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Abstract. When a magnetic field pierces a multiple-connected quantum system,
the corresponding wavefunction is altered although no net Lorentz force acts upon
its carriers. This is the so called Aharonov-Bohm effect. The most simple multiply-
connected quantum system is a quantum ring QR. Nowadays it is possible to obtain
QRs in the nanoscopic range providing spectroscopic data vs. and applied external
magnetic field. We describe here the most significant quantum effects induced by the
magnetic field in a QR by means of simple quantum mechanical models.
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1. Introduction

In their celebrated 1959 paper[1] Aharonov and Bohm pointed out
that while the fundamental equations of motion in classical mechanics
can always be expressed in terms of field alone, in quantum mechan-
ics the canonical formalism is necessary, and as a result, the potentials
cannot be eliminated from the basic equations. They proposed several
experiments and showed that an electron can be influenced by the po-
tentials even if no fields acts upon it. More precisely, in a field-free
multiply-connected region of space, the physical properties of a system
depend on the potentials through the gauge-invariant quantity

∮
Adl,

where A represents the potential vector.

The most simple multiple-connected quantum system is a quantum
ring, QR. Over the last two decades there has been an impressive exper-
imental development towards smaller QRs. Early experiments reported
observations of Aharonov-Bohm (AB) oscillations and persistent cur-
rents in mesoscopic metallic and semiconductor rings[2],[3],[4],[5] where
scattering still influences the phase coherent transport and a large num-
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ber of electrons are present. More recently, Lorke et al. [6],[7] obtained
self-assembled InAs semiconductor QRs in the nanoscopic range, each of
which charged with one[6] and two electrons[7], providing spectroscopic
data in the scatter-free limit as a function of an external magnetic field.
Simple two-dimensional effective mass models with parabolic-like spa-
tial confinement [6],[7],[8],[9] yield reasonable agreement with most of
experimental data, although truly 3D models are required to properly
account for the vertical dimension and the Coulomb interaction[10], [11],
[12], [13], [14] which is systematically overestimated by 2D models, as
they miss vertical motion.

There is by now a vast literature both experimental and theoretical
on QRs, including simple 1D models which can grasp basic behaviors of
these multiply-connected systems [15]. In the present paper we revisit
at an elementary level the most significant quantum effects produced by
a magnetic field on a quantum ring.

2. Aharonov-Bohm effect

The Hamiltonian of a charged particle in a magnetic field reads,

Ĥ =
(p̂− eA)2

2me
+ V (1)

where p̂ is the canonical moment, A the potential vector, e the particle
charge and V the spatial confining potential. If the magnetic field is
axial and constant, ~B = B0

~k, we may choose the potential vector ~A =
(−1

2y B0,
1
2xB0, 0) so that the Hamiltonian eq. 1 turns into:

Ĥ = − h̄2

2me
∇2− eB

2me
L̂z +

e2B2

8me
ρ2 +V =

p̂2
z

2me
+Ĥ2D

HO−
eB

2me
L̂z +V (2)

where Ĥ2D
HO is the 2D harmonic oscillator Hamiltonian.

If the vertical confinement is severe so that we can approximately
separate variables and only consider the vertical ground state, and ad-
ditionally, the in-plane confinement is zero or parabolic, the eigenvalues
(Landau levels) grow linearly1 with the magnetic field and never inter-
sect.

1In actual 3D confinements it may grow quadratically[14].
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Now, if the particle is spatially confined in a hollow cylinder and we
apply an axial magnetic field inside the inner radius a only, i.e., B = B0

if 0 < ρ < a and B = 0 otherwise, we may choose the following potential
vector:

~A = Aφ~uφ =

{
1
2 B ρ~uφ 0 < ρ < a
Ba2

2ρ ~uφ a < ρ < ∞ (3)

which is continuous at ρ = a, where B has a step-like discontinuity2. The
selected potential vector fulfills the Coulomb gauge, ∇A = 0. Then, p̂
and A commute and the Hamiltonian eq. 1 describing our system (which
is located in the interval a < ρ < ∞) becomes:

Ĥ = − h̄2

2me
∇2 +

ih̄e

me

Ba2

2ρ2

∂

∂φ
+

e2B2a4

8meρ2
+ V (4)

This Hamiltonian can also be obtained by formally replacing,

∂

∂φ
→ ∂

∂φ
− i eB a2

2 h̄
=

∂

∂φ
+ i

Φ
Φ0

(5)

in the zero field Hamiltonian. In the above eq. 5, Φ = πa2B is the
magnetic flux and Φ0 = 2πh̄/|e| the flux unit.

