aligned}
$$

Addendum

The transformation property $\quad \mathcal{R} T_{\mu}^{(\omega)} \mathcal{R}^{-1}=\sum_{\nu} T_{\nu}^{(\omega)} D(R)_{\nu \mu}^{[\omega]}$
is equivalent to the fulfillment of the commutations:

$$
\begin{aligned}
{\left[\hat{J}_{z}, T_{\mu}^{(\omega)}\right] } & =\mu T_{\mu}^{(\omega)} \\
{\left[\hat{J}_{ \pm}, T_{\mu}^{(\omega)}\right] } & =\sqrt{\omega(\omega+1)-\mu(\mu \pm 1)} T_{\mu \pm 1}^{(\omega)}
\end{aligned}
$$

Immediate to be checked if the tensor is the set of the $2 j+1$ spherical harmonics associated to J

General proof related to the fact that : $\left\{J_{z}, J_{\ngtr}\right\}$ are the generators of any possible rotation. (details e.g. Joshi chapter 6)

Addendum 2 Wigner-Eckart Theorem

$$
\langle\alpha j m| T_{q}^{(k)}\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle=(-1)^{j-m}\left(\begin{array}{ccc}
j & k & j^{\prime} \\
-m & q & m^{\prime}
\end{array}\right)\left\langle\alpha j\left\|\mathbf{T}^{(k)}\right\| \alpha^{\prime} j^{\prime}\right\rangle
$$

where $\left(\begin{array}{ccc}j & k & j^{\prime} \\ -m & q & m^{\prime}\end{array}\right)=\frac{(-1)^{j-k-m^{\prime}}}{\sqrt{2 j+1}}\langle j,-m|\langle k, q| \cdot\left|j^{\prime}(j, k),-m\right\rangle$

Corollary $\frac{\langle\alpha j m| T_{q}^{(k)}\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle}{\langle\alpha j m| U_{q}^{(k)}\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle}=\frac{\left\langle\alpha j\left\|\mathbf{T}^{(k)}\right\| \alpha^{\prime} j^{\prime}\right\rangle}{\left\langle\alpha j\left\|\mathbf{U}^{(k)}\right\| \alpha^{\prime} j^{\prime}\right\rangle}=C$
$\longrightarrow\langle\alpha j m| T_{q}^{(k)}\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle=C\langle\alpha j m| U_{q}^{(k)}\left|\alpha^{\prime} j^{\prime} m^{\prime}\right\rangle$

Quadrupole effect

Classically, the interaction energy is given by the tensor scalar product

$$
\begin{equation*}
E_{Q}=\frac{1}{6} \sum_{i, j=x, y, z} V_{i j} Q_{i j}, \tag{2.7}
\end{equation*}
$$

where the two tensors must be expressed in the same coordinate system.

$$
\begin{aligned}
& Q_{\alpha \beta}=\int\left(3 x_{\alpha} x_{\beta}-\delta_{\alpha \beta} r^{2}\right) \rho d r \\
& V_{\alpha \beta}=\frac{\partial^{2} V}{\partial x_{\alpha} \partial x_{\beta}}
\end{aligned}
$$

When written using quantum mechanical operators, the Hamiltonian \mathcal{H}_{Q} for a nucleus of spin I expressed in the principal axis coordinate system is

$$
\mathcal{H}_{Q}=\frac{e^{2} q Q}{4 I(2 I-1)}\left[3 I_{z}^{2}-I^{2}+\eta\left(I_{x}^{2}-I_{y}^{2}\right)\right] ? ?
$$

Quadrupole effect

$$
E_{Q}=\frac{1}{6} \sum V_{\alpha \beta} Q_{\alpha \beta}\left\{\begin{array}{l}
Q_{\alpha \beta}=\int\left(3 x_{\alpha} x_{\beta}-\delta_{\alpha \beta} r^{2}\right) \rho d r \\
V_{\alpha \beta}=\frac{\partial^{2} V}{\partial x_{\alpha} \partial x_{\beta}}
\end{array}\right] H_{Q}=\frac{1}{6} \sum V_{\alpha \beta} \hat{Q}_{\alpha \beta}
$$

With the help of Wigner-Eckart theorem

$$
\langle I, m| Q_{\alpha \beta}\left|I, m^{\prime}\right\rangle=C\langle I, m| \frac{3}{2}\left(I_{\alpha} I_{\beta}+I_{\beta} I_{\alpha}\right)-\delta_{\alpha \beta} I^{2}\left|I, m^{\prime}\right\rangle
$$

We will express constant, C, with matrix element for $m=m^{\prime}=I$ and $\alpha=\beta=z$.

$$
\begin{aligned}
& e Q \equiv\langle I, I| Q_{z Z}|I, I\rangle=C\langle I, I| 3 I_{z}{ }^{2}-I^{2}|I, I\rangle \quad \longrightarrow \quad C=\frac{e Q}{I(2 I-1)} \\
&=C\langle I, I| I(2 I-1)|I, I\rangle \\
& H_{Q}=\frac{e Q}{6 I(2 I-1)} \sum V_{\alpha \beta}\left[\frac{3}{2}\left(I_{\alpha} I_{\beta}+I_{\beta} I_{\alpha}\right)-\delta_{\alpha \beta} I^{2}\right]
\end{aligned}
$$

