

www.sapientia.uji.es | 32

Nuevas tecnologías de la información y la computación aplicadas a la Química

Josep Planelles Fuster Roque Serrano Gallego José Luis Movilla Rosell

Nuevas tecnologías de la información y la computación aplicadas a la Química

Josep Planelles Fuster Roque Serrano Gallego José Luis Movilla Rosell

LLICENCIATURA EN QUÍMICA

Codi d'assignatura QU0908

A Aurelia, Isabel y Elena

Edita: Publicacions de la Universitat Jaume I. Servei de Comunicació i Publicacions Campus del Riu Sec. Edifici Rectorat i Serveis Centrals. 12071 Castelló de la Plana http://www.tenda.uji.es e-mail: publicacions@uji.es

Col·lecció Sapientia, 32 Primera edició, 2010 www.sapientia.uji.es

ISBN: 978-84-693-0995-7

Aquest text està subjecte a una llicència Reconeixement-NoComercial-CompartirIgual de Creative Commons, que permet copiar, distribuir i comunicar públicament l'obra sempre que especifique l'autor i el nom de la publicació i sense objectius comercials, i també permet crear obres derivades, sempre que siguen distribuïdes amb aquesta mateixa llicència. http://creativecommons.org/licenses/by-nc-sa/2.5/es/deed.ca

Prólogo

El texto que aquí presentamos se corresponde con la asignatura "Nuevas Tecnologías de la Información y la Computación aplicadas a la Química" que se imparte el primer curso del Grado en Química. El texto tiene su origen en otro libro, *Informática Aplicada a la Química*, que dos de los autores prepararon hace varios años como material de soporte a la asignatura que con el mismo nombre se impartía en primer curso de la Licenciatura en Química. Aquel texto era más bien escueto y permitía obviar la toma de notas en clase, en un sistema educativo fundamentalmente presencial, donde la tutela del profesor y la continua interacción profesor-alumno era la clave del proceso enseñanza-aprendizaje. La reciente reforma de planes de estudio, y la consiguiente aparición de los grados, ha comportado un cambio drástico del proceso educativo. Éste se focaliza ahora en el trabajo-aprendizaje del estudiante y conlleva una importante componente de no presencialidad. En otras palabras, es un plan de estudios para un estudiante más maduro y responsable. Por tanto, se deben cambiar las técnicas pedagógicas del profesor, el cual deja de ser la fuente casi exclusiva de información y formación, pasando a ser personal de apoyo en un aprendizaje más autónomo por parte del estudiante. Creemos que, con objeto de sacar el máximo rendimiento a las horas de trabajo del estudiante, se debe apoyar dicho aprendizaje con un material docente elaborado *ad hoc*, de manera que se realice un trabajo autónomo, pero guiado.

Con esta finalidad se ha elaborado el presente texto, que básicamente incluye:

- Búsquedas bibliográficas y de información en bases de datos (Web of Science, Google).
- Utilización de hojas de cálculo y software de cálculo simbólico para la resolución de problemas que necesiten manipulación algebraica y/o computacional.
- Representación gráfica, ordenación y presentación de resultados en forma de memorias o informes técnicos con la ayuda del ordenador.
- Uso de herramientas computacionales y conceptos básicos ya conocidos para dar respuesta a situaciones nuevas y suficientemente complejas que requieran la aplicación de medios de cálculo y representación.
- Profundización en el entendimiento de conceptos químicos con ayuda de la informática como técnica complementaria de estudio.

Como decíamos, la nueva metodología docente en los nuevos grados obliga a la reelaboración del material docente, tanto del material básico para trabajo presencial, como de toda una extensa serie de propuestas de trabajo autónomo. Este nuevo texto intenta responder a dicho reto. La mayoría del material del libro a que antes nos hemos referido, ha servido de base a éste, aunque ahora es presentado de manera mucho más extensa, detallada y ambiciosa y, además, se ha más que duplicado su contenido con toda una serie de propuestas para trabajo autónomo, más una colección de apéndices que dan una primera e inmediata respuesta a cuestiones que creemos que surgirán a lo largo del estudio. Intencionadamente el primer capítulo

está dedicado a la web. Ésta ha de constituir el segundo gran apéndice, enciclopedia, etc. que debe usar el estudiante, sabiendo distinguir las fuentes fiables de las que no lo son.

Queremos indicar que hemos querido que este trabajo forme parte del Proyecto Sapientia de material abierto *on-line*. El punto de vista compartido por los autores a este respecto es que el conocimiento no es patrimonio de nadie, sino de todos. En esta nueva era de la información ponemos nuestro grano de arena *colgando* este material a disposición de todo aquel que lo desee consultar. Además, la idea de material abierto *on-line*, enriquece una asignatura como esta, que tradicionalmente hace uso amplio del aula virtual.

Para acabar diremos que esperamos que este *libro virtual* sea también de utilidad en asignaturas posteriores incluidas en los estudios de Química o relacionados, debido a su orientación hacia la resolución práctica de problemas con el uso del ordenador, sin entrar en los entresijos de la programación, sino aprovechando las enormes facilidades que proporcionan al no experto los nuevos códigos y herramientas informáticas. Confiamos en que quien trabaje con agrado estos contenidos obtenga una formación que pueda aplicar tanto en el ámbito académico como en el profesional.

Los autores

Índice

1.	Uso de Internet para búsqueda de información	<u>6</u>
	1.1. ISI Web of Knowledge	<u>6</u>
	1.2. Google	. <u>15</u>
2.	Operaciones básicas y representación gráfica	. <u>18</u>
	2.1. Leyes de los gases ideales. Disoluciones	. <u>18</u>
	2.2. Representación de funciones trigonométricas	. <u>30</u>
	2.3. Representación de orbitales atómicos	. <u>36</u>
3.	Resolución de problemas sencillos	. <u>40</u>
	3.1. Resolución gráfica de ecuaciones	. <u>40</u>
	3.2. Cálculo del pH de una disolución de ácido fuerte	. <u>45</u>
	3.3. Trabajo de expansión de gases reales. Cálculo numérico del trabajo reversible	. <u>51</u>
4.	Aplicación de métodos iterativos en la resolución de problemas	. <u>57</u>
	4.1. El método iterativo simple	. <u>57</u>
	4.2. El método de Newton-Raphson	. <u>61</u>
	4.3. Cálculo del pH de una disolución de ácido débil monoprótico	. <u>65</u>
	4.4. Diagramas concentración/pH de un ácido monoprótico débil	. <u>71</u>
	4.5. Cálculo del pH de una disolución de ácido débil diprótico	. <u>72</u>
	4.6. Diagramas concentración/pH de un ácido poliprótico	. <u>75</u>
	4.7. Cálculo del pH de una disolución de ácido débil triprótico	. <u>76</u>
5.	Aplicación de programas de cálculo simbólico para la resolución de problemas sencillos	<u>80</u>
	5.1. Cálculo del pH de una disolución de ácido fuerte	. <u>80</u>
	5.2. Cálculo de la presión final en equilibrios en fase gaseosa	. <u>83</u>
	5.3. Perturbaciones del equilibrio químico: El principio de Le Chatelier	. <u>85</u>
6.	Aplicación de programas de cálculo simbólico para la resolución de problemas con sistemas de	;
	ecuaciones	. <u>92</u>
	6.1. Cálculo del pH de un ácido débil monoprótico	. <u>92</u>
	6.2. Cálculo del pH de un ácido débil diprótico	. <u>93</u>
© 1	6.3. Cálculo del pH de un ácido débil triprótico Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7 3 Nuevas tecnologías de la información y	. <u>94</u> la computación - UJI

	6.4. Cálculos en mezclas de ácidos y bases débiles	<u>95</u>
	6.5. Diagramas concentración/pH	<u>96</u>
7.	Ajuste de datos experimentales a funciones lineales	<u>100</u>
	7.1. Ajuste lineal por mínimos cuadrados. Ley de Beer	<u>100</u>
	7.2. Calibrados e interpolación	<u>109</u>
8.	Ajuste de datos experimentales a funciones no lineales	<u>111</u>
	8.1. Simulación de una curva de valoración ácido fuerte-base fuerte	<u>111</u>
	8.2. Cálculo del punto de equivalencia	<u>118</u>
	8.3. Cromatografía gas-líquido. Ecuación de Vam Deemter	<u>120</u>
9.	Aplicación de programas de cálculo simbólico al ajuste de funciones lineales y no lineales	<u>123</u>
	9.1. Ajuste lineal por mínimos cuadrados. Ley de Beer	<u>123</u>
	9.2. Simulación de una curva de valoración ácido fuerte-base fuerte	<u>125</u>
	9.3. Cálculo del punto de equivalencia	<u>129</u>
	9.4. Valoración de ácidos polipróticos	<u>130</u>
	9.5. Valoraciones de combinaciones de ácidos y bases fuertes y débiles	<u>133</u>
	9.6. Cromatografía gas-líquido. Ecuación de Van Deemter	<u>143</u>
10.	Problemas para trabajo autónomo	<u>145</u>
	10.1. Cálculo de la capacidad calorífica del Aluminio a 298 K usando el modelo de Debye	<u>145</u>
	10.2. Raíces de una función. El método de la bisección	<u>147</u>
	10.3. Perturbaciones del equilibrio químico mediante pequeñas adiciones másicas	<u>149</u>
	10.4. Simulación de un espectro de bandas Lorentzianas superpuestas	<u>155</u>
	10.5. Deconvolución de un espectro como suma de bandas Gaussianas superpuestas	<u>157</u>
	10.6. La orden Solve de MATHEMATICA [®] en ejemplos de aplicación química	<u>159</u>
	10.7. Series espectroscópicas del átomo de hidrógeno	<u>161</u>
	10.8. Variación del potencial de electrodo con el pH	<u>162</u>
	10.9. Cinética enzimática. Ecuación de Michaelis-Menten	<u>163</u>
	10.10. Desintegración Radiactiva	<u>166</u>
	10.11. Cambios de estado: calor vs temperatura	<u>168</u>
	10.12. Ley de Fick	<u>169</u>

10.13. Simulación de un espectro de microondas	<u>172</u>
10.14. Cálculo del pH de disoluciones de varias concentraciones de cualquier ácido	<u>175</u>
10.15. Cálculo de interpolaciones a partir de cualquier calibrado	<u>179</u>
11. Ápendices	<u>182</u>
11.1. La serie de Taylor	<u>182</u>
11.2. La serie de Taylor truncada: error de truncación	<u>184</u>
11.3. Raíces de una función	<u>186</u>
11.4. Integración numérica: calculando el área bajo una curva	<u>190</u>
11.5. Ajustes lineales de dos parámetros	<u>193</u>
11.6. Otros ajustes lineales	<u>197</u>
11.7. Otros ajustes no lineales	<u>199</u>
11.8. Balances de carga y materia	<u>199</u>
11.9. Fórmulas aproximadas para el diagrama concentración/pH de un ácido diprótico	<u>204</u>
11.10. Resumen de comandos MATHEMATICA [®]	<u>206</u>
12. Bibliografía recomendada	

1. Uso de Internet para búsqueda de información

En este capítulo vamos a abordar el tema de la búsqueda de información en Internet desde dos posibilidades muy diferentes que tenemos a nuestro alcance. En primer lugar utilizaremos una base de datos de prestigio (**ISI Web of Knowledge**), a la cual podemos tener acceso gracias a los convenios que la Universitat Jaume I, y todas las Universidades del estado, tienen con el Ministerio de Educación y Ciencia. Estos convenios nos permiten tener a nuestro alcance bases de datos que incluyen toda la información que pueda necesitar un estudiante, investigador o profesor de cualquier área de conocimiento sobre publicaciones de todo tipo, incluyendo revistas científicas periódicas, libros, publicaciones virtuales, etc. Estas bases de datos contienen la información de todos los años de existencia de las publicaciones, aunque el acceso depende del convenio seleccionado por la universidad. Si algún año no está incluido, se puede obtener la información pagando una cantidad determinada.