Since the system has axial symmetry, the wave function can be writ-
ten Ψ(ρ, z)eimφ. Then, the presence of magnetic field inside the inner
cylinder radius is accounted by the replacement m → m + Φ

Φ0
in the

differential equation on (ρ, z) which yields eigenvalues. Therefore, if the
magnetic field fulfills Φ = nΦ0, n = 1, 2, 3 . . . we will get the same ener-
gies as those at B = 0.

In the simple case of an electron in a 1D QR, the Hamiltonian is (a.u.):

Ĥ = − 1
2m∗

eR
2

(
∂

∂φ
+ i

Φ
Φ0

)2

(6)

and the energies,

Em =
1

2m∗
eR

2
(m + F )2, (7)

where m∗
e is the electron effective mass, F = Φ

Φ0
, and m = 0± 1± 2 . . .

The Em vs. F plotting shows periodic energy intersections and changes
in the m symmetry of the ground state (AB effect).

2Note that although we may choose another potential vector yielding the same
magnetic field, no gauge will allow us to select A = 0 in all the region where the
system is located because the gauge-invariant flux Φ =

∫
BdS =

∮
Adl is not zero.
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3. Fractional Aharonov-Bohm effect

The Hamiltonian of two electrons in a 1D QR pierced by a magnetic
field read in atomic units (a.u.):

Ĥ(1, 2) = − 1
2R2

(
∂

∂φ1
+ iF

)2

− 1
2R2

(
∂

∂φ2
+ iF

)2

+
1

r12
(8)

with r12 = 2 R| sin φ2−φ1

2 |, and where we assume, without loss of gener-
ality, that the electron effective mass m∗

e = 1.

Disregarding the Coulomb interaction by the time being, the energy
eigenvalues are:

E(m1,m2) =
1

2R2

[
(m1 + F )2 + (m2 + F )2

]
(9)

which show periodic changes of the ground state at the same values of
flux as in the one-electron case. The eigenfunctions are either singlets
(S) or triplets (T ). The corresponding unnormalized spacial parts are

|m1,m2;S/T 〉 = eim1φ1eim2φ2 ± eim1φ2eim2φ1 . (10)

Note that |m,m;T 〉 does not exist (is zero). Then, eq. 9 evidences that
independently of the magnetic flux, the ground state is always singlet.
At F = 1

2 , 3
2 , 5

2 . . . the ground state is degenerate (three singlets and a
triplet).

Prior to include the Coulomb term it is worthwhile to solve this
problem again in a new set of coordinates:

s =
1
2
(φ1 + φ2) r =

1
2
(φ1 − φ2). (11)

The spatial part of the eigenfunctions are now,

|M,m;S〉 = eiMs cos mr, |M,m;T 〉 = eiMs sin mr, (12)

where M = m1 + m2, m = m1 −m2 and therefore, no triplets can be
associated with m = 0. Since M + m = 2m1 and M − m = 2m2, we
conclude that M and m must have same parity. In terms of M and m
the energy reads:

E(M,m) =
1

4R2

[
(M + 2 F )2 + m2

]
, (13)
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showing that the ground state energy at integer values of magnetic flux
is zero and corresponds to singlet states.

In terms of these new coordinates the Hamiltonian (disregarding the
coulomb term) reads,

Ĥ(1, 2) = − 1
4R2

(
∂

∂s
+ 2 iF

)2

− 1
4R2

∂2

∂r2
= Ĥs + Ĥr (14)

The Ĥs eigenvectors, eiMs, and eigenvalues,

E(M) =
1

4R2
(M + 2 F )2, (15)

describe the dynamic of the center of mass (CM). The allowed values for
M will be fixed by the boundary conditions (BCs). Note that the elec-
tron permutation does not change the coordinate s. Therefore, eiMs is
symmetric, and as a consequence, we must select a relative motion eigen-
functions (Ĥr eigenfunctions) either symmetric (for singlets) or antisym-
metric (for triplets). From the degenerate set e±imr we choose cos mr
and sinmr for singlets/triplets, respectively. The values that m can
reach will also be fixed by the BCs. However, as shown in Figure 1, the
domain of r and s are not independent so that BCs must be imposed
upon the full spatial wave function.

1φ

φ2 ���
���
���

���
���
���

���
���
���

���
���
���

s s

rr

2π

2π0 π−π 0

2π 2π

π

(c)(a) (b)

Fig. 1: Mapping between (φ1,φ2) and (r,s) domains.