POINT SYMMETRY

Unit 11: Electrical Multipoles and Polarizability as basis set of group representations

Multipole expansion of the electric potential

Multipole expansion for the potential of a finite static charge distribution

Energy associated to a static charge distribution and a potential acting on it:

$$
E=\sum_{j} q_{j} \phi_{j}
$$

Assume r_{0} as coordinate origin and consider a Taylor expansion of the potential:
$\phi_{j}=\phi_{0}+\sum_{\alpha=x, y, z}\left(\frac{\partial \phi}{\partial \alpha}\right)_{0}\left(\alpha_{j}-\alpha_{0}\right)+\frac{1}{2!} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0}\left(\alpha_{j}-\alpha_{0}\right)\left(\beta_{j}-\beta_{0}\right)+\ldots$

The interaction energy:
$E=\phi_{0} \sum_{j} q_{j}+\sum_{\alpha=x, y, z}\left(\frac{\partial \phi}{\partial \alpha}\right)_{0} \sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)+\frac{1}{2!} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0} \sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)\left(\beta_{j}-\beta_{0}\right)+\ldots$

The moments of a statistical distribution $f(x)$ are defined as:

$$
\mu_{k}=\int(x-a)^{k} f(x) d x
$$

$\mu_{0}=1, \mu_{1}$ is the average, μ_{2} the variance, etc.
By analogy we define the moments of a static charge distribution:
monopole $\quad q=\sum_{j} q_{j}$
dipole $\quad \mu_{\alpha}=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)$
quadrupole $\quad Q_{\alpha, \beta}=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)\left(\beta_{j}-\beta_{0}\right)$
octupole $\quad R_{\alpha, \beta, \gamma}=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)\left(\beta_{j}-\beta_{0}\right)\left(\gamma-\gamma_{0}\right)$
n - pole

By definition all these moments are symmetric, e.g. $Q_{x y}=Q_{y x}, R_{x y y}=R_{y x y}$

Laplace equation $\quad \nabla^{2} \phi=0$

$$
\left\{\begin{aligned}
\sum_{\alpha} \delta_{\alpha, \beta} \frac{\partial^{2} \phi}{\partial \alpha \partial \beta} & =0 \\
\rightarrow \frac{1}{6} r^{\prime 2} \sum_{\alpha} \delta_{\alpha, \beta} \frac{\partial^{2} \phi}{\partial \alpha \partial \beta} & =0 \\
\rightarrow \frac{1}{6} r^{\prime 2} \sum_{\alpha, \beta} \delta_{\alpha, \beta} \frac{\partial^{2} \phi}{\partial \alpha \partial \beta} & =0
\end{aligned}\right.
$$

Third term in the above equation

$$
\begin{aligned}
\frac{1}{2} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0} \sum_{j} q_{j} \alpha_{j}^{\prime} \beta_{j}^{\prime} & =\frac{1}{2} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0} \sum_{j} q_{j} \alpha_{j}^{\prime} \beta_{j}^{\prime}-\frac{1}{6} \sum_{\alpha, \beta=x, y, z} \sum_{j} q_{j} r_{j}^{\prime 2} \delta_{\alpha, \beta} \frac{\partial^{2} \phi}{\partial \alpha \partial \beta} \\
& =\frac{1}{3} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0} \sum_{j} \frac{1}{2} q_{j}\left[3 \alpha_{j}^{\prime} \beta_{j}^{\prime}-r_{j}^{\prime 2} \delta_{\alpha, \beta}\right] \\
& =\frac{1}{3} \sum_{\alpha, \beta=x, y, z}\left(\frac{\partial^{2} \phi}{\partial \alpha \partial \beta}\right)_{0} \Theta_{\alpha \beta}
\end{aligned}
$$

Laplace equation allows a convenient redefinition of these moments.

Monopole and dipole remain as they are.
Laplace equation though allows the following rewriting of the higher moments:
quadrupole

$$
\Theta_{\alpha \beta}=\sum_{j} \frac{1}{2} q_{j}\left[3 \alpha_{j}^{\prime} \beta_{j}^{\prime}-r_{j}^{\prime 2} \delta_{\alpha, \beta}\right]
$$

octupole $\Omega_{\alpha \beta \gamma}=\sum_{j} q_{j} \frac{1}{2}\left[5 \alpha_{j}^{\prime} \beta_{j}^{\prime} \gamma_{j}^{\prime}-\alpha_{j}^{\prime} r_{j}^{\prime 2} \delta_{\beta, \gamma}\right.$

$$
\left.-\beta_{j}^{\prime} r_{j}^{\prime 2} \delta_{\alpha, \gamma}-\gamma_{j}^{\prime} r_{j}^{\prime 2} \delta_{\alpha, \beta}\right] \quad \text { etc. }
$$