Como segunda opción, estudiaremos la búsqueda de información mediante el <u>GoogleTM</u>, popular buscador que, a diferencia de las bases de datos comentadas con anterioridad, ofrecen información no sometida a revisión, excepto la que se impone la propia empresa que gestiona el buscador. Aunque la inmensa mayoría de usuarios conoce la utilidad del **GoogleTM**, también se habrán encontrado en ocasiones con información que no se corresponde con la realidad, o simplemente falsa o distorsionada. En nuestro caso, es evidente que deberemos siempre comprobar y contrastar la información técnica o científica que busquemos para nuestros trabajos o estudios.

1.1. ISI Web of Knowledge

Como se ha indicado anteriormente, entre las facilidades que nos ofrece la Universitat Jaume I en lo que se refiere a documentación, la base de datos ISI Web of Science es especialmente útil para alumnos, profesores e investigadores en el campo de las Ciencias Experimentales, Ciencias Humanas y Ciencias Sociales. Para acceder a ella debemos seguir los siguientes pasos, desde una maquina de la universidad o identificándonos si estamos en una maquina fuera de la universidad. Desde la página principal de la <u>Universitat Jaume I</u> podemos acceder a la opción <u>Biblioteca</u> situada debajo de la cabecera. De esta manera accedemos a la página de la biblioteca con una infinidad de posibilidades entre las que se encuentra la **Biblioteca Digital**. Dentro de las opciones de esta sección tenemos la posibilidad de acceder desde fuera de la Universidad en la última fila. El siguiente paso para acceder a la base de datos que buscamos es entrar en la opción <u>Bases de datos</u>.

Nos aparece entonces una página donde, por orden alfabético, se ordenan todas las bases de datos disponibles. Un simple vistazo a la lista nos puede dar idea de la cantidad de información disponible, de todas las áreas de conocimiento, que tenemos a nuestro alcance. En este caso, a nosotros nos interesa una base de datos en concreto, señalada en la figura:

🏄 Index dels recursos d	digitals de la biblioteca - Microsoft Internet Explorer		_ 8 ×
<u>A</u> rchivo <u>E</u> dición <u>V</u> er	Eavoritos Herramientas Ayuda		
🗲 Atrás 👻 🕥 🗸 🕨	👔 😰 🏠 🔎 Búsqueda 🦙 Favoritos 🧐 🔗 - 🌽 🔟 - 🔜 🖄		
Dirección 🙆 http://www.u	uji.es/CA/cd/digital/llistat.html		💌 🔁 Ir
Google	🚽 🔧 Buscar 🔹 🧒 🗉 🚽 😜 🛛 Compartir 📲 🗢 💭 Sidewiki 🔹 膋 Corrector ortográfico 🍷 👪 Tra	aducir 🝷 🎦 Autocompletar 🍷 🌽	🔦 🔹 🔵 Acceder 🔹
McAfee SiteAdvisor +			
Google M McAfee SileAdvisor V	 Buscar + (1) + (1) + (1) + (1) + (2	aducir - 🍋 Autocompletar - 🌽	K - Acceder -
	 > Iustel Termàtica: legislació i jurisprudència Descripció: portal de dret, conté legislació, jurisprudència, bibliografia (més de 42.000 referències) i base de dades de coneixement jurídic. Llengua de consulta: castellà > JSTOR Repositioni virtual de revistes impreses publicades per institucions diverses, escanejades per a ser consultables en format d'imatige en pdf o tiff. Descripció, condicions d'ús, manuals i llista de titols disponibles. > Kluwer Online ara a: Springerlink Proporciona el text complete de més de 600 revistes de l'editorial Kluwer. L'abast temátic és multidisciplinar. Descripció, condicions d'ús, manuals i llista de titols disponibles. 		
🖄 Error en la página.			internet

Al entrar en ella nos encontramos, en primer lugar, la hoja principal autentificada con el logo del Ministerio, como se puede observar en la figura:

🗿 ISI Web of Knowledge [v.4.9] - All Databases Home - Microsoft Internet Explorer	
Archivo Edición Yer Eavontos Herramientas Ayyda	A 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997
🔇 Atrás 🔹 🕥 🖌 📓 🏠 🔎 Búsqueda 🤆 Favoritos 🤣 😥 + چ 📓 🗉 📃 🖓	
Diregolin 🕘 http://sauwok.fecyt.es/apps/UA_GeneralSearch_input.do?product=UA8search_mode=GeneralSearch&SID=Q2bclp4foFAkkN4hhe4&preferencesSaved=	💌 🏓 Ir
Google 🔄 🚼 Buscar • 🛷 • 📲 • 🥥 🖸 Compartir • 👰 • 🗍 Sidewiki • 👫 Corrector ortográfico • 🚂 Traducir • 🍃 Autocompletar •	🥖 🔍 🔨 Acceder 🔹
M McAfee SiteAdvisor	
Google" Esta página está escrita en inglés. ¿Quieres traducirla con la barra Google? <u>Más información</u> ¿Esta página no está escrita en inglés? <u>Avúdanos a mejorar</u>	lucir Desactivar traducción al inglés 🗙
Sign in My EndNote Web My ResearcherD My Citation Alerts My Journal List	My Saved Searches Log Out Help 🔺
All Databases Select a Database Web of Science Additional Resources	
Search History Marked List (0)	FECYT
ALL DATABASES	
Search for.	OFECY I
in Topic 💌 🔍	Discover
AND Example: O'Brian C* OR OBrian C*	Quickly find, analyze, and manage information in the sciences, social
AND S in Publication Name S	sciences, arts, and humanities with this versatile workflow solution.
Add Another Field >>	Training in multiple languages
Search Clear	Customize Your Experience Sign In Register
Limit to: All Years	 Save and manage your references online with EndNote Web – freely available and fully integrated
View in 简优中文 Frodish 日本語	Save and run searches Create alerts and RSS feeds
Please give us your feedback on using ISI Web of Knowledge.	Choose your start page Want to know more?
Acceptable Use Policy	My ResearcherID
CopyrgM © 2010 Thomson Reuters	 What is ResearcherID? Sign In to ISI Web of Knowledge to get your ResearcherID.
C THOMSON REUTERS	Further Information
Published by Thomson Reuters	What's New? 2010-05-16 Training and Support Help Desk
	 Provide Feedback Search the Web with Scientific WebPlus
e Listo	📄 📄 🔮 Internet

La página tiene cuatro pestañas principales: All Databases, Select a Database, Web of Science y Additional Resources. Para búsquedas por temas, tanto All Databases como Web of Science pueden sernos útiles, pero esta última tiene más opciones de búsqueda, como podemos comprobar entrando en la pestaña correspondiente y desplegando el menú que se nos ofrece a al derecha de los campos a rellenar Search for. La página nos ofrece un ejemplo de búsqueda bajo los campos para diferentes opciones. Podemos buscar las palabras clave en la publicación o solo en el título. Además, también podemos buscar por autor o grupo de autores, dirección, etc. Todo ello se puede observar en la siguiente figura:

En una búsqueda determinada podemos limitar la fecha o las bases de datos, aunque si disponemos de una buena conexión el tiempo de búsqueda es muy corto dejando por defecto todas las opciones activadas y sin límite de fechas.

Veamos un ejemplo: imaginemos que necesitamos artículos sobre el tema Contaminación en el Mar Mediterráneo. Para ello buscamos las palabras clave *pollution* y *mediterranean*. Puesto que en el campo de la izquierda hemos seleccionado AND, la busqueda se realizará para artículos que contengan las dos palabras clave a la vez, *pollution* y *mediterranean*.

🗿 151 Web of Knowledge [v.4.9] - Web of Science Home - Microsoft Internet Explorer	×
Archivo Edición Ver Eavontos Herranientas Ayuda	
🔇 Atrás + 🕤 - 💌 😰 🐔 🔎 Búsqueda 👷 Favoritos 🤣 🔗 + 😓 📧 - 🛄 🦓	
Diregatón 🙋 http://sauwok.fecyt.es/apps/WOS_GeneralSearch_input.do?highlighted_tab=WOS&product=WOS&last_prod=WOS&SID=Q2bcdp4foFAkkN4hhe4&search_mode=GeneralSearch	💌 芛 Ir
Google 🔍 🕄 Buscar + 🛷 - 👙 - 🥥 😰 Compartir - 🔯 + 🚽 Sidewiki + 🎽 Corrector ortográfico - 👪 Traducir + 🎦 Autocompletar	• 🌽 🔹 🕓 Acceder •
M McAfee Steadwar +	
Sign in My EndNote Web My ResearcherD My Citation Alerts My Journal Lis ISI Web of Knowledge sm	.t My Saved Searches Log Out Help ▲
All Databases Select a Database Web of Science Additional Resources	- *
Search Cited Reference Search Structure Search Advanced Search Istory Marked List (0)	FECYT
Web of Science® – with Conference Proceedings	Academic
Search for:	Group ECYT
Example: oil spill* mediterranean	Looking for
AND 🔻 mediterranean in Topic 💌	ISI Proceedings?
Example: oil spill* mediterranean	Web of Science as the Conference
AND T Example: Cancer* OR Journal of Cancer Research and Clinical Oncology Add Another Field >> Search Clear	More information Note: Times Cited counts now include proceedings citations. More information.
Current Limits: [Hide Limits and Settings] (To save these permanently, sign in or register.)	Web of Science Explore the world's leading citation database with multidisciplinary coverage of over 10,000 birth-
Timespan:	impact journals in the sciences,
All Years (updated 2010-07-03) From 1900-1914 to 2010 (default is all years) Crtation Databases: Science Citation Index Expanded (SCI-EXPANDED)1899-present	sucial sciences, and ans and humanities, as well as international proceedings coverage for over 120,000 conferences. Powerful tools include cited reference searching, Citation Maps, and the Analyze Tool.
✓ Social Sciences Citation Index (SSC) 1956-present	Want to know more?
Int a nummanues Citation Index (AkHC) - 1975-présent Index Seine C(C)-1975-présent Index Seine Proceedings Citation Index Seine (CPCI-S) - 1990-présent	Training in multiple languages
▼ A/E/W/ Conference Proceedings Citation Index- Social Science & Humanities (CPCI-SSH)1990-present	Customize Your Experience
Chemical Databases:	Sign In Register
 Current Chemical Reactions (CCR-EXPANDED)1986-present (includes Institut National de la Propriete Industrielle structure data back to 1840) Index Chemicus (IC)1993-present 	 Save and manage your references online with <i>EndNote</i> <i>Web</i> – freely available and fully integrated. Save and run searches
View n 简体中文 English 日本語	Create alerts and RSS feeds Choose your start page Want to know more?

Al hacer click en **Search** obtenemos como resultado un listado de 1714 artículos ordenados de más recientes a más antiguos.

