Atoms

Atomic electron distribution

Orbitals are not planetary orbits!

Electron Configurations

Anomalous configurations: filling or half-filling shells

$$
\text { e.g. } \mathrm{Cu}(\mathrm{~N}=29) \quad 29-18=11 \quad 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}
$$

Some definitions

- Atom: An atom is the smallest constituent unit of ordinary matter that has the properties of a chemical element.
- Chemical element: The chemical elements are pure substances that can not be decomposed into any other pure substance by simple chemical methods.
- Molecule: A molecule is an electrically neutral group of two or more atoms held together by chemical bonds.

A molecule can be decomposed by chemical methods into other simpler pure substances.

Molecules are distinguished from ions by their lack of electrical charge.

Molecules

Lewis Theory: An Overview

1. Electrons, especially those of the outermost (valence) electronic shell, play a fundamental role in chemical bonding.
2. In some cases, electrons are trans ferred from one atom to another. Positive and negative ions are formed and attract each other through electrostatic forces called ionic bonds.
3. In other cases, one or more pairs of electrons are shared between atoms. A bond formed by the sharing of electrons between atoms is called a covalent bond.
4. Electrons are transferred or shared in such a way that each atom acquires an especially stable electron configuration. Usually this is a noble gas configuration, one with eight outer-shell electrons, or an octet.

Lewis Structures for Ionic Compounds

The formula of aluminum oxide follows directly from the Lewis structure. The combination of one Al atom, which loses three electrons, and one O atom, which gains two, leaves an excess of one lost electron. To match the numbers of electrons lost and gained, the formula unit must be based on two Al atoms and three O atoms.

Covalent Bonding

Electronegativity atom's ability to compete for electrons

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{~A}^{+} \mathrm{B}^{-} \quad \Delta E_{1}=\left(I_{\mathrm{A}}+E A_{\mathrm{B}}\right) \\
& \mathrm{A}+\mathrm{B} \longrightarrow \mathrm{~A}^{+} \quad \Delta E_{2}=\left(I_{\mathrm{B}}+E A_{\mathrm{A}}\right) \\
& \text { nonpolar }\left(I_{\mathrm{A}}+E A_{\mathrm{B}}\right)=\left(I_{\mathrm{B}}+E A_{\mathrm{A}}\right) \longrightarrow\left(I_{\mathrm{A}}-E A_{\mathrm{A}}\right)=\left(I_{\mathrm{B}}-E A_{\mathrm{B}}\right) \\
& E N_{\mathrm{A}} \propto\left(I_{\mathrm{A}}-E A_{\mathrm{A}}\right)
\end{aligned}
$$

Formal Charge

$$
\begin{aligned}
& : \mathrm{O} \equiv \mathrm{FC}=6 \text { valence } \mathrm{e}^{-} \text {in } \mathrm{O}-2 \text { lone-pair } \mathrm{e}^{-}-\frac{1}{2}\left(6 \text { bond-pair } \mathrm{e}^{-}\right)=6-2-3=+1 \\
& : \mathrm{O} \equiv \mathrm{~N}-\stackrel{\mathrm{O}}{\square}]^{+} \quad \\
& \equiv \mathrm{N}-\mathrm{FC}=5 \text { valence } \mathrm{e}^{-} \text {in } \mathrm{N}-0 \text { lone-pair } \mathrm{e}^{-}-\frac{1}{2}\left(8 \text { bond-pair } \mathrm{e}^{-}\right)=5-0-4=+1 \\
& \\
& -\ddot{\mathrm{O}}: \quad \mathrm{FC}=6 \text { valence } \mathrm{e}^{-} \text {in } \mathrm{O}-6 \text { lone-pair } \mathrm{e}^{-}-\frac{1}{2}\left(2 \text { bond-pair } \mathrm{e}^{-}\right)=6-6-1=-1
\end{aligned}
$$

	Interpretation	Comments
Oxidation state	The charge an atom would have if the bonding electrons in each bond were transferred to the more electronegative atom.	-The oxidation state concept tends to exaggerate the ionic character of the bonding between atoms. Oxidation states are used to predict and rationalize chemical properties of compounds.
Formal charge	The charge an atom would have if the bonding electrons in each bond were divided equally between the two atoms involved.	The formal charge concept tends to exaggerate the covalent charac- ter of the bonding between atoms. Formal charges are used to assess which Lewis structure is the most satisfactory representation of the true structure.