They are traceless tensors:
$\sum_{\alpha} \Theta_{\alpha \alpha}=\Theta_{x x}+\Theta_{y y}+\Theta_{z z}=\sum_{j} \frac{q_{j}}{2}\left[3 r_{j}^{\prime 2}-3 r_{j}^{\prime 2}\right]=0$
$\sum_{\beta} \Omega_{x \beta \beta}=\left[\Omega_{x x x}+\Omega_{x y y}+\Omega_{x z z}\right]=0$

The interaction energy:

$$
\begin{aligned}
E=q \phi_{0} & -\sum_{\alpha} \mu_{\alpha} \nabla_{\alpha} \phi-\frac{1}{3} \sum_{\alpha, \beta} \Theta_{\alpha \beta} \nabla_{\alpha} \nabla_{\beta} \phi-\frac{1}{3 \cdot 5} \sum_{\alpha, \beta, \gamma} \Omega_{\alpha \beta \gamma} \nabla_{\alpha} \nabla_{\beta} \nabla_{\gamma} \phi+\ldots \\
& \rightarrow E=q \phi_{0}-\sum_{n=1}^{\infty} \frac{1}{1 \cdot 3 \cdot 5 \cdot(2 n-1)} \xi_{\alpha \beta \ldots \nu}^{(n)} \nabla_{\alpha} \nabla_{\beta} \ldots \nabla_{\nu} \phi
\end{aligned}
$$

Dependence of electric multipole moments on origin

In general, electric multipole moments beyond the monopole depend on the choice of origin.

The dipole moment is independent of an arbitrary shift of origin if the monopole $\sum_{j} q_{j}$ is zero:

$$
\begin{aligned}
\mu=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right) & =\sum_{j} q_{j} \alpha_{j}-\alpha_{0} \sum_{j} q_{j} \\
& =\sum_{j} q_{j} \alpha_{j}
\end{aligned}
$$

The quadrupole moment is independent of an arbitrary shift of origin if the dipole is zero.
$Q_{\alpha \beta}=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right) \beta_{j}-\beta_{0} \sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right)=\sum_{j} q_{j}\left(\alpha_{j}-\alpha_{0}\right) \beta_{j}=\sum_{j} q_{j} \alpha_{j} \beta_{j}$

The leading non-vanishing electric multipole moment is independent of the choice of origin of coordinates.

Multipole symmetry

Multipole moments are symmetric traceless tensors. Concerning inversion, like polynomials, odd multipoles are ungerade (e.g. dipole) while even multipoles are gerade (e.g. quadrupole).

Monopole moment (total charge) is an scalar, invariant under every symmetry transformation. Then it forms a basis for the irrep. $D_{0 g}$.

Dipole moment transforms as the position vector r, then its component form a basis for the $D_{1 u}$ irrep.

Quadrupole moment may be viewed as a r_{*} r direct product. In particular the symmetric part of the direct product $D_{I u} \otimes D_{I u}$ (since it is symmetric with respect to the indexes exchange):

$$
\left\{D_{1 u}^{2} \mid[2]\right\}=D_{0 g} \oplus D_{2 g}
$$

Since quadrupole is traceless, it does not contains nonzero $D_{0 g}$ invariant component. Quadrupole has then $D_{2 g}$ symmetry

Octupole moment may be viewed as the symmetric part of the direct product a $r * r$ r.

$$
\left\{D_{1 u}^{3} \mid[3]\right\}=D_{1 u} \oplus D_{3 u}
$$

Octupole moment is traceless.

$$
\sum_{\alpha} \Omega_{\alpha \alpha \beta}=\sum_{\alpha} \Omega_{\alpha \beta \alpha}=\sum_{\alpha} \Omega_{\beta \alpha \alpha}=0
$$

Then, the octupole moment components form a basis for $D_{3 u}$

Since traces are obtained be contraction, the trace of a tensor is another tensor of the same dimensions (the Euclidean space) but of an order two units less.

For example: octupole has three traces that are first order tensors, like the dipole moment. The remaining 7 components transforms as $D_{3 u}$

Hexadecupole $\Phi_{\alpha \beta \gamma \delta}$ corresponds to $\left\{D_{1 u}^{4} \mid[4]\right\}=D_{0 g} \oplus D_{2 g} \oplus D_{4 g}$
Their zero traces, a tensor of an order two unit less, $\left\{D_{1 u}^{2} \mid[2]\right\}=D_{0 g} \oplus D_{2 g}$ are zero. Then, hexadecupole has $D_{4 g}$ symmetry.
etc.
To determine the irreps. in lower symmetries of the components of the multiploles we consider the symmetry lowering from the full rotation group:

	$D_{0 g}$	$D_{0 u}$	$D_{1 g}$	$D_{1 u}$	$D_{2 g}$	$D_{2 u}$
I_{h}	A_{g}	A_{u}	$T_{1 g}$	$T_{1 u}$	H_{g}	H_{u}
O_{h}	$A_{1 g}$	$A_{1 u}$	$T_{1 g}$	$T_{1 u}$	$E_{g} \oplus T_{2 g}$	$E_{u} \oplus T_{2 u}$
T_{d}	A_{1}	A_{2}	T_{1}	T_{2}	$E \oplus T_{2}$	$E \oplus T_{1}$
$D_{6 h}$	$A_{1 g}$	$A_{1 u}$	$A_{2 g} \oplus E_{1 g}$	$A_{2 u} \oplus E_{1 u}$	$A_{1 g} \oplus E_{1 g} \oplus E_{2 g}$	$A_{1 u} \oplus E_{1 u} \oplus E_{2 u}$
$D_{6 d}$	A_{1}	B_{1}	$A_{2} \oplus E_{5}$	$B_{2} \oplus E_{1}$	$A_{1} \oplus E_{2} \oplus E_{5}$	$B_{1} \oplus E_{1} \oplus E_{4}$
$D_{5 h}$	A_{1}^{\prime}	$A_{1}^{\prime \prime}$	$A_{2}^{\prime} \oplus E_{1}^{\prime \prime}$	$A_{2}^{\prime \prime} \oplus E_{1}^{\prime}$	$A_{1}^{\prime} \oplus E_{2}^{\prime} \oplus E_{1}^{\prime \prime}$	$A_{1}^{\prime \prime} \oplus E_{1}^{\prime} \oplus E_{2}^{\prime \prime}$
$D_{5 d}$	$A_{1 g}$	$A_{1 u}$	$A_{2 g} \oplus E_{1 g}$	$A_{2 u} \oplus E_{1 u}$	$A_{1 g} \oplus E_{1 g} \oplus E_{2 g}$	$A_{1 u} \oplus E_{1 u} \oplus E_{2 u}$
$D_{4 h}$	$A_{1 g}$	$A_{1 u}$	$A_{2 g} \oplus E_{g}$	$A_{2 u} \oplus E_{u}$	$A_{1 g} \oplus B_{1 g} \oplus B_{2 g} \oplus E_{g}$	$A_{1 u} \oplus B_{1 u} \oplus B_{2 u} \oplus E_{u}$
$D_{4 d}$	A_{1}	B_{1}	$A_{2} \oplus E_{3}$	$B_{2} \oplus E_{1}$	$A_{1} \oplus E_{2} \oplus E_{3}$	$B_{1} \oplus E_{1} \oplus E_{2}$
$D_{3 h}$	A_{1}^{\prime}	$A_{1}^{\prime \prime}$	$A_{2}^{\prime} \oplus E^{\prime \prime}$	$A_{2}^{\prime \prime} \oplus E^{\prime}$	$A_{1}^{\prime} \oplus E^{\prime} \oplus E^{\prime \prime}$	$A_{1}^{\prime \prime} \oplus E^{\prime} \oplus E^{\prime \prime}$
$D_{3 d}$	$A_{1 g}$	$A_{1 u}$	$A_{2 g} \oplus E_{g}$	$A_{2 u} \oplus E_{u}$	$A_{1 g} \oplus 2 E_{g}$	$A_{1 u} \oplus 2 E_{u}$
$D_{2 h}$	A_{g}	A_{u}	$B_{1 g} \oplus B_{2 g} \oplus B_{3 g}$	$B_{1 u} \oplus B_{2 u} \oplus B_{3 u}$	$2 A_{g} \oplus B_{1 g} \oplus B_{2 g} \oplus B_{3 g}$	$2 A_{u} \oplus B_{1 u} \oplus B_{2 u} \oplus B_{3 u}$
$D_{2 d}$	A_{1}	B_{1}	$A_{2} \oplus E$	$B_{2} \oplus E$	$A_{1} \oplus B_{1} \oplus B_{2} \oplus E$	$A_{1} \oplus A_{2} \oplus B_{1} \oplus E$
$D_{\infty h}$	Σ_{g}^{+}	Σ_{u}^{-}	$\Sigma_{g}^{-} \oplus \Pi_{g}$	$\Sigma_{u}^{+} \oplus \Pi_{u}$	$\Sigma_{g}^{+} \oplus \Pi_{g} \oplus \Delta_{g}$	$\Sigma_{u}^{-} \oplus \Pi_{u} \oplus \Delta_{u}$

Polarizability

If the charge distribution is not static, it may be polarized (deformed) by the field.

Then, multipoles change with the field and its gradients:

$$
\begin{aligned}
\mu_{\alpha} & =\mu_{\alpha}^{0}+\sum_{\beta} \alpha_{\alpha \beta} F_{\beta}+\frac{1}{2} \sum_{\beta, \gamma} \beta_{\alpha \beta \gamma} F_{\beta} F_{\gamma}+\ldots+\frac{1}{3} \sum_{\beta, \gamma} A_{\alpha ; \beta \gamma} F_{\beta \gamma}^{\prime}+\frac{1}{3} \sum_{\beta, \gamma, \delta} B_{\alpha \beta ; \gamma \delta} F_{\beta} F_{\gamma \delta}^{\prime}+\ldots \\
\Theta_{\alpha \beta} & =\Theta_{\alpha \beta}^{0}+\sum_{\gamma} A_{\gamma ; \alpha \beta} F_{\gamma}+\sum_{\gamma, \delta} C_{\alpha \beta ; \gamma \delta} F_{\gamma \delta}^{\prime}+\frac{1}{2} \sum_{\gamma, \delta} B_{\gamma \delta ; \alpha \beta} F_{\gamma} F_{\delta}+\ldots \\
\Omega_{\alpha \beta \gamma} & =\Omega_{\alpha \beta \gamma}^{0}+\sum_{\delta} E_{\delta ; \alpha \beta \gamma} F_{\delta}+\ldots
\end{aligned}
$$