The periodic BCs φ1 ≡ φ1 + 2π, φ2 ≡ φ2 + 2π yield (s, r) ≡ (s +
π, r + π) and (s, r) ≡ (s + π, r − π), i.e.,

ei M s

{
sinmr
cos mr

≡ ei M sei M π

{
sin m(r ± π)
cos m(r ± π)

(16)
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Then, m must be integer. Since m ∈ Z, then, eq. 16 can be rewritten,

1 = ei M π cos mπ, (17)

which shows that M must also be integer and that M,m must have same
parity.

Let us next include the coulomb term. It does not modify Ĥs, while
Ĥr becomes:

Ĥr = − 1
4R2

∂2

∂r2
+

1
2 R| sin r|

(18)

No analytical solutions can be obtained (see however ref. [16], [17]).
The potential term 1/ sin r defines a natural domain 0 < r < π so that
Ψn(0) = Ψn(π) = 0 are the implicit (natural) BCs. Within this domain
the eigenfunctions which are non-degenerate, show the correct nodal se-
quence. However, we stated above that −π < r < π and, additionally, r
and s domains are not independent. We may use the periodicity of the
problem to select the domains 0 < s < 2π, 0 < r < π (see Fig 1c).

We study next the Pauli’s principle restrictions in the presence of
Coulomb interactions. As before, eiMs is invariant under the particles
permutation operator P12. On the other hand, as P12r = −r, it is
followed that P12Ψ(r) = Ψ(−r). As it was stated before, the periodicity
of our problem allows to stablish the equivalence (s, r) ≡ (s + π, r + π)
and therefore,

ei M sΨn(−r) = ei M sei M πΨn(π − r) (19)

i.e.,
P̂12Ψn(r) = (−1)MΨn(π − r). (20)

The symmetry of Ψn(r) with respect to r = π/2 and the nodal sequence
of eigenvectors allows us to write Ψn(π− r) = (−1)nΨn(r). Then eq. 20
yields

P̂12Ψn(r) = (−1)(M+n)Ψn(r). (21)

If M + n is even, the spatial function should be then symmetric (and
then, its spin partner antisymmetric, i.e. singlet). On the contrary,
M + n odd corresponds to triplets.
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In absence of magnetic flux the lowest CM state |M = 0〉 and the
lowest relative motion state |n = 0〉 combine into the ground state (sin-
glet). As the magnetic flux reaches F = 1/2, then the lowest CM state
is |M = −1〉 (see eq. 15). It combines with |n = 0〉, which is flux
independent, yielding a triplet ground state with the same energy as
the singlet ground state at F = 0. As the magnetic flux increases a
new singlet becomes the ground state, then a triplet, etc. We see that
Coulomb interactions halves the periodicity of the AB effect (fractional
AB effect[18]).

The coulomb interaction in a 1D system is actually unrealistically
large. A very simple model accounting for the 3D character of a real
QR may be represented by the Hamiltonian

Hξ = − 1
4R2

∂2

∂r2
+

1
ξ + 2 R | sin r|

(22)

where the parameter ξ incorporates somehow the average of the Coulomb
potentials over the coordinates ρ and z. Note that if we set ξ = ∞
then Hξ corresponds to an independent particles model, while the limit
ξ = 0 corresponds to interacting electrons in a 1D QR. The numerical
integration of Hξ assuming reasonable ξ values shows that although
triplets remain as ground states at fractional flux values, the energies
are larger and the triplet windows shorter than those of singlets.

4. Antiperiodic Boundary Conditions and the
Aharonov-Bohm effect

The Möbius strip problem is of high theoretical interest since classi-
cally the AB periodicity is related to interference between trajectories.
In a Möbius strip the electron encircles the system twice before returning
to its initial position. Then, we may expect differences between persis-
tent currents in a Möbius strip and a QR. Since a Möbius strip cannot
actually be pressed into a 1D structure, in order to isolate the effects,
we will devote this section to study one and two electrons in a 1D QR
with antiperiodic BCs (AQR). Let us consider first only one electron.
The Hamiltonian is the same as in section 1 (eq. 6) and the antiperiodic
BCs, Ψm(φ+2π) = −Ψm(φ) yield m = ±1/2,±3/2,±5/2, . . . Then, the
Em vs. F plotting is identical to that of one electron in a QR except for
a shift of 1/2 unit of flux.
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In terms of the CM and relative motion coordinates s and r, eq.
11, the wave functions of two non-interacting electrons are given by the
same eq. 12 as the QR, and again M,m ∈ Z (because M = m1 + m2

and m = m1 −m2). However M and m must have opposite parity1.