🎒 ISI	Web of Knowledge [v.4.9] - Web of Scier	nce Results - Microsoft Internet Explorer	_ & ×				
Archiv	Archivo Edición Yer Eavoritos Herramientas Ayyda 🐉						
() A	trás 🕶 🕥 🚽 💌 😰 🏠 🔎 B	úsqueda 📌 Favoritos 🥝 🔗 - 😓 📧 - 📒 🦓					
Direcció	ón 🕘 http://sauwok.fecyt.es/apps/summary	.do?qid=48product=WOS&SID=N1nJB5fBHLjg5CC7Apf8search_mode=GeneralSearch	💌 🄁 Ir				
Goog	gle	🔽 🛃 Buscar * 🗄 🔊 * 📲 * 🌑 🛛 Compartir * 🔊 * 🔍 Sidewiki * 🛛 ⁴ Corrector ortográfico * 👪 Traducir * 📔 Autocompletar * 🌛	🔦 🔹 🔵 Acceder 🔹				
M Mc#	Afee SiteAdvisor						
Go	ogle" Esta página está escrita e	n inglés. ¿Quieres traducirla con la barra Google? Más información ¿Esta página no está escrita en inglés? Avúdanos a mejorar Traducir	r 🛛 Desactivar traducción al inglés 🗙				
		Sign In My EndNote Web My ResearcherID My Citation Alerts My Journal List Mi	v Saved Searches Log Out Help				
	ISI VVED OT KNO	owiedge					
	All Databases Select a Databa	ase Web of Science Additional Resources					
	Search Cited Reference Search	Structure Search Advanced Search History Marked List (0)					
	Wah of Spience @	former Decementaria					
	Web of Science® - with Con	nerence Proceedings					
	Results Topic=(pollution) AN	ID Topic=(mediterranean)	Contraction Deputters				
	Timespan=All Years. Data	abases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC. SCIENTING W	PED PIUS VIEW WED Results >>				
	Results: 1.714	Page 1 of 172 Go >>	Sort by: Latest Date				
fine	Refine Results	Print (E-mail) (Add to Marked List) (Save to EndNote) (Save to EndNote), RefMan, PmCile) more options	Analyze Results				
Hide Re	Search within results for Earch 	 Title: Evaluation of surface sediment contamination by polycyclic aromatic hydrocarbons in colony Z3-(Patos Lagoon, Brazil) Author(s): da Luz LP, Sanches PJ, de Souss EEH, et al. Conference Information 15th Brazillan Meeting in Analytical Chemistry3rd Ibera-American Congress in Analytical Chemistry, OCT 18 Source IMICROCHEMICAL JOURNAL Volume: 96 Issue: 1 Special Issue: Sp. Iss. SI Pages: 161-166 Published: SEP 2010 Times Cited: 0 Consulta Z. Title: Comparison of trace metal bioavailabilities in European coastal waters using mussels from Mytilus edulis complex as bi Author(s): Pra/tarska JE, Sokolowski A, Wolowicz M, et al. Source: EMICROMENTAL MONITORING AND ASSESSMENT Volume: 166 Issue: 1-4 Pages: 461-476 Published: JUL 2010 Times Cited: 0 Consulta J. Title: Algal communities of the Hadera River (Israel) under dramatic niche changes Author(s): Brainova S8, Tavassi M, Nevo E Source: CENTRAL EUROPEAN JOURNAL OF BIOLOGY Volume: 5 Issue: 4 Pages: 507-521 Published: AUG 2010 Times Cited: 0 Consulta J. Title: Algal communities of the Hadera River (Israel) under dramatic niche changes Author(s): Brainova S8, Tavassi M, Nevo E Source: CENTRAL EUROPEAN JOURNAL OF BIOLOGY Volume: 5 Issue: 4 Pages: 507-521 Published: AUG 2010 Times Cited: 0 Consulta J. Title: Alternative Prevention and Treatment of Cardiovascular Disease Part 1 Author(s): Praft C J. Title: Alternative Prevention and Treatment of Cardiovascular Disease Part 1 Author(s): Praft C J. Author(s): Praft C J. Author(s): Praft C J. J. J.	-21, 2009 Salvador, BRAZIL				
	more options / values Authors Source Titles Publication Years	Source: PFMARY CARE Volume: 37 Issue: 2 Pages: 325-+ Published: JUN 2010 Times Cited: 0 Consulta1 5. Title: Trace metal concentrations in the North-western Mediterranean atmospheric aerosol between 1986 and 2008: Seasonal Author(s): Heimburger LE, Migon C, Dufour A, et al.	patterns and decadal trends				
	E Canfaranaa Titlaa	Source: SUENCE OF THE TOTAL ENVIRONMENT Volume: 408 Issue: 13 Pages: 2629-2638 Published: JUN 1 2010 Times: Cited: 0	Tabura ak				
ie Lista			internet				

Si queremos un resultado más específico podemos seleccionar en el menú de la derecha **Title**, con lo que la búsqueda de las palabras clave sólo incluirá aquellos artículos que las contengan en el título:

🍯 ISI	Web of Knowledge [v.4.9] - Web of Scier	nce Results - Microsoft Internet Explorer							
<u>A</u> rchiv	o <u>E</u> dición <u>V</u> er <u>F</u> avoritos <u>H</u> erramienta	is Ayuda							
() A	trás 🔹 🕥 🖌 🗾 👔 🏠 🔎 Bi	úsqueda 🤆 Favoritos 🤣 🍰 - 🌉 - 🛄 🦓							
Dire <u>c</u> ció	ón 🕘 http://sauwok.fecyt.es/apps/summary	:.do?qid=28product=WOS8SID=Q2bclp4foFAW4Whhe48search_mode=GeneralSearch 🗾 🔁							
Goog	gle	🔄 🛃 Buscar 🕫 🧭 = 🐳 🥸 😰 Compartir = 🧕 = 🔍 Sidewiki = 👘 Corrector ortográfico = 👪 Traducir = 🧏 Autocompletar = 🌽							
M Mc#	Afee SiteAdvisor 🔹								
		Sign In My EndNote Web My Researcher/D My Citation Alerts My Journal List My Saved Searches Log Out Help							
	ISI Web of Kno								
		Jwieuge							
	All Databases Select a Databa	ase Web of Science Additional Resources							
	Search Cited Reference Search	Structure Search Advanced Search History Marked List (0)							
	Web of Science® - with Con	ference Proceedings							
	Results Title=(pollution) AND	D Title=(mediterranean)							
	Timespan=Air Years, Data	Babes≈SuteArPanuEU, SSU, A&RU, URU-S, URU-SAR, AUEU, IC.							
	Results: 218	Med Page 1 of 22 Goo >> Sort by: Latest Date >							
O		Print E-mail Add to Marked List Save to EndNote RefMan. Pm@e ac enter							
efin	Refine Results	W Ling Create Citation Report							
e R	Search within results for	rch within results for I. Title: Sewage pollution impact on Mediterranean rocky-reef fish assemblages							
HId	Search	Author(s): Azzurro E, Matiddi M, Fanelli E, et al. Source: MARINE ENVIRONMENTAL RESEARCH Volume: 69 Issue: 5 Pages: 390-397 Published: JUN 2010							
	Subject Areas Refine	Times cited 0							
	MARINE & FRESHWATER BIOLOGY								
	(40)	2. Title: Relationship between heavy metals pollution and genetic diversity in Mediterranean populations of the sandhopper Talitrus saltator (Montagu)							
	(38)	(Crustacea, Amphipoda) Author(s): Ungherese G, Mengoni A, Somigli S, et al.							
	WATER RESOURCES (35)	Source: EMVIRONMENTAL POLLUTION Volume: 158 Issue: 5 Pages: 1638-1643 Published: MAY 2010 Times Cited: 0							
	more options / values	⊙ Consulta 1							
	Document Types (Refine)	3. Title Intense winter atmospheric pollution episodes affecting the Western Mediterranean							
	ARTICLE (124)	A the interise white antiospheric building episodes allecting the vestern medicinariaan Author(s): Pey J. Perezh, Querd X, et al.							
	EDITORIAL MATERIAL (41)	Source: Submode OF THE TOTAL ENVIRONMENT Volume: 408 Issue: 8 Pages: 1951-1959 Published: MAR 15 2010 Times Cited: 0							
	PROCEEDINGS PAPER (39)	∮ Consulta 1							
		4. Title: Comparison of the effects of adjustion on the marine bivalve Donax trunculus in the vicinity of colluted sites with specimens from a clean reference site							
	more options / values	(Mediterranean Sea)							
	Authors	Aumor(s): Tawetz A, Fisnelson L, Bresler V, et al. Source: MARNE POLLUTION BULLETIN Volume: 60 Issue: 2 Pages: 225-229 Published: FEB 2010							
	Source Titles	Times Cited: 0 Gonsulta'i							
	Publication Years								
	Conference Titles	5. Title: Effects of temperature and fertilization on total vs. active bacterial communities exposed to crude and diesel oil pollution in NW Mediterranean Sea Author(s): Rodriguez-Blanco A, Antoine V, Pelletier E, et al.							
		Source: ENVIRONMENTAL POLLUTION Volume: 158 Issue: 3 Pages: 663-673 Published: MAR 2010 Times Cifed: 0							
	institutions	§ Consulta"							
e		🔪 👘 Trkernet							

De este modo, el resultado se ha limitado a 218 artículos. Como se puede observar, en la columna de la izquierda tenemos varias posibilidades para refinar las búsquedas, limitando las áreas de conocimiento, el tipo de documentos, autores, etc.

Veamos otro ejemplo donde vamos a buscar los artículos de uno de los autores de este libro. Ponemos, tal como nos aconseja el ejemplo J* Planelles OR Planelles J*, con lo que la búsqueda tendrá en cuenta todos los artículos independientemente de que los autores se nombren con la inicial o con el nombre completo, y del orden nombre-apellido.

Como se puede observar en la figura anterior, obtenemos 113 artículos. Si estudiamos con detenimiento los resultados, la mayoría de los artículos pertenecen a Josep Planelles Fuster y están relacionados con la Química Cuántica. Sin embargo, en el puesto 54 y en el puesto 57 nos encontramos con 2 publicaciones de la revista **Diseases of the colon and rectum**, que evidentemente no son parte de su curriculum, si no de un investigador cuyo nombre coincide con la clave "J* Planelles OR Planelles J*", por lo que debemos depurar la búsqueda.

Una posibilidad es abrir la ventana Subject Areas, haciendo click en more option values, marcada en la figura anterior, con lo que se abre la correspondiente ventana con las áreas a las que pertenecen todas las publicaciones listadas. Podemos marcar sólo las áreas relacionadas con la Química Cuántica y usar la opción **Refine** o, al contrario, marcar las que no están relacionadas y usar la opción **Exclude**. Optamos por esta última por ser más facil de ejecutar en este caso, marcando las tres revistas que claramente se salen del tema. Obtenemos 108 artículos como resultado de la búsqueda, como se puede observar en las siguientes figuras:

🎒 ISI V	Veb of Knowledge [v.4.9] - Web of Scien	ce - Microsoft Internet Explorer	
Archivo	Edición Ver Eavoritos Herramienta:	Ayuda	🥂 🖉
🕝 Ati	rás 🔹 🕞 🕤 💌 😰 🚮 🔎 Bứ	squeda 🦟 Favoritos 🥝 🍰 🗟 - 🤚 🖄	
Dire <u>c</u> ciór	h 🕘 http://sauwok.fecyt.es/apps/RAMore.c	o?product=WO5&search_mode=GeneralSearch&SID=Q2bclp4foFAkkW4hhe4&qld=4&ra_mode=more&ra_name=SubjectCategory&db_jd=WO5	5&viewType=raMore 💌 🍉 Ir
Goog	le	🔄 🛃 Buscar 🔹 🧒 🔹 🏪 * 🥥 🖉 Compartir * 🔯 * 🤍 Sidewiki * 🥙 Corrector ortográfico * 🧯 Traducir * 📔 Auto	ocompletar + 🌛 🔍 🔨 + 🔵 Acceder +
	Fee SiteAdvisor 👻		
-		Sign In My EndNote Web My ResearcherID My Citation Alerts My	Journal List My Saved Searches Log Out Help
	ISI Web of Kno		
		meage	
	All Databases 🥄 Select a Databa	se Web of Science Additional Resources	
	Search Cited Reference Search	Structure Search Advanced Search Bearch History Marked List (0)	
	Web of Science® - with Cont	erence Proceedings	
	Results Author=(J* Planelles	OR Planelles J*)	groceedings: proceso, actas, debates, reunión,
	Timespan=All Years. Datak	ases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC.	expediente Inhabilitar
	View Distinct Author Sets for Planel	ıs J'	
	The Distinct Author Set feature is a di	scovery tool showing sets of papers likely written by the same person. (Tell me more.)	
	Results: 113		Sort by: Latest Date
Hide Reline	Refine Results Search within results for Search Subject Areas	Subject Areas Refine Exclude Gance Sorthese by: Record Count The first 100 Subject Areas (b) Sorthese (b) record count) are shown. For advanced refine options, use (c) Analyze results. In the first 100 Subject Areas (b) Sorthese (b) record count) are shown. For advanced refine options, use (c) Analyze results. In the first 100 Subject Areas (c) Sorthese (b) Record Count (c)	MULTIDIUTLINARY SCIENCES (2) OPT (2) SURGERY (2) ENOLETING SCIENTIFIC DISCIPLINES (1) ENONDERING, MULTIDISCIPLINARY (1) NUCLEAR SCIENCE & TECHNOLOGY (1) PHYSICS, NUCLEAR (1)
e 1			internet