Define polarizability and hyperpolarizabilities:

$$
\begin{aligned}
\alpha_{\alpha \beta} & =\left(\frac{\partial \mu_{\alpha}}{\partial F_{\beta}}\right)_{0}=\left(\frac{\partial^{2} E}{\partial F_{\alpha} \partial F_{\beta}}\right)_{0} \\
A_{\gamma ; \alpha \beta} & =\left(\frac{\partial \Theta_{\alpha \beta}}{\partial F_{\gamma}}\right)_{0}=\left(\frac{\partial^{3} E}{\partial F_{\gamma} \partial F_{\alpha \beta}^{\prime}}\right)_{0} \\
\beta_{\alpha \beta \gamma} & =\left(\frac{\partial^{3} E}{\partial F_{\alpha} \partial F_{\beta} \partial F_{\gamma}}\right)_{0} \\
\text { etc. } &
\end{aligned}
$$

By definition polarizability α and hyperpolarizabilities β, γ, etc are symmetric with respect to the indexes exchange. Hyperpolarizabilities $A_{\gamma ; \alpha \beta}, C_{\alpha \beta ; \gamma \delta}$ are symmetric with respect to index exchange within each subset of indexes.

By definition they are not traceless tensors (e.g. always the field polarizes an atom, i.e. the $D_{0 g}$ trace of α cannot be zero)

Symmetry

Polarizability $\boldsymbol{\alpha}$ components form a basis set for $\left\{D_{1 u}^{2} \mid[2]\right\}=D_{0 g} \oplus D_{2 g}$
The isotropic $D_{0 g}$ trace of α is responsible for Rayleig dispersion.
The anisotropic $D_{2 g}$ components of α are responsible for Raman dispersion
$\beta_{\alpha \beta \gamma} \longrightarrow\left\{D_{1 u}^{3} \mid[3]\right\}=D_{1 u} \oplus D_{3 u}$
etc.

Other hyperpolarizabilities

Let's consider $A_{\gamma ; \alpha \beta}=\left(\frac{\partial^{3} E}{\partial F_{\gamma} \partial F_{\alpha \beta}^{\prime}}\right)_{0}$
The electric field F has $D_{1 u}$ symmetry while its second derivative $F^{\prime}{ }_{\alpha \beta}$ is a traceless $D_{2 g}$ tensor. Then, the symmetry of $A_{\gamma ; \alpha \beta}$ must be:

$$
D_{1 u} \otimes D_{2 g}=D_{1 u} \oplus D_{2 u} \oplus D_{3 u}
$$

Symmetry of the larger polarizabilities

Polarizability	Components	Reducible	Sum of irreps.
$\alpha_{\alpha \beta}$	6	$\left\{D_{1 u}^{2} \mid[2]\right\}$	$D_{0 g} \oplus D_{2 g}$
$\beta_{\alpha \beta \gamma}$	10	$\left\{D_{1 u}^{3} \mid[3]\right\}$	$D_{1 u} \oplus D_{3 u}$
$\gamma_{\alpha \beta \gamma \delta}$	15	$\left\{D_{1 u}^{4} u[4]\right\}$	$D_{0 g} \oplus D_{2 g} \oplus D_{4 g}$
$A_{\alpha ; \beta \gamma}$	15	$D_{1 u} \otimes D_{2 g}$	$D_{1 u} \oplus D_{2 u} \oplus D_{3 u}$
$B_{\alpha \beta ; \gamma \delta}$	30	$\left\{D_{1 u}^{2}[2]\right\} \otimes D_{2 g}$	$D_{0 g} \oplus D_{1 g} \oplus 2 D_{2 g} \oplus D_{3 g} \oplus D_{4 g}$
$C_{\alpha \beta ; \gamma \delta}$	15	$\left\{D_{2 g}^{2} \mid[2]\right\}$	$D_{0 g} \oplus D_{2 g} \oplus D_{4 g}$
$E_{\alpha ; \beta \gamma \delta}$	21	$D_{1 u} \otimes D_{3 u}$	$D_{2 g} \oplus D_{3 g} \oplus D_{4 g}$

Symmetry and Structure in Chemistry

POINT SYMMETRY

Unit 12: Theory of invariants

Theory of invariants

1. Perturbation theory becomes more complex for many-band models
2. Nobody calculate the huge amount of integrals involved
grup them $\vec{\Rightarrow}$ and fit to experiment

