4.12 SU(2), SU(3). AND NUCLEAR PARTICLES

The application of group theory to “elementary” particles has been labeled
by Wigner the third stage of group theory and physics. The first stage was
the search for the 32 point groups and the 230 space groups giving crystal
symmetries—Section 4.9. The second stage was a search for representations

such as the representations of O3 and SU(2)—Section 4.10. Now in this third
stage, physicists are back to a search for groups.

In discussing the strongly interacting particles of high energy physics and the
special unitary groups SU(2) and SU(3), we should look to angular momentum
and the rotation group O3 for an analogy. Suppose we have an electron in
the spherically symmetric attractive potential of some atomic nucleus. The
electron’s Schrédinger wavefunction may be characterized by three quantum
numbers #, /, and m. The energy, however, is 2/ + 1-fold degenerate, depending
only onnand /*. The reason for this degeneracy may be stated in two equivalent
ways:

1. The potential is spherically symmetric, independent
of 6 and ¢, and

2. The Schrodinger Hamiltonian — (#2/2m,)V2 + V(r)
is invariant under ordinary spacial rotations (O3).

As a consequence of the spherical symmetry of the potential, the angular
momentum L is conserved. In Section 4.11 the cartesian components of L are
identified as the generators of the rotation group Q3. Instead of representing
L,, L, and L, by operators, let us use matrices. The exercises at the end of
Section 4.2 provide examples for / = 4, 1, and 3. The L, matrices are (2/ + 1) x
(2/ + 1) matrices with the dimension the same as the number of the degenerate
states.” These L; matrices generate the (2/ + 1) x (21 + 1) irreducible represen-
tations of O3. The dimension 2/ + 1 is identified with the 2/ + 1 degenerate
states.

The common method of eliminating this degeneracy is to introduce a
constant magnetic induction B. This leads to the Zeeman effect. This magnetic
induction adds a term to the Schrédinger Hamiltonian that is not invariant
under O3 . This is a symmetry-breaking term.

So much for the analogy. In the case of the strongly interacting particles
(neutrons, protons, etc.) we cannot follow the analogy directly, because we
do not yet fully understand the nuclear interaction. We do not know the
Hamiltonian. So instead, let us run the analogy backward.

In the 1930s Heisenberg proposed that nuclear forces were charge-indepen-
dent, that the only two massive particles (baryons) known then, the neutron
and proton, were two different states of the same particle. Table 4.2 shows that
they have almost the same mass. The fractional difference, (m, — m,)/m, ~
0.0014, is small, suggesting that the mass difference is produced by a small
charge-dependent perturbation. It was convenient to describe this near degen-
eracy by introducing a quantity 1 with z-projections Iy = § for the proton,
—1 for the neutron. The name coined for I was isospin. Isospin had nothing
to do with spin (the particle’s intrinsic angular momentum) but the two-
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TABLE 4.3
Baryons with Spin £ Even Parity
Mass (MeV) Y I I
= 1321.300 -1
=) -1 1
20 1314.900 +4
b 1197.410 —1
) P 1192.540 0 1 0
b 1189.470 +1
A A 1115.500 0 0 0
n 939,550 1
N 1 L
P 938.256 +3

component isospin state vector obeyed the same mathematical relations as the
spin J = § state vector, and in particular could be taken to be an eigenvector
of the Pauli o5 matrix.

In the absence of charge-dependent forces, isospin is conserved (the proton
and neutron have the same mass) and we have a twofold degeneracy. Equiva-
lently, the unknown nuclear Hamiltonian must be invariant under the group
generated by the isospin matrices. The isospin matrices are just the three Pauli
matrices (2 x 2 matrices), and the group generated is the SU(2) group of
Section 4.10, also 2 x 2 corresponding to our twofold degeneracy.

By 1961 many more particles had been discovered (or created). The eight
shown in Table 4.3 attracted particular attention.? It was convenient to describe
them by characteristic quantum numbers, 7 for isospin, and Y for hypercharge.
The particles may be grouped into charge or isospin muitiplets. Then the
hypercharge Y may be taken as twice the average charge of the multiplet. For
the neutron—proton multiplet

Y=240+1=1. (4.289)

The hypercharge and isospin values are listed in Table 4.3.