A Strategy for Writing Lewis Structures

Formal Charge

- The sum of the formal charges in a Lewis structure must equal zero for a neutral molecule and must equal the magnitude of the charge for a polyatomic ion.
- Where formal charges are required, they should be as small as possible.
- Negative formal charges usually appear on the most electronegative atoms; positive formal charges, on the least electronegative atoms.
- Structures having formal charges of the same sign on adjacent atoms are unlikely.

Resonance

Exceptions to the Octet Rule

Odd-Electron Species $\cdot \ddot{\mathrm{N}}=\mathrm{O}$:
Incomplete Octets

Expanded Valence Shells

Shapes of Molecules Valence-Shell Electron-Pair Repulsion (VSEPR) Theory

Electron pairs repel each other, whether they are in chemical bonds (bond pairs) or unshared (lone pairs). Electron pairs assume orientations about an atom to minimize repulsions.

Possibilities for Electron-Group Distributions

- two electron groups: linear
- three electron groups: trigonal planar
- four electron groups: tetrahedral
- five electron groups: trigonal bipyramidal
- six electron groups: octahedral

Hybrid orbitals and molecular geometry

$\mathrm{H}: \mathrm{Be}: \mathrm{H}$ or $\mathrm{H}-\mathrm{Be}-\mathrm{H}$
 Lewis structure

Hybrid orbitals (cont.)

$$
\underset{2 \mathrm{~s}}{\frac{\uparrow}{\uparrow}} \underset{2 \mathrm{p}}{\frac{\uparrow}{}} \longrightarrow \underset{\mathrm{sp} \mathrm{sp}}{\left.\begin{array}{|c|c|}
\hline \uparrow & \uparrow \\
\hline
\end{array}\right]}
$$

Hybrid orbitals (cont.) Methane case

$$
\frac{6 \phi \phi}{\frac{6}{6}+6}
$$

Hybrid Orbitals

s

	trigonal bipyramidal	1	$\mathrm{AX}_{4} \mathrm{E}^{\text {b }}$		$90^{\circ}, 120^{\circ}$	SF_{4}	$s p^{3} d$
	trigonal bipyramidal	2	$\mathrm{AX}_{3} \mathrm{E}_{2}$		90°	ClF_{3}	$s p^{3} d$
	trigonal bipyramidal	3	$\mathrm{AX}_{2} \mathrm{E}_{3}$		180°	XeF_{2}	$s p^{3} d$
6	octahedral	0	AX_{6}	(octahedral)	90°	SF_{6}	$s P^{3} d^{2}$
	octahedral	1	$\mathrm{AX}_{5} \mathrm{E}$		90°	BrF_{5}	$s P^{3} d^{2}$
	octahedral	2	$\mathrm{AX}_{4} \mathrm{E}_{2}$		90°	XeF_{4}	$s p^{3} d^{2}$

Further reading:

Metal Complexes

Bonding in Metals

Ionic Bonds and ionic Crystals

Lattice Energy

A hypothetical one-dimensional NaCl lattice.

$$
\begin{aligned}
U= & -\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(r_{0}\right)}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(2 r_{0}\right)}-\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(3 r_{0}\right)}+\frac{2 e^{2}}{4 \pi \varepsilon_{0}\left(4 r_{0}\right)} \\
& =-\frac{e^{2}}{4 \pi \varepsilon_{0} r_{0}}\left[2\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\ldots\right)\right]=-\frac{e^{2} A}{4 \pi \varepsilon_{0} r_{0}} \times\left(1-\frac{1}{\mathrm{n}}\right)
\end{aligned}
$$

Metal crystal: ductile and malleable

Ionic crystal: hard but brittle

Arranging atoms or ions in solids

Simple cubic

Body-centered cubic

Face-centered cubic
cubic crystal

Intermolecular Forces:
 Liquids and Solids

Hydrogen bonding in water

ice
liquid