Alternative (simpler and deeper) to perturbation theory:
Determine the Hamiltonian H by symmetry considerations

Theory of invariants (basic ideas)

1. Second order perturbation: H second order $\quad H=\sum_{i \geq j}^{3} M_{i j} k_{i} k_{j}$
in k:
2. H must be an invariant under point symmetry $\left(\mathrm{T}_{\mathrm{d}} \mathrm{ZnBl}, \mathrm{D}_{6 \mathrm{~h}}\right.$ wurtzite)
$A \cdot B$ is invariant (A_{1} symmetry) if A and B are of the same symmetry
e.g. (x, y, z) basis of T_{2} of $T_{d}: x \cdot x+y \cdot y+z \cdot z=r^{2}$ basis of A_{1} of T_{d}

Theory of invariants (machinery)

1. k basis of $\mathrm{T}_{2} \quad$ 2. $\mathrm{k}_{\mathrm{i}} \mathrm{k}_{\mathrm{j}}$ basis of $T_{2} \otimes T_{2}=A_{1} \oplus E \oplus T_{2} \oplus\left[T_{1}\right]$
2. Character Table:

$$
\begin{aligned}
& A_{1} \rightarrow k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \\
& E \rightarrow\left\{2 k_{z}^{2}-k_{x}^{2}-k_{y}^{2}, k_{x}^{2}-k_{y}^{2}\right\} \\
& T_{2} \rightarrow\left\{k_{x} k_{y}, k_{x} k_{z}, k_{y} k_{z}\right\} \\
& T_{1} \rightarrow \text { NO }\left(k_{i} k_{j} \text { symmetridensor }\right)
\end{aligned}
$$

notation: elements of these basis:
4.Invariant: sum of invariants:

Machinery (cont.)

How can we determine the N_{i}^{Γ} matrices?
$\left(J_{x}, J_{y}, J_{z}\right)$ basisof T_{1}, and $T_{2} \otimes T_{2}=T_{1} \otimes T_{1}$
\rightarrow we can use symmetry-adapted $\mathrm{J}_{\mathrm{i}} \mathrm{J}_{\mathrm{j}}$ products

Example: 4 -th band model: $\{|3 / 2,3 / 2>,|3 / 2,1 / 2>,|3 / 2,-1 / 2>| 3 / 2,,-3 / 2>\}$

$$
\begin{array}{cc}
\mathbb{J}_{x}=\left[\begin{array}{cccc}
0 & \sqrt{3} / 2 & 0 & 0 \\
\sqrt{3} / 2 & 0 & 1 & 0 \\
0 & 1 & 0 & \sqrt{3} / 2 \\
0 & 0 & \sqrt{3} / 2 & 0
\end{array}\right] & \mathbb{J}_{z}=\left[\begin{array}{cccc}
3 / 2 & 0 & 0 & 0 \\
0 & 1 / 2 & 0 & 0 \\
0 & 0 & -1 / 2 & 0 \\
0 & 0 & 0 & -3 / 2
\end{array}\right] \\
\mathbb{J}_{y}=\left[\begin{array}{cccc}
0 & -i \sqrt{3} / 2 & 0 & 0 \\
i \sqrt{3} / 2 & 0 & -i & 0 \\
0 & i & 0 & -i \sqrt{3} / 2 \\
0 & 0 & i \sqrt{3} / 2 & 0
\end{array}\right] & \begin{array}{l}
\mathbb{J}^{2}=\frac{3}{2}\left(\frac{3}{2}+1\right) \mathbb{I}_{4 \times 4}=\frac{15}{4} \mathbb{I}_{4 \times 4} \\
\left\{\mathbb{J}_{x}, \mathbb{J}_{y}\right\}=\frac{1}{2}\left(\mathbb{J}_{x} \mathbb{J}_{y}+\mathbb{J}_{y} \mathbb{J}_{x}\right) \\
\\
\mathbb{J}_{x}^{2}
\end{array} \mathbb{J}_{y}^{2} \\
\mathbb{J}_{z}^{2}
\end{array}
$$

Machinery (cont.)

We form the following invariants

$$
\begin{array}{ll}
A_{1}: & X_{A_{1}}=\mathbb{I} \cdot\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=k^{2}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]=\left[\begin{array}{cccc}
k^{2} & 0 & 0 & 0 \\
0 & k^{2} & 0 & 0 \\
0 & 0 & k^{2} & 0 \\
0 & 0 & 0 & k^{2}
\end{array}\right] \\
E: \quad X_{E}=\frac{1}{\sqrt{6}}\left(2 \mathbb{J}_{z}^{2}-\mathbb{J}_{y}^{2}-\mathbb{J}_{x}^{2}\right) \frac{1}{\sqrt{6}}\left(2 k_{z}^{2}-k_{y}^{2}-k_{x}^{2}\right)+\frac{1}{\sqrt{2}}\left(\mathbb{J}_{x}^{2}-\mathbb{J}_{y}^{2}\right) \frac{1}{\sqrt{2}}\left(k_{x}^{2}-k_{y}^{2}\right) \\
T_{2}: \quad X_{T_{2}}=\frac{1}{2}\left(\mathbb{J}_{x} \mathbb{J}_{y}+\mathbb{J}_{y} \mathbb{J}_{x}\right) k_{x} k_{y}+\frac{1}{2}\left(\mathbb{J}_{y} \mathbb{J}_{z}+\mathbb{J}_{z} \mathbb{J}_{y}\right) k_{y} k_{z}+\frac{1}{2}\left(\mathbb{J}_{z} \mathbb{J}_{x}+\mathbb{J}_{x} \mathbb{J}_{z}\right) k_{z} k_{x}
\end{array}
$$