From scattering and production experiments it had become clear that both
hypercharge Y and isospin I were conserved under stong (nuclear) interaction.
Remember L (or /) is conserved under a spherically symmetric Hamiltonian,
The eight particles thus appeared as an eightfold degeneracy, but now with two
quantities to be conserved. In 1961 Gell-Mann, and independently Ne’eman,
suggested that the strong interaction should be invariant under the three-
dimensional special unitary group, SU(3), that is, should have SU(3) symmetry.

The choice of SU(3) was based first on the existence of two conserved
quantities. This dictated a group of rank 2, a group, two of whose generators

3 All masses are given in energy units, MeV.
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(and only two) commuted. Second, the group had to have an 8 x 8 representa-
tion to account for the eight degenerate baryons. In a sense SU(3) was the
simplest generalization of SU(2). Gell-Mann set up eight generators: three for
the components of isospin, one for hypercharge, and four additional ones. All
are 3 x 3, zero-trace matrices. As with O3 and SU(2), there are an infinity of
irreducible representations. An eight-dimensional one was associated with the
eight particles of Table 4.3.4

We imagine the Hamiltonian for our eight baryons to be composed of three
parts

H= Hslrong + Hmedium + Helectromagnetic' (4290)

The first part, H,,,,, possesses the SU(3) symmetry and leads to the eightfold
degeneracy. Introduction of a symmetry breaking interaction, H, 4, FeMoves
part of the degeneracy giving the four isospin multiples E, £, A, and N. These
are multiplets because H, 4., Still possesses SU(2) symmetry. Finally, the
presence of charge-dependent forces splits the isospin multiplets and removes
the last degeneracy. This imagined sequence is shown in Fig. 4.16.

Applying first-order perturbation theory of quantum mechanics, simple
relations among the baryon masses may be calculated. Also, intensity rules for
decay and scattering processes may be obtained.

Perhaps the most spectacular success of this SU(3) model has been its
prediction of new particles. In 1961 four K and three n mesons (all pseudoscalar;
spin 0, odd parity) suggested another octet, similar to the baryon octet. The
SU(3) theory predicted an eighth meson #°, mass 563 MeV. The #° meson,
experimentally determined mass 548 MeV, was found soon after. Groupings
of nine of the heavier baryons (all with spin 3, even parity) suggested a 10-
member group or decuplet. The missing tenth baryon was predicted to have a
mass of about 1680 MeV and a negative charge. In 1964 the negatively charged
Q™ , mass 1675 + 12 MeV, was discovered.

Since the completion of this 3* decuplet, a 3~ (odd parity) multiplet for
baryons and 1~ and 2* multiplets for mesons have been established.

The application of group theory to strongly interacting particles has been
extended beyond SU(3). There has been an extensive investigation of SU(6)
and of the more complex, higher-dimensional groups. Great attention has been
paid to the group generators and to the structure constants in the generator
commutation relations (such as ie;; for orbital angular momentum). These
structure constants define a Lie algebra. It is possible to associate space integrals
of current densities with the group generators. This leads to a current algebra
far beyond the scope of this discussion.

To keep group theory and its very real accomplishment in proper perspective,
we should emphasize that group theory identifies and formalizes symmetries.

“This application of SU(3) has been called by Gell-Mann the “eightfold
way.” Note the eight independent parameters of SU(3) (from n? — 1), the
eight generators, the 8 x 8 representation associated with eight particles. The
name also refers to the Eightfold Way of Buddha.
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FIG. 4.16 Baryon mass splitting

It classifies (and sometimes predicts) particles. But aside from saying that one
part of the Hamiltonian has SU(2) symmetry and another part has SU(3)
symmetry, group theory says nothing about the particle interactions. Remember
that the statement that the atomic potential is spherically symmetric tells us
nothing about the radial dependence of the potential or of the wavefunction.
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II. IRREDUCIBLE REPRESENTATIONS OF THE
UNITARY GROUP AND ITS RELEVANCE TO THE
MANY BODY PROBLEM

Let us first present the most relevant facts of the
representation theory of the unitary group U(n) [or, in
fact, the general linear group GL(n)" ).

