

	Ionization Equilibrium	Ionization Constant K	рK
cid		$K_a =$	$\mathbf{p}K_{\mathbf{a}} =$
Iodic acid	$HIO_3 + H_2O \implies H_3O^+ + IO_3^-$	1.6×10^{-1}	0.80
Chlorous acid	$HCIO_2 + H_2O \implies H_3O^+ + CIO_2^-$	1.1×10^{-2}	1.96
Chloroacetic acid	$CICH_2COOH + H_2O \implies H_3O^+ + CICH_2COO^-$	1.4×10^{-3}	2.85
Nitrous acid	$HNO_2 + H_2O \implies H_3O^+ + NO_2^-$	7.2×10^{-4}	3.14
Hydrofluoric acid	$H\tilde{F} + H_2O \iff H_3O^+ + F^-$	6.6×10^{-4}	3.18
Formic acid	$HCOOH + H_2O \implies H_3O^+ + HCOO^-$	$1.8 imes 10^{-4}$	3.74
Benzoic acid	$C_6H_5COOH + H_2O \implies H_3O^+ + C_6H_5COO^-$	6.3×10^{-5}	4.20
Hydrazoic acid	$HN_3 + H_2O \implies H_3O^+ + N_3^-$	1.9×10^{-5}	4.72
Acetic acid	$CH_3COOH + H_2O \implies H_3O^+ + CH_3COO^-$	1.8×10^{-5}	4.74
Hypochlorous acid	$HOCI + H_2O \implies H_3O^+ + OCI^-$	2.9×10^{-8}	7.54
Hydrocyanic acid	$HCN + H_2O \implies H_3O^+ + CN^-$	6.2×10^{-10}	9.21
Phenol	$HOC_6H_5 + H_2O \implies H_3O^+ + C_6H_5O^-$	$1.0 imes 10^{-10}$	10.00
Hydrogen peroxide	$H_2O_2 + H_2O \iff H_3O^+ + HO_2^-$	1.8×10^{-12}	11.74
ase		$K_{\rm b} =$	$pK_{b} =$
Diethylamine	$(C_2H_5)_2NH + H_2O \implies (C_2H_5)_2NH_2^+ + OH^-$	6.9×10^{-4}	3.16
Ethylamine	$\tilde{C}_{2}H_{5}NH_{2} + H_{2}O \implies C_{2}H_{5}NH_{3}^{+} + OH^{-}$	4.3×10^{-4}	3.37
Ammonia	$NH_3 + H_2O \implies NH_4^+ + OH^-$	1.8×10^{-5}	4.74
Hydroxylamine	$HONH_2 + H_2O \implies HONH_3^+ + OH^-$	9.1×10^{-9}	8.04
Pyridine	$C_5H_5N + H_2O \implies C_5H_5NH^+ + OH^-$	1.5×10^{-9}	8.82
Aniline	$C_6H_5NH_2 + H_2O \implies C_6H_5NH_2^+ + OH^-$	7.4×10^{-10}	9.13