Finally we build the Hamiltonian

Four band Hamiltonian:

$$
\mathbb{H}=-\frac{\hbar^{2}}{2 m_{0}}\left[\begin{array}{cc}
\gamma_{1} k^{2}+\gamma_{2}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right) & -2 \sqrt{3} \gamma_{3} k_{z}\left(k_{x}-i k_{y}\right) \\
-2 \sqrt{3} \gamma_{3} k_{z}\left(k_{x}+i k_{y}\right) & \gamma_{1} k^{2}-\gamma_{2}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right) \\
-\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)-2 i \sqrt{3} \gamma_{3} k_{x} k_{y} & 0 \\
0 & -\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)-2 i \sqrt{3} \gamma_{3} k_{x} k_{y} \\
& \\
-\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)+2 i \sqrt{3} \gamma_{3} k_{x} k_{y} & 0 \\
0 & -\sqrt{3} \gamma_{2}\left(k_{x}^{2}-k_{y}^{2}\right)+2 i \sqrt{3} \gamma_{3} k_{x} k_{y} \\
\gamma_{1} k^{2}-\gamma_{2}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right) & 2 \sqrt{3} \gamma_{3} k_{z}\left(k_{x}-i k_{y}\right) \\
2 \sqrt{3} \gamma_{3} k_{z}\left(k_{x}+i k_{y}\right) & \gamma_{1} k^{2}+\gamma_{2}\left(k_{x}^{2}+k_{y}^{2}-2 k_{z}^{2}\right)
\end{array}\right] .
$$

Exercise: Show that the 2-bands $\{|1 / 2,1 / 2>| 1 / 2,,-1 / 2>\}$ conduction band $k \cdot p$ Hamiltonian reads $\mathrm{H}=a \mathrm{k}^{2} \mathrm{I}$, where I is the 2 x 2 unit matrix, k the modulus of the linear momentum and a is a fitting parameter (that we cannot fix by symmetry considerations)

Hints: 1. $T_{2} \otimes T_{2}=T_{1} \otimes T_{1}=A_{1} \oplus E \oplus T_{2} \oplus\left[T_{1}\right]$
2. Angular momentum components in the $\pm 1 / 2$ basis: $S_{i}=1 / 2 \sigma_{i}$, with

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

3. Characterater tables and basis of irreps

	\mathbf{E}	$\mathbf{8 \mathbf { C } _ { \mathbf { 3 } }}$	$\mathbf{3 \mathbf { C } _ { \mathbf { 2 } }}$	$\mathbf{6} \mathbf{S}_{\mathbf{4}}$	$\mathbf{6 \sigma _ { \mathbf { d } }}$	linear, rotations	quadratic
$\mathbf{A}_{\mathbf{1}}$	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}$
$\mathbf{A}_{\mathbf{2}}$	1	1	1	-1	-1		
\mathbf{E}	2	-1	2	0	0		$\left(2 z^{2}-\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{x}^{2}-\mathrm{y}^{2}\right)$
$\mathbf{T}_{\mathbf{1}}$	3	0	-1	1	-1	$\left(\mathrm{~L}_{\mathrm{x}}, \mathrm{L}_{\mathrm{y}}, \mathrm{L}_{\mathrm{z}}\right)$	
$\mathbf{T}_{\mathbf{2}}$	3	0	-1	-1	1	$(\mathrm{x}, \mathrm{y}, \mathrm{z})$	$(\mathrm{xy}, \mathrm{xz}, \mathrm{yz})$

$$
\begin{aligned}
& A_{1} \rightarrow k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \\
& E \rightarrow\left\{2 k_{z}^{2}-k_{x}^{2}-k_{y}^{2}, k_{x}^{2}-k_{y}^{2}\right\} \\
& T_{2} \rightarrow\left\{k_{x} k_{y}+k_{y} k_{x}, k_{x} k_{z}+k_{z} k_{x}, k_{y} k_{z}+k_{z} k_{y}\right\} \\
& T_{1} \rightarrow\left\{k_{x} k_{y}^{\prime}-k_{y} k_{x}^{\prime}, k_{x} k_{z}^{\prime}-k_{z} k_{x}^{\prime}, k_{y} k_{z}^{\prime}-k_{z} k_{y}^{\prime}\right\}
\end{aligned}
$$