Each finite-dimensional irreducible representation
I'(m,) of U(n) may be uniquely specified by » ordered
integers m,,, (i=1,...,n), called the highest weight of
the representation, which we shall write as components
of a vector m,,

mn=(m1n;m2nr-*-:mnn) ’ (1)
where
mln?’man;'”?’mnn v (2)

The dimension of this irreducible representation I'(m,)
is given by Weyl’s dimension formula

Dim[T(m, )= ] (m,, = m+ j-i)/1120c (=11 .

i) (3)
The individual vectors of the orthonormal canonical
basis of the carrier space of this irreducible represen-
tation are uniquely specified by the triangular Gelfand
patterns (or tableaus)

in which the first row contains the components of the
highest weight vector (1) specifying a given irreducible

representation I'(m,), and the integers in the remain-
ing (#-1) rows, specifying uniquely a given basis vector,
satisfy the so called “betweenness” conditions!®
My g1 Z My TMia1,001 (5)
i=j=1,...,(n-1)

Thus, the ith row of the Gelfand tableau consists of ¢
nonincreasing integers,

mii:_’mz£2."am{£’(£=1,.¢|,n-1) ¥ (6]

the range of each being bounded by the integers appear-
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ing immediately above it in the tableau as expressed by
the betweenness conditions (5), Each Gelfand pattern
satisfying these conditions is called a “lexical” Gelfand
pattern,

The ordering of these basis vectors (so-called lexical
ordering) is defined as follows, Writing all the entries
of the Gelfand pattern (m) as a row vector with n(n+1)/2
'components, we define

p(m}E(m tnsaeey Muny M netseseyMpiymay, M lyn=23 5+ + mll]

(7)

and consider the vector labeled by (m) to precede the
vector (m') if the first nonvanishing component in the
difference p(m) - p(m') i8 a positive integer.

Thus, starting with the highest weight vector specify-
ing a given irreducible representation I'(s2,), we can
easily generate all lexical Gelfand tableaus by entering
the integers, satisfying the betweenness conditions (5),
into all the subsequent rows, Always using the largest
possible integer first, we shall get the basis vectors
automatically in the lexical order. The number of these
vectors is, of course, given by Weyl’s dimension for~
mula (3).

The infinitesimal generators E ; of U(n) {or, in fact,
of the general linear group GL(n)] are given by the
following commutation relations (defining the structure
constants of the corresponding Lie algebra)

[EurEu]=5jkEil _'511Ekj ’ _ (3)
(f,j,k,lz 1,-—.,?'1) i

In the case of the unitary group U(x), these generators
also satisfy the Hermitian conjugate relation

EIJ=EH . (9)

The diagonal generators E;; are called weight genera-
tors, while the off-diagonal ones are classified into the
raising (i <j} and lowering (i>j) generators E,;, This
classification relies on the fact that the matrix repre-
sentatives of these generators in the canonical (lexi-
cally ordered) Gelfand—-Tsetlin basis are diagonal for

the weight generators, strictly upper triangular for the
raising generators and, finally, strictly lower triangular
for lowering generators,



Consider, for example, the triplet state of a six-electron system (5 =1, N = 6)
characterized by the irrep (4,2) of U(2) . The three components of this triplet
are labeled by the standard Weyl tableaux, shown in Fig. d4a. Eliminating the boxes
carrying an index 2, we obtain from them the U(1) Weyl tableaux, shown in Fig. db.
Designating the irrep (4,2) subduced by U(1} as (4,2) } U[]}.22 we get

(4,2) } u(1) = (4) + (3) + (2) . (60)
111111 111112 1111212
21|12 212 2|2
4 2
4 2 4
o/ N/ N/
(a)

1111111 11111 111

N4/ \3/ \2/

(b)

Fig. 4
Example of subduction of U(2) states to U(1) .

He note that these irreps are exactly those characterized by conditions (59).

Since U{1) has only one-dimensional irreps, this subduction labels uniquely
all the basis vectors of a given U{2) irrep carrier space. This idea has been ex-
ploited in the general case of an arbitrary U(n) irrep by Gelfand and Tsat!inza. who

employed the chain
Un) 2 UWn=-1) 2 ... 2W2) 2 u(1) . (61)
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