# 151	Web of Knowledge [v.4.9] - Web of Scier	nce Results - Microsoft Internet Explorer	_ 8 ×
Archiv	ro <u>E</u> dición ⊻er Eavoritos Herramienta	as Ayyda	R
6	ıtrás 🕶 💮 👻 📓 🚮 🔎 Bi	úsquedə 👷 Fəvoritos 🛷 🔗 😓 🗉 - 📴 🦓	
Dire <u>c</u> ci	ón 🙆 http://sauwok.fecyt.es/apps/summary	rdo?qid=5&product=WOS&SID=Q2bdpHoFAkkWHhbe4&search_mode=Refine	📄 🔁 Ir
Goo	gle	🚽 🔧 Buscar + 🕫 🔊 - 🧁 🥪 😰 Compartir - 🧕 - 🔍 Sidewiki - 🦓 Corrector ortográfico - 👪 Traducir - 🔚 Autocompletar - 🥖 🔍 - 🕓	Acceder -
M Mc	Afee SiteAdvisor -		
		Sign in My EndNote Web My Researcher/D My Citation Alerts My Journal List My Saved Searches Log Out He	elp 📥
	ISI Web of Kno	owledge™	
	All Databases 📃 Select a Databa	ase Web of Science Additional Resources	
	Search Cited Reference Search	Structure Search Advanced Search History Marked List (0)	
	Web of Science® - with Con	ference Proceedings	
	<< Back to previous		
	Results Author=(J* Planelles Refined by: [excluding] Su Timespan=All Years. Data	S OR Planelies J*) ubject Areas=(SURGERY OR PHARMACOLOGY & PHARMACY OR GASTROENTEROLOGY & HEPATOLOGY) ubases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S, CPCI-SSH, CCR-EXPANDED, IC.	
	Results: 108	Sort by. Latest Date	3
Hide Refine	Refine Results Search within results for Search Standard Standard CHEMISTRY, PHYSICAL(41) PHYSICS, CONDENSED MATTER (24) PHYSICS, ATOMIC, MOLECULAR & CHEMISTRY, PHYSICAL(24) MATTEMATICS, MATTEMATICS, INTERDISCIPLINARY MATTEMATICS, APPLIE0 (8) more options / values V Document Types Refine ARTICLE (26) PROCEEDINOS PAPER (7) LETTER (3) REVIEW (2) HOTE (1) more options / values	 Print Email Add to Marked List Save to EndNote Meb Save to EndNote RefMan.PmCla more options Andyze Result III Create Citation Report IIII Create Citation Report IIIII Create Citation Report IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	s (<u>r</u>
A	Authors Source Titles Publication Years	5. Title: Excitons, Biexcitons, and Trions in CdSe Nanorods Author(s): Rajadell F, Climente JI, Planelles J, et al. Source: JOURNAL OF PHYSICAL CHEMISTRY C Volume: 113 Issue: 26 Pages: 11268-11272 Published: JUL 2 2009 Times Cited: 31 Conservation	

Existen otras opciones, como incluir algún dato de la dirección en la página principal (opción **Address** a la derecha del campo a rellenar) o cualquier otra característica específica de las publicaciones buscadas.

Llegados a este punto podemos practicar búsquedas de diferentes temas y autores y estudiar los resultados que se obtienen con el objeto de adquirir experiencia en el uso de este tipo de bases de datos tan útiles para el estudio y la investigación.

1.2. Google

En el apartado anterior hemos utilizado una base de datos que solo utiliza fuentes fiables, como revistas científicas, publicaciones en congresos, etc. Vamos a practicar ahora con un buscador que no tiene prácticamente limitaciones a la hora de realizar una búsqueda en cuanto las fuentes que utiliza: <u>GoogleTM</u>. En este caso la información que obtengamos será de diferentes tipos, no sólo artículos, sino también páginas web oficiales, comerciales y particulares, periódicos, etc.

La página principal es muy sencilla, y nos ofrece un campo donde debemos introducir el tema que buscamos. Por defecto buscará información escrita en general, pero también se le puede indicar que busque imágenes, noticias sobre el tema requerido, videos, etc., utilizando el menú que se nos ofrece en la parte superior de la página.

Veamos qué resultado obtenemos si introducimos las palabras clave utilizadas anteriormente:

Hacemos clic en **Buscar con Google**TM y no limitamos el idioma ni el país de las páginas web, opciones que se nos presentan bajo el campo a rellenar. El resultado es el siguiente:

A diferencia de la base de datos Web of Knowledge, la variedad y la cantidad de los resultados es mucho mayor. La mayoría son páginas oficiales de organizaciones dedicadas al estudio o a la protección del Mediterráneo, y nos pueden ser útiles para el fin que queramos. Estudiando los resultados podemos constatar que todos ellos tienen una fuente fiable con información interesante sobre el tema.

Veamos otro ejemplo: supongamos que necesitamos una foto de la microalga del género Pseudonitzchia para incluir en un póster que estamos haciendo. Ponemos el nombre Pseudonitzchia, y hacemos clik en **Imágenes**:

Obtenemos buenas imágenes de la microalga, pero cuidado, la imagen señalada en la figura está titulada en el pie como Pseudonitzchia y son moluscos. Este resultado nos debe alertar sobre los posibles errores que podríamos cometer si buscamos información de temas totalmente desconocidos para nosotros.

Como en el apartado anterior, podemos practicar buscando temas en **Google**TM y estudiando los resultados obtenidos. Dada la facilidad de uso de este buscador, lo más importante será nuestro criterio a la hora de seleccionar y usar la información que obtengamos. La búsqueda de información complementaria, con éstos u otros buscadores (Google Scholar, Scopus, Scirus, etc), es una tarea que se deberá realizar en todos y cada uno de los temas siguientes, con objeto de completar, documentar y contrastar la información disponible.

2. Operaciones básicas y representaciones gráficas

2.1. Leyes de los gases ideales. Disoluciones

Con el objetivo de aprender cómo se llevan a cabo las operaciones más básicas en la hoja de cálculo $EXCEL^{\$}$, en este tema introductorio vamos a abordar las leyes de los gases ideales. En primer lugar comprobaremos la Ley de Boyle, $P \cdot V = cte$, a partir de una serie de datos experimentales de presión y volumen que viene recogida en la figura inferior.

Procedemos en primer lugar a teclear los valores de volumen de un sistema gaseoso a diferentes presiones, en las celdas correspondientes.

Microsof	K Microsoft Excel - Capitulo2EXCEL								
Archivo	🗿 Archivo Edición Ver Insertar Formato Herramientas Datos Ventana 2 Escriba una pregunta 🔹 🗗 🗙								
🗋 😅 🔚	□ ☞ 🖩 ☜ @ Q, ♥ ≵ ℡ ⋿ - ♡ ♥ + ↔ - ♥, Σ + 阪 섥 抖 Щ 秒 230% ∀ ", Arial Ⅰ □ ⊻ ₩ X ⊆ ≡ ≡ 田 ℗ € % ∞∞ *& % 후 庫 ⊞ + ⊉ + Δ + ↓								
	ing the log the log of the log of the log of the Responder congembios Terminer revisión ↓								
A3	✓ ½ P(torr)	–	~	n	_	_	<u> </u>		
	A	В	C	D	E	F	G	F-	
1	Ley de Bo	yle							
2									
3	P(torr)	V(I)							
4	1	1,366							
5	10	0,137							
6	20	0,0685							
7	30	0,0457							
8	40	0,0343							
9	50	0,0274							
10	60	0,0228							
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21	GAS /							•	
Listo	Circular	: A44					NL	IM	

Como se puede observar en la figura anterior, las celdas que contienen texto se justifican a la izquierda, mientras las celdas que contienen números se justifican a la derecha; son celdas numéricas con las cuales se pueden efectuar operaciones matemáticas.

Veamos el primer ejemplo: si tecleamos el signo = 6 + en una celda, la hoja identifica una fórmula matemática y podemos, por ejemplo, multiplicar el contenido de las celdas A4 y A5 tecleando =A5*B5. El asterisco significa multiplicación, como en cualquier calculadora convencional.

Microsof	Microsoft Excel - Capitulo2TXEE								
Archivo	[2] Arthwo Edicion Yer Insetzer Epomato Hernamientas Dagos Vegtana Z Estola una pregunta · · · · · · · · · · · · · · · · · · ·								
i ča ta t									
C4	✓ fx =A4*B4	$\overline{}$	\sim	D	E	F			
	A	. •		D		F	G		
1	Ley de Bo	yle							
2									
3	P(torr)	V(I)	P·V 丶						
4	1	1,366	1,366		_				
5	10	0,137		linea c	le comando	os			
6	20	0,0685							
7	30	0,0457							
8	40	0,0343							
9	50	0,0274							
10	60	0,0228							
11									
12									
13									
14									
15									
16									
17									
18									
19									
20									
21	GAS /							F	
Listo	Circular	:: A44					N	UM	

Como se puede observar en la figura, en la celda C4 aparece el resultado de multiplicar las celdas A4 y B4, mientras que en la línea de comandos aparece la fórmula escrita (=A4*B4). En el caso de que debiéramos escribir cada fórmula a la derecha de cada fila, para efectuar las correspondientes operaciones matemáticas, realizaríamos un trabajo similar al necesario con una calculadora. La hoja EXCEL[®] sin embargo, nos permite *arrastrar* la formula escrita en la celda C4 a las siguientes filas, traduciéndola en cada caso, sin necesidad de tener que escribir explícitamente dichas fórmulas una a una. Para conseguirlo debemos poner el cursor en un vértice de la celda C4 y cuando toma la forma de +, se debe mantener el clic en el botón izquierdo del ratón y moverlo hacia abajo.