Answer:

$$
\begin{aligned}
& A_{1} \rightarrow k_{x}^{2}+k_{y}^{2}+k_{z}^{2} \\
& E \rightarrow\left\{2 k_{z}^{2}-k_{x}^{2}-k_{y}^{2}, k_{x}^{2}-k_{y}^{2}\right\} \\
& T_{2} \rightarrow\left\{k_{x} k_{y}+k_{y} k_{x}, k_{x} k_{z}+k_{z} k_{x}, k_{y} k_{z}+k_{z} k_{y}\right\} \\
& T_{1} \rightarrow\left\{k_{x} k_{y}^{\prime}-k_{y} k_{x}^{\prime}, k_{x} k_{z}^{\prime}-k_{z} k_{x}^{\prime}, k_{y} k_{z}^{\prime}-k_{z} k_{y}^{\prime}\right\}
\end{aligned}
$$

1. Disregard $\mathrm{T}_{1}: k_{i} k_{j}-k_{j} k_{i}=0$
2. Disregard E: $\boldsymbol{\sigma}_{x}^{2}=\boldsymbol{\sigma}_{y}^{2}=\boldsymbol{\sigma}_{z}^{2}=\mathbf{I}(2 \times 2)$
3. Disregard $\mathrm{T}_{2}: \boldsymbol{\sigma}_{i} \boldsymbol{\sigma}_{j}+\sigma_{j} \sigma_{i}=0$
4. $\mathrm{A}_{1}: ~ \rightarrow k_{x}^{2}+k_{y}^{2}+k_{z}^{2}=k^{2} \quad \rightarrow \boldsymbol{\sigma}_{x}^{2}+\boldsymbol{\sigma}_{y}^{2}+\boldsymbol{\sigma}_{z}^{2}=3 \mathbf{I} \quad \mapsto \mathbf{H}=a k^{2} \mathbf{I}$

Symmetry and Structure in

Chemistry
POINT SYMMETRY
$k \cdot p$ Theory and the effective mass

$\mathrm{k} \cdot \mathrm{p}$ Theory

Tight-binding
How do we calculate realistic band diagrams?

$$
\begin{aligned}
& \hat{H}=\left(\frac{\vec{p}^{2}}{2 m}+V_{c}(\vec{r})\right) \quad \Psi_{k}(\vec{r})=e^{i \vec{k} \vec{r}} u_{k}(\vec{r}) \\
& e^{-i \vec{k} \vec{r}} \hat{H} \Psi_{k}(\vec{r})=\varepsilon_{k} e^{-i \vec{k} \vec{r}} \Psi_{k}(\vec{r}) \\
& \left(\frac{\vec{p}^{2}}{2 m}+V_{c}(\vec{r})+\frac{\hbar^{2} k^{2}}{2 m}+\hbar \frac{\vec{k} \cdot \vec{p}}{m}\right) u_{k}(\vec{r})=\varepsilon_{k} u_{k}(\vec{r}) \\
& \text { The k.p Hamiltonian }
\end{aligned}
$$

One-band Hamiltonian for the conduction band

$$
\begin{gathered}
\left\langle u_{k 0}^{n}\right| \hat{H}_{k p}\left|u_{k 0}^{n^{\prime}}\right\rangle=\left(\varepsilon_{k 0}^{n}+\frac{\hbar^{2}\left(\vec{k}-\vec{k}_{0}\right)^{2}}{2 m}\right) \delta_{n, n^{\prime}}+\hbar \frac{\vec{k}}{m}\left\langle u_{k 0}^{n}\right| \vec{p}\left|u_{k 0}^{n^{\prime}}\right\rangle \\
\varepsilon_{k}^{c b}=\varepsilon_{k 0}^{c c}+\frac{\hbar^{2}\left(\vec{k}-\vec{k}_{0}\right)^{2}}{2 m}
\end{gathered}
$$

This is a crude approximation... Let's include remote bands perturbationally

$$
\varepsilon_{k}^{c b}=\varepsilon_{k 0}^{c b}+\sum_{\alpha=x, y, z} \frac{\hbar^{2}\left(k_{\alpha}-k_{0 \alpha}\right)^{2}}{2 m}+\frac{\hbar}{m} k_{\alpha} \sum_{n \neq c b} \frac{\left.\left|\left\langle u_{k 0}^{c b}\right| p_{\alpha}\right| u_{k 0}^{n}\right)\left.\right|^{2}}{\varepsilon_{k 0}^{c b}-\varepsilon_{k 0}^{n}}
$$

Free electron
InAs Effective mass
m* $=0.025$

$$
\square \frac{1}{m^{*}}=\frac{1}{\hbar^{2}} \frac{\partial \varepsilon_{k}^{c b}}{\partial k^{2}}
$$

$$
\varepsilon_{k}^{c b}=\varepsilon_{k 0}^{c b}+\frac{\hbar^{2}\left(k_{\alpha}-k_{0 \alpha}\right)^{2}}{2 m_{\alpha} *}
$$

[^0]: Note that if 1, 2, 3 label the vectors instead of the vertices of the triangle, the same matrices that transform the vertices transform the vectors