When the Coulomb term is included and, as in the previous section,
we solve the problem in the domain 0 < s < 2π, 0 < r < π, we find
analytical eiMs symmetric functions describing the CM motion and nu-
merical Ψn(r), n = 0, 1, 2, . . . functions for the relative motion. Again,
P12r = −r and then P12Ψn(r) = Ψn(−r). However, eq. 19 is replaced
by:

ei M sΨn(−r) = −ei M sei M πΨn(π − r) (23)

and then, eq.21 by

P̂12Ψn(r) = (−1)(M+n+1)Ψn(r), (24)

so that if M + n is even/odd |M,n〉 will be triplet/singlet. Then, from
eq. 15, we see that if F = 0 the lowest M = 0 will combine with
n = 0 yielding a triplet ground state. At F = 1/2 it is M = −1 which
combines with n = 0 yielding a singlet state, etc. Therefore, we find out
again the same picture as in QR except for a shift of half flux unit. The
similarities between the 1D QR and AQR remain if we consider Hξ, eq.
22.

5. Optic Aharonov-Bohm effect: excitons

An exciton in a QR is a neutral entity. Then, it should not be sensi-
tive to the applied magnetic flux. However different masses of electrons
and holes yield observable effects in realistic 3D QR. Namely, dark exci-
ton in some windows of magnetic field[11]. This is the so called optical
AB effect[19]. Romer and Raikh[20] employed a short-range e-h attrac-
tive potential in a 1D QR and conclude that the AB effects will be
present if electron and hole can tunnel in the opposite directions and
meet each other on the opposite side of the ring. However it seems that
actual Coulomb terms prevent the ground state oscillations in 1D QR

1We may write m1 = (2p+1)/2, m2 = (2q+1)/2 with p, q ∈ Z. Then, M = p+q+1
and m = p − q. Since p + q and p − q have same parity, then M and m must have
it opposite. The same result can be obtained from the analogous of eq. 16 for
antiperiodic BCs yielding 1 = −eiMπ cos mπ with m ∈ Z.
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[21],[22],[23].

The Hamiltonian of an electron and a hole in a 1D QR pierced by a
magnetic field reads:

Ĥ = − 1
2m∗

eR
2

(
∂

∂φe
+ iF

)2

− 1
2m∗

hR2

(
∂

∂φh
− i F

)2

− 1
2R| sin φe−φh

2 |
(25)

where me, mh are the electron/hole effective masses, both considered
positive in this model. If we disregard by the time being the Coulomb
attraction, Ψ(φe, φh) = ei Me φe ei Mh φh is the eigenfunction associated to
the eigenvalue:

λ = E − Eg =
1

2m∗
eR

2
(Me + F )2 +

1
2m∗

hR2
(Mh − F )2, (26)

where Eg is the electron-hole energy gap and Me, Mh = 0 ± 1 ± 2 . . .
The E vs. F plot shows periodic changes of ground state (Me,Mh) =
(0, 0),(−1, 1),(−2, 2) . . .However, ML = Me + Mh is always zero. Then,
the selection rule ML = 0 is fulfilled and there are not dark windows for
luminescence, i.e., no optic AB effect can be seen. If we take into account
that electron and hole have different effective masses, we may think that
in a real QR electron and hole will follow different orbits. A very simple
model of a 2D QR where electron and hole follow circular orbits with
radii Re 6= Rh pierced by a magnetic field (including the region where
the system is located) has been recently proposed[19]. This allows to
have different flux inside the electron and hole orbits: Fe = πR2

eB/Φ0,
Fh = πR2

hB/Φ0. As a result, eq. 26 turns into

E = Eg +
1

2m∗
eR

2
e

(Me + Fe)2 +
1

2m∗
hR2

h

(Mh − Fh)2, (27)

which allows states with total angular momentum ML = Me+Mh 6= 0 to
become the ground state within some flux windows. As the selection rule
ML = 0 dramatically reduces the emission intensity in these regions of
magnetic flux (dark windows), the optic AB effect can now be observed.
It is worth to stress that while in the case of standard AB effect we loose
the perfect periodicity as the magnetic field pierces the region where the
system is located, it is not possible to observe the optic AB effect unless
B pierces the system (so that a flux net between electron and hole orbits
exists and a different phase factor in one and other particle occurs).
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