🔀 Microsoft	Excel - Capitulo2EXCEL							_ <u>8</u> ×
Archivo	Edición Ver Insertar	Eormato Herramientas Da	tos Ventana ?	230% - * Arial	- 10 - W Z S		Escriba una pregunta	×
] ♥₽Responder con cambios.	Terminar revisión					· · ·
022	A	В	С	D	E	F	G	⊢≞
1	Ley de Bo	yle						
2								
З	P(torr)	V(I)	P·V					
4	1	1,366	1,366	clic botón izo	uierdo			
5	10	0,137			•			
6	20	0,0685						
7	30	0,0457						
8	40	0,0343						
9	50	0,0274						
10	60	0,0228		7				
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21	GAS /							- -

El resultado es el siguiente:

Microsof	t Excel - Capitulo2EXCEL						Producer and	_ <u>- </u> - <u>-</u>
	Edicion ver Insertar	Eormato Herramientas Da	a <u>c</u> os ve <u>n</u> tana <u>/</u> 🧠 Σ → 🔂 2↓ 📈 🛍	1 🚜 230% 🗕 🐥 Arial	• 10 • N K S		* 000 * 00 + 00 年 年	• • • • • •
	a 24 °Ca 35a 27 № 62 ▼ 54 =A4*B4	Responder con cambios	Ter <u>m</u> inar revisión 🖕					
	A	В	С	D	E	F	G	⊢Ē
1	Ley de Bo	yle						
2								
3	P(torr)	V(I)	P·V					
4	1	1,366	1,366					
5	10	0,137	1,37					
6	20	0,0685	1,37					
7	30	0,0457	1,371					
8	40	0,0343	1,372					
9	50	0,0274	1,37					
10	60	0,0228	1,368					
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21 • • • • •	GAS/							• • •
Listo	Circular	1: A44				9	iuma=9,587 N	IUM

Las fórmulas se pueden visualizar mediante el menú Herramientas>Opciones>Ver, y marcando Fórmulas:

Microsof	t Excel - Capitulo2EXCEL			
Archivo	। Edición ⊻er Insertar Eormato Herramientas । 1। कि: ्रिक ि:१४/४४ कि: कि:+्र ि + ा + ा + ा	Da <u>t</u> os Ve <u>n</u> tana <u>?</u>	• 10 • N K S = = =	Escriba una pregunta - P ×
	a 🖾 📾 🔚 🗹 🎭 🔎 🖓 Responder con cambio	os Terminar revisión		
C4	★ =A4*B4 A A	В	С	D -
1	Ley de Boyle			
2				
3	P(torr)	∨(I)	P·V	
4	1	1,366]=A4*B4	
5	10	0,137	=A5*B5	
6	20	0,0685	=A6*B6	
7	30	0,0457	=A7*B7	
8	40	0,0343	=A8*B8	
9	50	0,0274	=A9*B9	
10	60	0,0228	=A10*B10	
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
	GAS /		[4]	Suma-9 587 NIIM

Como se puede observar, los productos obtenidos no nos proporcionan un valor exactamente constante. Ello deriva de la imprecisión experimental de P y V, y de la falta de idealidad en el comportamiento del gas. Podemos ajustar el número de cifras decimales a dos mediante el menú **Formato>Celdas>Número** y obtener así la apariencia de constancia que debe tener la ley.

Micros	oft Excel - Capitulo2EXC	EL .	iankas Dakas Vankasa						Eccriba una pregunta	
	vo Edición ver Inse	K 🗈 🖻 - 🛷 🗠	∙ ⊂i - katos ve <u>n</u> tana	' <u>-</u> ≱1 ≷1 û∩∎ "⊠	200% • * Arial	• 10 •			*.8 .08 E € E	ð - A -
1 🖾 💼		te per la temperatura de la constante de la c	on <u>c</u> ambios Ter <u>m</u> inar rev	visión				m 1 m 1 m		
C4		∿4*B4	_	_	_	_	_			
	A	В	С	D	E	F	G	H		<u> </u>
1	Ley de Bo	oyle								
2										
3	P(torr)	V(I)	P·V							
4	1	1,366	1,366							
5	10	0,137	1,37							
6	20	0,0685	1,37							
7	30	0,0457	1,371	Formato de celo	las		? ×			
8	40	0,0343	1,372	Número Aline	ación Fuente Bordes	Tramas Proteger				
9	50	0,0274	1,37	⊆ategoría: General	Muestra 1,37					
10	60	0,0228	1,368	Moneda Contabilidad	Posiciones decim	ales: 2				
11				Fecha Hora	🔲 Usar separad	lor de miles (.)				
12				Fracción Científica	Números negativ -1234,10	ros:				
13				Texto Especial Persopalizada	1234,10 -1234,10 -1234,10		T			
14				I. or berraile and						
15				Para la presenta	ción de números en general. F	Para dar formato a valore	s			
16				monetarios utilico	e formatos de moneda y conta	abilidad.				
17										
18						Aceptar Cance	elar			
19										
20										
21										
22										
23										
24										
Listo	LAS/					11		Suma=9,58	7 NUM	
🍂 Inicio	🕑 🕑 🥭 🛛 🖻] informatica-vf_co 🗲	CapEXCEL	Capitulo2EXCEL5	Capitulo2EXCEL4	Capitulo2EXCEL	🦉 p23-2 - Paint	🕘 Universitat Jaum	🌀 Bandeja de entra	👿 🏂 8:57

El resultado es el siguiente:

🕅 Microsoft	Excel - Capitulo2EXCEL							_ 8 ×
Archivo	Edición Ver Insertar	Eormato Herramientas Da	atos Ventana ?				Escriba una pregunta	• - 8 ×
	□ 24 56 26 √ ∧ 46	Responder con cambios	🐝 ∠ · दि Z + A + 🛄 Terminar revisión 🖕	49 230 % • • Alla	• 10 • N A <u>3</u>		20 000 00 + 0 5 = 5 =	• 🗠 • 🚣 • •
C4	- f₂ =A4*B4	_	-	_		_	-	. =
	A	В	С	D	E	F	G	⊢-
1	Ley de Bo	yle						
2								
З	P(torr)	V(I)	P·V					
4	1	1,366	1,37					
5	10	0,137	1,37					
6	20	0,0685	1,37					
7	30	0,0457	1,37					
8	40	0,0343	1,37					
9	50	0,0274	1,37					
10	60	0,0228	1,37					
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21	GAS /							
Listo	Circular	: A44				S	uma=9,59 N	UM ST

Apliquemos el mismo proceso a datos de volumen y temperatura para la comprobación de la Ley de Gay-Lussac. Los datos experimentales utilizados vienen recogidos en la figura que se incluye a continuación. Recordemos la Ley de Gay-Lussac:

$$\frac{V}{T} = cte$$

Análogamente procederemos con datos de presión, volumen, número de moles y temperatura, recogidos en la misma figura, para la comprobación de la Ley de los Gases ideales:

$$\frac{P \cdot V}{n \cdot T} = cte$$

Los signos que necesitamos son los mismos que en las calculadoras convencionales (multiplicar *, sumar +, restar -, dividir /). Después de teclear los valores, introducir las fórmulas y ajustar los decimales de las celdas correspondientes, el resultado se puede observar en las siguientes figuras, mostrando números y fórmulas. Las diferentes columnas se han centrado mediante el comando centrar en el menú de iconos superior (\blacksquare), o en opciones de **Formato>Párrafo**. En adelante, para encontrar con facilidad las diferentes opciones ofrecidas en el menú de iconos siempre se puede utilizar la ayuda (**?>Ayuda de Microsoft Excel**), también en el menú de iconos superior.

Micros	oft Excel - Capitulo2EX	CEL									_ 8 ×
Arch	vo Edición Ver Inse	ertar <u>F</u> ormato <u>H</u> erram	ientas Da <u>t</u> os	Ventana 2	10. C					Escriba una pre	igunta 🗸 🗗 🗙
: L' 🛩	⊌®⊒ ⇔©.▽ ∞⊒n,∞ ¤!	X PB PB + ⊘ ∽	• Cal + 🍓 2	E → KE 2↓ A↓	<u>₩</u> 45 200% • ‡	Arial 👻	10 - N	$K \leq \equiv \equiv$:≣⊞ %)€ %	6 000 ⁺ 00 +00 t≓ t≓	⊞ • 22 • ▲ • •
B3	- <i>f</i> ∗										
	A	В	С	D	E	F	(G 🛛	Н		J 🖻
11											
12	Ley de Ga	ay-Lussac									
13											
14	V(I)	T(K)	(V/T)								
15	20	243,9	0,082								
16	20,2542	247	0,082								
17	24,6325	300	0,082								
18	30,0041	365,9	0,082								
19	33,2431	405,4	0,082								
20	39,9997	487,8	0,082								
21											
22	Ley de lo	s Gases lo	leales								
23											
24	Р	V	n	Т	P·V/n·T						
25	1	22,4	1	273	0,082						
26	2	11,2	1	273	0,082						
27	2,24	10	1	273	0,082						
28	1	20	1	243,9	0,082						
29	1	30	1	365,9	0,082						
30	1	40	1	487,8	0,082						
31	1,5	19,9	1,5	243,9	0,082						
32	1,5	26,6	2	243,9	0,082						
33	1,5	33,2	2,5	243,9	0,082						
34											
II I I I	GAS				-		•				
🍂 Inicio	🕑 🕑 🥖 💆	🗿 Bandeja de entrada para	a 📴 informat	ica-vf_convincul	CapEXCEL	Microsoft E	xcel - Capi	🦉 p24-1 - Paint			3 11:39

Micros	Microsoft Excel - Capitulo2EXCEL										
Arch	nivo Edición Ver Insertar Eormato Herram	ientas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>			Escriba una pregunta	×					
🗋 🗅 🧀		• ~ • 🝓 Σ • 🔂 🏄 🕺 🛍 🤴 200°	% 👻 🎇 Arial	• 10 • N X S = = =	■國 寥€%∞%↓% 律律 Ⅲ・3	≥ - ▲					
	🔯 🖾 🖏 🚵 🗹 ங ()⊇ ♥₽Responder o	on gambios Ter <u>m</u> inar revisión 🖕									
	A	В	С	D	E	-					
11											
12	Ley de Gay-Lussac										
13											
14	V(I)	T(K)	(V/T)								
15	20	243,9	=A15/B15								
16	20,2542	247	=A16/B16								
17	24,6325	300	=A17/B17								
18	30,0041	365,9	=A18/B18								
19	33,2431	405,4	=A19/B19								
20	39,9997	487,8	=A20/B20								
21											
22	Ley de los Gases lo										
23											
24	P	V	n	Т	P·V/n·T						
25	1	22,4	1	273	=A25*B25/(C25*D25)						
26	2	11,2	1	273	=A26*B26/(C26*D26)						
27	2,24	10	1	273	=A27*B27/(C27*D27)						
28	1	20	1	243,9	=A28*B28/(C28*D28)						
29	1	30	1	365,9	=A29*B29/(C29*D29)						
30	1	40	1	487,8	=A30*B30/(C30*D30)						
31	1,5	19,9	1,5	243,9	=A31*B31/(C31*D31)						
32	1,5	26,6	2	243,9	=A32*B32/(C32*D32)						
33	1,5	33,2	2,5	243,9	=A33*B33/(C33*D33)						
34	in the second se										
Lieto	GAS			1.1	NUM						

Como se puede observar en la celda E25 y siguientes de la fila, es importante utilizar los paréntesis adecuadamente para obtener el resultado deseado, análogamente a cualquier fórmula que podemos introducir en una calculadora convencional.

🖾 Mie	rosoft Excel - Ca	apitulo2EXCEL													_	8 ×
B) (Archivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar	Eormato	Herramien	itas Da <u>t</u> os V	e <u>n</u> tana <u>?</u>							E	scriba una pregu	nta 💌 🗕	8 ×
D (🛎 🖬 👒 🎒	🗟 🖤 🐰	🗈 🛍 •	🗇 🗠 🕶	CH + 🍓 Σ	- 🕄 🏄 🕌	🛍 생 130%	🔹 💥 Arial	•	10 - N A	r <u>s</u> == ==	= 🖬 🦃	€ % 000 *00	•% th th	- 🗠 - 🗸	<u>×</u>
1	ta ta 🛥 🗠	🍇 🖸 🗞 (🔒 🖓 🖓 RI	esponder con	cambios Term	inar revisión										
	M11 👻	f.x	-													
	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0	
1	Ley de Boy	<i>y</i> le														
2																
3	P(torr)	V(I)	P·V													
4	1	1,366	1,37													
5	10	0,137	1,37													_
6	20	0,0685	1,37													_
7	30	0,0457	1,37													_
8	40	0,0343	1,37													
9	50	0,0274	1,37													
10	60	0,0228	1,37													_
11																
12	Ley de Gay	y-Lussac														
13																
14	V(I)	T(K)	(V/T)													
15	20	243,9	0,082													
16	20,2542	247	0,082													
17	24,6325	300	0,082													
18	30,0041	365,9	0,082													
19	33,2431	405,4	0,082													_
20	39,9997	487,8	0,082													
21																
22	Ley de los	Gases Ide	ales													
23					-											
24	Р	V	n	1	P·V/n·I											
26	1	22,4	1	273	0,082											
26	2	11,2	1	273	0,082											
27	2,24	10	1	2/3	0,082			-	-	-		-				
28	1	20	1	243,9	0,082											
29	1	30	1	305,9	0,082											
30	1.5	40	1	487,8	0,082							-				
31	1,5	19,9	1,5	243,9	0,082							-				
32	1,5	26,6	2	243,9	0,082											
33	1,5	33,2	2,5	243,9	0,082			-	-	-						
34																
36																
36																
3/																
14 4	▶ N\GA5															Þ
Listo	NUM															

La hoja completa tendría el siguiente aspecto:

Una vez hemos practicado el diseño de fórmulas, podemos abordar ahora la *representación gráfica de datos*. Para ello vamos a utilizar como base una tabla donde incluiremos diferentes expresiones de concentración (molaridad, molalidad y fracción molar) a partir de disoluciones con diferentes porcentajes de HCl en agua, incluyendo para su cálculo la densidad en g/ml.

Micros	Microsoft Excel - Capitulo2EXCEL4								
Arch	ivo Edición Ver	Insertar Eormato	Herramientas Datos	Ventana ?	23			Escriba una pregunta	- = = ×
	19 19 19 19. 19 29 19 19 19		ponder con cambios	2. • 50 2 4 2 4 1 200%	Anal II			00 · 00 • 0 1부 1부 표	• 🗠 • 🗛 • •
A29		A Representación o	de la desviación M-m						
	A	В	С	D	E	F	G	Н	<u> </u>
1	%(HCI)	d(g/ml)	М	m	Х	%dif.			
2	1	1,0032	0,27	0,28	0,00	0,68			
3	2	1,0082	0,55	0,56	0,01	1,20			
4	4	1,0181	1,12	1,14	0,02	2,26			
5	6	1,0279	1,69	1,75	0,03	3,38			
6	8	1,0376	2,27	2,38	0,04	4,54			
7	10	1,0474	2,87	3,04	0,05	5,73			
8	12	1,0574	3,48	3,74	0,06	6,95			
9	14	1,0675	4,09	4,46	0,07	8,20			
10	16	1,0776	4,72	5,22	0,09	9,48			
11	18	1,0876	5,36	6,01	0,10	10,82			
12	20	1,0980	6,02	6,85	0,11	12,16			
13	22	1,1083	6,68	7,73	0,12	13,55			
14	24	1,1187	7,36	8,65	0,13	14,98			
15	26	1,1290	8,04	9,63	0,15	16,45			
16	28	1,1392	8,74	10,65	0,16	17,98			
17	30	1,1493	9,45	11,74	0,17	19,55			
18									
19									
20									
21									
22									
23									
24									•
I4 4 ▶ ♦ Listo	3Dissoluc							N	

Las fórmulas para el cálculo de la Molaridad (M), molalidad (m), fracción molar (X) y porcentaje de la diferencia entre molaridad y molalidad son las siguientes:

$$M = \frac{\binom{g}{PMs}}{l} = \frac{\binom{g(\%)}{100ml} \cdot d(g/ml) \cdot 1000}{PMs} = \frac{10 \cdot g(\%) \cdot d}{PMs}$$
$$m = \frac{\binom{g(\%)}{PMs} \cdot 1000}{100 - g(\%)}$$
$$X = \frac{\binom{g(\%)}{PMs}}{\binom{g(\%)}{PMs} + \binom{(100 - g(\%))}{PMdv}}$$

PMs: peso molecular del soluto, PMdv: peso molecular disolvente

Las fórmulas trasladadas a la sintaxis de EXCEL[®] se presentan en la siguiente figura:

🕅 Mic	rosoft Excel - Ca	pitulo2EXCEL4					. 8 ×
💌 A	rchivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar <u>E</u>	ormato <u>H</u> erramientas Da <u>t</u> os \	/entana <u>?</u>		Escriba una pregunta 🔹 🚽	. 8 ×
D 🛛	ê 🖬 👒 🤤	🗟 🖤 🕺 🖻	🖻 = 🝼 🗠 = 🖓 = 🖓 Σ	- 🔂 👌 🏹 🛍 🤣 150% - 💥 Arial	• 10 • N K S = = = = = 9 €	% 000 *o8 .º8 🞼 💷 • 🖄 • ,	▲
1	ta ta 🖾 😘 :	📾 🗹 🖪 😥	Responder con cambios Terg	ginar revisión 🖕			
	435 ▼	/∿ Represer	ntación de la desviación M-m	D	F	F	-
-		D al(a/mal)	M	D	E		<u> </u>
-		1.0022	-10*A2*P2/26 5	-(42/26 5)*1000/(100 42)	-(A2/26 E)/(A2/26 E+(100 A2)/18)	-//D2 C2)/D2)*100	
2	2	1,0032	-10 AZ BZ/30,5	$-(A2/36,5)^*1000/(100-A2)$	-(A2/36,5)/(A2/36,5+(100-A2)/18)	$=((D_2 - C_2)/D_2)^{+100}$	
3	2	1,0082	-10 A3 B3/30,5	-(A4/36.5)*1000/(100-A3)	-(A3/36,5)/(A3/36,5+(100-A3)/18)	=((D4 C4)(D4)*100	
4 E	4	1,0181	-10 A4 B4/30,5	-(A5/36,5)*1000/(100-A4)	-(A4/36,5)/(A4/36,5+(100-A4)/18)	$=((D_{4}-C_{4})/D_{4})^{*}100$	
6	0	1,0279	-10 A5 B5/30,5	$-(A6/36,5)^*1000/(100-A6)$	-(A5/36,5)/(A5/36,5+(100-A5)/18)	$=((D5-C5)/D5)^{-100}$	
- 7	10	1,0370	-10 A0 B0/30,5	$-(A7/36,5)^{+}1000/(100-A7)$	-(A0/30,5)/(A0/30,5+(100-A0)/18)	=((D3-C3)/D3) 100	
- <u>(</u>	10	1,0474	=10 A7 B7730,5	=(A7/36,5) 1000/(100-A7)	=(A7730,5)/(A7730,5+(100-A7)/10)	=((D7-C7)/D7)/100	
0	12	1,0574	=10 A0 B0/30,5	$=(A0/36,5)^{+}1000/(100-A8)$	=(A0/36,5)/(A0/36,5+(100-A6)/16)	$=((D8-C8)/D8)^{-100}$	
3	14	1,0075	-10 A9 B9/30,5	-(A3/30,3) 1000/(100-A3)	-(A9/30,5)/(A9/30,5+(100-A9)/18)	$=((D_{3}-C_{3})/D_{3})^{-100}$	
10	10	1,0776	=10 A10 B10/36,5	$=(A11/36,5)^{+}1000/(100-A11)$	=(A10/36,5)/(A10/36,5+(100-A10)/18)	=((D10-C10)/D10)/100	
10	10	1,0070	=10 ATT BTT/30,5	$=(A12/36,5)^{+}1000/(100-A12)$	=(A11/36,5)/(A11/36,5+(100-A11)/18)	=((D11-C11)/D11) 100	
12	20	1,090	=10 A12 B12/30,5	$=(A12/36,5)^{+}1000/(100-A12)$	=(A12/36,5)/(A12/36,5+(100-A12)/18)	=((D12-C12)/D12)/100	
13	22	1,1003	=10 A13 B13/30,5	$=(A14/36,5)^{+}1000/(100-A13)$	=(A13/36,5)/(A13/36,5+(100-A13)/18)	=((D13-C13)/D13)/100	
14	24	1,1107	=10 A14 B14/30,5	$=(A14/36,5)^{+}1000/(100-A14)$	=(A14/36,5)/(A14/36,5+(100-A14)/18)	=((D14-C14)/D14)/100	
10	20	1,129	=10 A15 B15/30,5	$=(A16/36,5)^{+}1000/(100-A16)$	=(A16/36,5)/(A16/36,5+(100-A16)/18)	=((D15-C15)/D15)/100	
10	20	1,1392	-10 A10 B10/30,5	$=(A17/36,5)^{+}1000/(100-A17)$	=(A17/36,5)/(A17/36,5+(100-A17)/18)	=((D13-C13)/D13)/100	
10	30	1,1495	-10 AT/ BT//30,5	=(A17/36,5) 10007(100-A17)	=(A17/30,5)/(A17/30,5+(100-A17)/18)		-
10							
20							
20							-
22							
22							
20							
25							
26							-
27							-
29							-
29							\pm
30							<u>+-</u>
31							+-
22							-
listo	• ► ► N \\ 3Dissoluc /						

Una de las ventajas de la utilización de EXCEL[®] u otras hojas de cálculo frente a otros potentes programas más dirigidos al cálculo es la posibilidad de diseñar gráficos de una manera muy sencilla.

En este caso, sería interesante visualizar la variación de la Molaridad frente a la molalidad y al porcentaje de la diferencia. Para ello, basta seleccionar las columnas que nos interesan. De esta forma, puesto que son discontinuas, tenemos la posibilidad de copiarlas, simplemente marcando las columnas a copiar con el ratón manteniendo el botón izquierdo presionado y utilizar la opción del menú principal **Edición>Copiar**. Para pegarla en otro lugar de la tabla, se debe marcar con el ratón la celda donde deseemos que comience la nueva columna y seleccionar del menú **Edición>Pegar**.

Sin embargo, es más fácil la selección de las columnas que deseemos manteniendo presionada la tecla **Ctrl** mientras marcamos columnas que pueden no ser contiguas, puesto que no se borran las marcas mientras mantengamos la tecla **Ctrl** oprimida. En la siguiente figura aparecen en azul las columnas %HCl (x), molaridad (y1), molalidad (y2) y porcentaje de la diferencia (y3).

🕅 Micros	krosoft Bxcel - CapituloZEXCEL4									
Arch	ivo Edición Ver	Insertar Eormato	Herramientas Datos	Ventana ?				Escriba una pr	egunta - B ×	
		🏹 👗 🖷 🖪 • <	∑ K2 + C4 + %	Σ - ₩2 2↓ X↓ ₩1 48 200	% • 🛫 Arial •			% 000 *08 ₊08 €≡ €!	= = • 🗠 • 🗛 • •	
F1	₩ ₩ ₩ ₩ ₩	✓ ••a get +• Resp & %dif.	ionder con <u>c</u> ampios 1	erminar revision						
	A	B	С	D	E	F	G	н	-	
1	%(HCI)	d(g/ml)	М	m	Х	%dif.				
2	1	1,0032	0,27	0,28	0,00	0,68				
3	2	1,0082	0,55	0,56	0,01	1,20				
4	4	1,0181	1,12	1,14	0,02	2,26				
5	6	1,0279	1,69	1,75	0,03	3,38				
6	8	1,0376	2,27	2,38	0,04	4,54				
7	10	1,0474	2,87	3,04	0,05	5,73				
8	12	1,0574	3,48	3,74	0,06	6,95				
9	14	1,0675	4,09	4,46	0,07	8,20				
10	16	1,0776	4,72	5,22	0,09	9,48				
11	18	1,0876	5,36	6,01	0,10	10,82				
12	20	1,0980	6,02	6,85	0,11	12,16				
13	22	1,1083	6,68	7,73	0,12	13,55				
14	24	1,1187	7,36	8,65	0,13	14,98				
15	26	1,1290	8,04	9,63	0,15	16,45				
16	28	1,1392	8,74	10,65	0,16	17,98				
17	30	1,1493	9,45	11,74	0,17	19,55				
18										
19										
20										
21										
22										
23										
24	1) 2Disselus									
Listo	Topissoide/					1.1	Su	ma=545,4550412	NUM	

Una vez tenemos marcadas las columnas que deseemos representar (entre las que puede estar incluida o no la *x*) utilizamos la opción del menú **Insertar>Gráfico** y comienzan a aparecer las ventanas de diálogo para el diseño de la gráfica.

Para obtener la gráfica deseada se deben indicar las siguientes características:

Tipo de gráfico: XY (Dispersión). Siempre que queramos representar los valores de y(x) frente a su variable independiente x debemos usar esta opción. *Rango de datos*: elegimos columnas. *Series*: Se pueden quitar o añadir series en esta pestaña de la ventana. *Títulos/eje/líneas de división/leyendas*: se teclean los correspondientes títulos y se seleccionan las escalas que se deseen, se añaden leyendas o no, etc.

i tia ta			onder con gambios Te	minar revisión	•					
F1	• •	∱ %dif.	~	D	_	_				
-				U			u u	н		
	%(HCI)	d(g/mi)		m	<u> </u>	%alf.				
2	1	1,0032	0,27	0,28	0,00	0,68				
3	2	1,0082	0,55	0,56	0,01	1,20				
4	4	1,0181	1,12	1,14	0,02	2,26				
5	6	1,0279	1,69	1,75	0,03	3,38				
6	8	1,0376	2,27	2,38	0,04	4,54				
7	10	1,0474	2,87	3,04	0,05	5,73				
8	12	1,0574	3,48	3,74	0,06	6,95				
9	14	1,0675	4,09	4.46	0.07	8.20				
10	16	1,0776	4,7;	te para gráficos - paso 3 de 4:	opciones de gráfico	<u>?</u> ×				
11	18	1,0876	5,36 Titulo	Eje Lineas de división del gráfico:	Leyenda Rótulos de datos					
12	20	1,0980	6,01	valorer (Y):	25,00					
13	22	1,1083	6.6	Tana ca (vy)	80,00					
14	24	1,1187	7.36 ^{Eje de}	valores (Y):	10.00					
15	26	1,1290	8.04 Segun	do eje de categorías (X):	5,00					
16	28	1,1392	8.74 Segun	do eje de valores (Y):	0,00					
17	30	1,1493	9.4		0 10 20 30					
18			0	Cano	elar < <u>A</u> trás Siguiente	> Einalizar				
19										
20										
21										
22										
23										
24										-
Id d b I	3Dissoluc /						Sum	-545 4550412	NUM	
asco	0 💿 🥘	· informatica-vf_co	onvi 🛛 🗀 CapEXCEL	Capitulo2EXCELS	Capitulo2EXCEL4	🦉 p28-1 - Paint	Sum Onda Cero - Microsof	🛛 🌀 Bandeja de entra	ada p 🔯 🧃	9:18

Finalmente se puede seleccionar si la nueva gráfica aparece en la misma hoja o en otra contigua. El resultado se puede observar en la siguiente figura:

La hoja de cálculo quedaría así:

⊠Microsoft Excel - Capitulo2EXCEL4															
🛞 Archivo Edición Ver Insertar Eormato Herramientas Datos Vegtana 2 Escriba una pregunta 🔻 🗗 🛪															
D 1	D 哆 届 勉 母 D ♡ 以 物 胞 - グ い・マー 逸 Σ・冠 針 科 旭 移 130% ▼? And ▼ 10 ▼ N X S 手 吾 吾 困 密 & ∞ *8,% 使 得 → ⊉・▲・↓														
1	ta ta 🗷	🗠 🖄 🗹	B @ 1991	Responder con <u>c</u> ambios	Ter <u>m</u> inar revisión										
E2 🔻 🌾															
	A	B	С	D	E	F	G	Н	- I	J	K	L	М	N	
1															
2						ļ			Represen	tación de l	a desviació	n M-m			
3															_
4	%(HCI)	d(g/ml)	M	m	X	%dif.									
6	1	1,0032	0,27	0,28	0,00	0,68	25	^{,00} 1							
6	2	1,0082	0,55	0,56	0,01	1,20									
	4	1,0101	1,12	1,14	0,02	2,20	20	.00 -					*		
$\stackrel{\circ}{\vdash}$	0	1,0279	1,09	1,70	0,03	3,30 4 E 4							1		
10	10	1,0376	2,27	2,00	0.04	4,04	15							• M	7 H I
11	12	1,0474	3.48	3 74	0,00	6.05		.00						141	
12	14	1,0574	4 09	4 46	0,00	8 20								<u> </u>	
13	16	1,0076	4 72	5.22	0,0,	9.48	10	.00 -						→— %dif	. –
14	18	1 0876	5.36	6.01	0.10	10.82							_		
15	20	1.0980	6.02	6.85	0.11	12.16	5	.00 -							
16	22	1,1083	6,68	7,73	0.12	13,55									
17	24	1,1187	7,36	8,65	0.13	14,98			A drawner a						
18	26	1,1290	8,04	9,63	0,15	16,45		.00 +							
19	28	1,1392	8,74	10,65	0,16	17,98		1	2468	10 12 14	16 18 20	22 24 26	5 28 30		
20	30	1,1493	9,45	11,74	0,17	19,55				%	HCI				
21															
22															
23															
24															_
25															_
26	_														
27															
28															
29	-														
30	-														
30	-														_
33															_
34								l							
35													-		
36															
37															
- 00	N N 3Dire	solur /									i		1		
Listo													- 11		

La gráfica presentada se puede mejorar entrando en las diferentes opciones que ofrecen los menús presentados en las figuras anteriores. También es posible seleccionar (clic con el botón izquierdo) los ejes, los títulos, o cualquier otra parte de la gráfica, de modo que, una vez hecha la selección, mediante clic en el botón derecho del ratón aparecerá un menú que nos permitirá alterar el aspecto y propiedades del objeto seleccionado. A lo largo de esta obra se diseñarán multitud de gráficas, con las que podremos practicar.

2.2. Representación de funciones trigonométricas

En esta sección vamos a profundizar en la representación gráfica, abordando la representación de funciones trigonométricas. En concreto, vamos a representar las funciones seno, coseno y tangente. Una propiedad común a todas ellas es su periodicidad. Las funciones seno y coseno tienen un periodo de 360°, mientras que la función tangente tiene un periodo de 180°.

Empecemos con el cálculo de la función seno. Para calcular el seno se debe incluir en la fórmula la función que EXCEL[®] tiene disponible para ello, =SENO(). Esta función se puede escribir directamente o insertarla mediante los comandos del menú **Insertar>Función**. Como se puede observar en la siguiente figura, nos aparece el listado, por orden alfabético, de las funciones que EXCEL[®] tiene disponibles.

Mediante un doble clic aparece una ventana que nos pide los argumentos necesarios para aplicar la función en la celda correspondiente.

Microsoft Excel - Libro1										- 8 ×
Archivo Edición Ver	Insertar Eormato Herram	ientas Datos \	/entana <u>2</u>					Escriba	una pregunta 💌	- & ×
	× & • • • • • •	* C4 * 🧠 Σ		🚯 150% 👻 📜 Ar	ial ~ 10	- N K S		× 000 *08 +08 €	第 4月 18日 • 22 •	<u>A</u>
	☑ ➡ i i i i i i i i i i i i i i i i i i	on gambios Terp	ginar revisión 🖕							
A	B	С	D	E	F	G	Н	I	J	
1 =SENO()	_	-	_	_	-	-		-	-	
2										
3										
4										
5										
6										
7										
8						(missi)				
9		SENO	s de función			XX				
10			Número		💽 — núme	ero				
11					=					
12		Devuelve el :	seno de un ángulo deter	minado.						
13										
14			Número es e PIC	el ángulo en radianes del i/180 = radianes.	que se desea obtener el s	eno. Grados *				
15										
16										
17		Resultado de	e la fórmula =							
18		Arentar Cancelar								
19										
20										
21										
22										
23										
24										
25										
20										_
28										_
29										
30										
31										
32 Hotal / Hotal /	Hola3 /					141				
Modificar	10,00 /								NUM	
🏄 Inicio 🔯 🕑 🥭	informatica-vf_convi	CapEXCEL	Capitul	02EXCEL5	Libro1	9 p30-1 - Paint	🖉 🖉 Onda Cero - Micro	osof 🔯 Bandeja de	e entrada p 🛛 🔍 😤	9:24

La ventana nos informa que el ángulo del que vamos a calcular el seno debe estar expresado en radianes.

Para diseñar una hoja de cálculo que nos permita representar la función seno, en primer lugar vamos a introducir una columna que incluya grado a grado desde -360 a 360. En la columna contigua introduciremos la fórmula para el cálculo de los radianes (2*Pi radianes son 360 grados),

$$Radianes = \frac{Grados \cdot \pi}{180}$$

y seguidamente la fórmula para el cálculo del seno a partir de la columna Radianes:

Microsoft Exce	el - Capitulo2EXCEL5				_ <u>8 ×</u>
📳 Archivo Edi	ción <u>V</u> er <u>I</u> nsertar Eormato <u>H</u> erra	amientas Datos Ve <u>n</u> tana <u>?</u>		Escriba un	a pregunta 🛛 🚽 🗗 🗙
🗋 🗁 🔚 👒	😂 🖪, 🖤 👗 🖻 🛍 - 🝼 🖌	n • ra - 🍓 x • 🏗 🛃 👬 🛍 🦧	145% • 💥 Arial • 10 • 🔳 K	s = = = = =	till 💷 • 🖄 • 📥 • 🖕
1 🌆 ta ta 🖂	🖷 🚵 🔽 🎭 😥 🐄 Responder	r con cambios Terminar revisión 🖕			
C4	✓ f Seno	_	-		
	A	В	C	D	<u> </u>
1					
2					
3					
4 Grado	DS F	Radianes	Seno		
5 -360	=	=-2*PI()	=SENO(B5)		
6 -359	=	=(A6*PI())/180	=SENO(B6)		
7 -358	=	=(A/*PI())/180	=SENO(B7)		
8 -357	=	=(A8*PI())/180	=SENO(B8)		
9 -356	=	=(A9*PI())/180	=SENO(B9)		
10 -355	=	=(A10*PI())/180	=SENO(B10)		
11 -354	=	=(A11*PI())/180	=SENO(B11)		
12 -353	=	=(A12*PI())/180	=SENO(B12)		
13 -352	=	=(A13*PI())/180	=SENO(B13)		
14 -351	=	=(A14*PI())/180	=SENO(B14)		
15 -350	=	=(A15*PI())/180	=SENO(B15)		
16 -349	=	=(A16*PI())/180	=SENO(B16)		
17 -348	=	=(A17*PI())/180	=SENO(B17)		
18 -347	=	=(A18*PI())/180	=SENO(B18)		
19 -346	=	=(A19*PI())/180	=SENO(B19)		
20 -345	=	=(A20*PI())/180	=SENO(B20)		
21 -344	=	=(A21*PI())/180	=SENO(B21)		
22 -343	=	=(A22*PI())/180	=SENO(B22)		
23 -342	=	=(A23*PI())/180	=SENO(B23)		
24 -341	=	=(A24*PI())/180	=SENO(B24)		
25 -340	=	=(A25*PI())/180	=SENO(B25)		
26 -339	=	=(A26*PI())/180	=SENO(B26)		
27 -338	=	=(A27*PI())/180	=SENO(B27)		
28 -337	=	=(A28*PI())/180	=SENO(B28)		
29 -336	=	=(A29*PI())/180	=SENO(B29)		
30 -335	=	=(A30*PI())/180	=SENO(B30)		
31 -334	=	=(A31*PI())/180	=SENO(B31)		
32 -333	=	=(A32*PI())/180	=SENO(B32)		
33 -332	=	=(A33*PI())/180	=SENO(B33)		
Listo	ripcion Aruncion seno / Función coser	no X Huncion tangente X Función arcoseno	∧ Function arcocoseno ∧ Function arcotang [4]		NUM

A continuación podemos representar los grados o los radianes en el eje x, y el seno en el eje y. Como hemos visto anteriormente, basta con marcar las dos columnas correspondientes y entrar en la opción del menú **Insertar>Gráfico** o hacer clic en el icono del menú que abre el asistente de gráficos. Seleccionando la opción **XYDispersión** y el subtipo indicado en la figura,

eliminando la leyenda, ya que en este caso es innecesaria, y ajustando la escala de los ejes (y de -1 a 1, x de -360 a 360 en el caso de grados), el resultado es el siguiente:

🕝 J. Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7

Puesto que en el eje de las x el muestreo ha sido de grado en grado, la figura describe perfectamente la curva sinusoidal. En el caso de que hubiéramos llevado a cabo un muestreo menos frecuente (de 20 en 20 grados, por ejemplo) el dibujo de la curva sería más pobre. La columna de los grados no se ha introducido tecleando cada celda, EXCEL[®] permite arrastrar una serie determinada (en este caso celda anterior +1), a partir de las dos primeras celdas definiendo la serie. Se marcan y se arrastran hasta el número deseado, en este caso 360.

K Microsoft Excel - Libro2												
🗟 jerchivo Edición Ver Insertar Eormato Herramientas Datos Vegtana 💈 🖉 🗙												
□□ ☞ 圖 哦 母 집 ♡ & 昀 嗯 • ♡ ゆ • ∩ • ● Σ • 砲 쉬 科 幽 ❷ 200% ▼♡ And												
	La Tai Tai La Cai La C											
		R	C	П	F	F	G	ЦĀ				
1	/\		0			•	<u> </u>					
2												
2												
3	Cradaa											
4	Grados											
0	-360											
0	-309											
1												
8												
9												
10												
11												
12												
13												
14												
15												
16												
17												
18												
19												
20												
21		-										
22												
23												
24								-				
l 4 4 ≯ Listo	Hoja1 / Hoja2 / Hoja3 /						5uma=-719	NIM				
E Misso	soft Eusal Libra?											
Arch	Arrorssoft Excel=Libro2 Archivo Edición Yer Insertar Eormato Herramientas Datos Ventana ? Escriba una pregunta											
D 🛩	□ ☞ 圖 勉 圖 집 ♥ & 階 簡 • ♂ ♡ - ○ - ◎。 Σ • 段 針 詳 離 ❷ 200% • ? 4/3 • 10 • N X S 言言言語 圆 € % ∞ *8 .8 读 读 册 • △ • ▲ • .											
A C	i 📶 🖾 🚾 🚵 🗹 🔩 6= 5 i 🗸 — 🖈 -360	Responder con gambios	. Terminar revisión 🖕									
-												

	А	В	С	D	E	F	G	H
1								
2								
3								
4	Grados							
5	-360							
6	-359							
7	-358							
8	-357							
9	-356							
10	-355							
11	-354							
12	-353							
13	-352							
14	-351							
15	-350							
16	-349							
17	-348							
18	-347							
19	-346							
20	-345							
21	-344							
22	-343							
23	-342							
24								
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Inojat A nojaz A nojas /							
El coseno (Función COS()) y la tangente (Función TAN()) se pueden representar de manera similar como se puede ver en las siguientes figuras con las fórmulas y el resultado final. En cada caso las escalas se seleccionan para obtener las gráficas más explicativas posibles, dependiendo de la función a representar.

Coseno:

y las fórmulas correspondientes:

EN N	Microsoft Excel - Capitulo2EX	CEL5				×
	<u>Archivo Edición ⊻er I</u> ns	ertar <u>F</u> ormato <u>H</u> erramient	as Da <u>t</u> os Ve <u>n</u> tana <u>?</u>			Escriba una pregunta 💿 🖃 🗶
	🖙 🖬 🗞 🎒 🖾 🖤 🛛	X 🖻 🛍 • 🝼 🗠 - (≈ - 🍓 Σ - 🔂 ≜↓ 🕌 🛍 🤣	100% • 🐥 Arial • 1	0 • N K <u>s</u> = = =	團 寧 € % ┉ *೫ ,೫ 谭 谭 册 • 渔 • ▲ • .
1	a ta ta 🗷 🔁 🏠 😒	😼 😥 🛛 📽 Responder con g	ambios Terminar revisión 🖕			
	C5 - fx =	=COS(B5)				
	A	В	С	D	E	F T
1						
2						
3						
4	Grados	Radianes	Coseno	Eie x Radianes		
5	-360	=-2*PI0	=COS(85)			~
6	-359	=(A6*PI/)/180	=COS(B6)			
7	-358	=(A7*PI0)/180	=COS(B7)			
8	-357	=(A8*PI())/180	=COS(B8)			
9	-356	=(A9*PI))/180	=COS(B9)			
10	-355	=(A10*PI())/180	=COS(B10)			
11	-354	=(A11*PI())/180	=COS(B11)			
12	-353	=(A12*PI0)/180	=COS(B12)		-8	-6 -4
13	-352	=(A13*PI0)/180	=COS(B13)			
14	-351	=(A14*PI())/180	=COS(B14)			
15	-350	=(A15*PI0)/180	=COS(B15)			
16	-349	=(A16*PI())/180	=COS(B16)			
17	-348	=(A17*PI0)/180	=COS(B17)			
18	-347	=(A18*Pl())/180	=COS(B18)			
19	-346	=(A19*PI())/180	=COS(B19)			
20	-345	=(A20*PI0)/180	=COS(B20)			
21	-344	=(A21*PI0)/180	=COS(B21)			
22	-343	=(A22*PI())/180	=COS(B22)			
23	-342	=(A23*PI0)/180	=COS(B23)			
24	-341	=(A24*PI0)/180	=COS(B24)			
25	-340	=(A25*PI())/180	=COS(B25)	Eje x Grados		
26	-339	=(A26*PI())/180	=COS(B26)			
27	-338	=(A27*PI())/180	=COS(B27)			
28	-337	=(A28*PI())/180	=COS(B28)			
29	-336	=(A29*PI())/180	=COS(B29)			
30	-335	=(A30*PI())/180	=COS(B30)			
31	-334	=(A31*PI())/180	=COS(B31)			
32	-333	=(A32*PI())/180	=COS(B32)			
33	-332	=(A33*PI())/180	=COS(B33)		360	260 160
34	-331	=(A34*PI())/180	=COS(B34)		-300	-200 -100
35	-330	=(A35*PI0)/180	=COS(B35)			
36	-329	=(A36*PI())/180	=COS(B36)		_	
37	-328	=(A37*PI())/180	=COS(B37)		_	
38	-327	=(A38*PI())/180	=COS(B38)			\sim \sim
39	-326	=(A39*PI())/180	=COS(B39)			
40	-325	=(A4U*PI())/18U	=COS(B4U)			
41	-324	=(A41*PI())/18U	=CUS(B41)			
42	-323	=(A42^PI())/180	=008(842)			
43	-322	=(A43*PI())/180	=CUS(B43)			
44	-321	-(A44"PIU)/180				
40	-320	-(A45"PI0)/100	-005(045)			
46	-319	=(A46 P1())/180	=CU3(D46)			
47	-310	-(A49*DI0)/180	-CU3(D47)			
40	-317	-(A40*PI0)/100				
49	I → ► ► Descripción → Funciá	on seno / Función coseno /	Función tangente / Función arcoseno	/ Función arcocoseno / Función arcotano		
Liste	,, ancio		a costrio	,		NIM

Tangente:

M	icrosoft Excel -	- Capitulo2EXCE	L5											_ <u>-</u>
	<u>A</u> rchivo <u>E</u> dició	in <u>V</u> er <u>I</u> nserta	ar <u>E</u> ormato <u>H</u> errar	nientas Da <u>t</u> os '	Ve <u>n</u> tana <u>?</u>							Escriba una	pregunta	- 8 ×
	😅 🔛 👒 e	🖨 🖪 🖤 🕹	🗈 🛍 • 🝼 🗠	• C4 + 🍓 Σ	- 🔀 🛃 🕺	↓ 🛍 🚯 100% 📼	👻 Arial	• 10 •	N K S = 3		P 🐔 % 000	*-08 .49€	tj= 📄 🗸 🕭	• <u>A</u> • .
200	1 ta ta 22 9	🖎 🚵 🖬	() ₩¥Responder	con <u>c</u> ambios Terr	minar revisión									
	C3 🗸	fse												
	A	В	С	D	E	F		G H	I 1	J	K	L	M	
1														
2														
3														
4	Grados	Radianes	Tangente	Eje x Radianes										
5	-360	-6,283185307	2,4503E-16			()	()	11 /	1	7 1				
6	-359	-6,265732015	0,017455065				/			/				
7	-358	-6,248278722	0,034920769						,					
8	-357	-6,23082643	0,052407779						/					
9	-356	-6,213372137	0,069926812											
10	-300	-6,195910045	0,007400004											
12	-354	-0,170400002 6 16101006	0,100104230			6 4		Å		4	6/	<u> </u>		
12	-353	6 143669967	0,122704301		-0	-0 -4	/ *	/1	1 /	*	9	° –		
14	-351	-6,126105675	0,140340033				/	/			1			
15	-350	-6 108652382	0.176326981				(1			
16	-349	-6.091199089	0.194380309				/				1			
17	-348	-6.073745797	0.212556562			1 1		/ _1 J			(
18	-347	-6.056292504	0.230868191										-	
19	-346	-6,038839212	0,249328003											
20	-345	-6,021385919	0,267949192											
21	-344	-6,003932627	0,286745386											
22	-343	-5,986479334	0,305730681											
23	-342	-5,969026042	0,324919696											
24	-341	-5,951572749	0,344327613											
25	-340	-5,934119457	0,363970234	Eje x Grados										
26	-339	-5,916666164	0,383864035		1	1	/ 1	11 /	1	1	1			
27	-338	-5,899212872	0,404026226											
28	-337	-5,881759579	0,424474816											
29	-336	-5,864306287	0,445228685											
30	-335	-5,846852994	0,466307658		/									
31	-334	-5,829399702 E 911046400	0,487732589				/			/				
32	-333	-5,011940409 E 704402117	0,509525449			/		- 0/ -		/		-		
34	-332	5 777039824	0,551709432		-360	-260 / -	-160	60 / 40	140 /	240	340	/	+	+
35	-330	-5 759586532	0,53435303051					/			1 /		-	<u>+ </u>
36	-329	-5.742133239	0.600860619											
37	-328	-5.724679947	0.624869352								1 /			
38	-327	-5,707226654	0,649407593					1			1 /			
39	-326	-5.689773362	0.674508517					/ ₋₁]			1 /			
40	-325	-5,672320069	0,700207538											
41	-324	-5,654866776	0,726542528											
42	-323	-5,637413484	0,75355405											
43	-322	-5,619960191	0,781285627											
44	-321	-5,602506899	0,809784033											
45	-320	-5,585053606	0,839099631											
46	-319	-5,567600314	0,869286738											L
47	-318	-5,550147021	0,900404044											L
48	-317	-5,532693729	0,932515086											
49	-316	⊥-5.51524U436	 U.965688775 Eunción coseni 	Eupción tange	ote / Eupción	arcosepo / Eupción	arcocosepo / Fi	nción arcotano 14					<u> </u>	D
Listo				. A succost carige				and a coloring [1]					NUM	

y las fórmulas correspondientes:

N E	Microsoft Excel - Capitulo2EXCE	EL5						_ 8 :	×
	<u>A</u> rchivo <u>E</u> dición ⊻er Insert	tar <u>F</u> ormato <u>H</u> erramient	as Datos Ve <u>n</u> tana <u>?</u>	2				Escriba una pregunta 📃 🖬 💈	×
	🖙 🖬 🔁 🖾 💞 🐰	6 🖻 🛍 • 🝼 🗠 • 🤉	🖙 + 🍓 E + 🔂 🛃	👬 🛍 🦓 100% 🔹 🦉	Arial • 10	• N K S = = =	፼ € % 000 ℃	8,% 健健 🖉 🐘 • 🖄 • 🗛 •	-
1 10	a ta ta 🕼 🖙 Xa 🔽 🗟	a 🝙 🛛 🖘 Responder con d	ambios Terminar revisión	D					
	C3 *			•					-
	A	B	er con cambios	С	P	E		F	Ξ
1									1
2									
3				l					
4	Grados	Radianes	Tangente	Eje x	Radianes				
5	-360	=-2*PI()	=TAN(B5)				/		
7	-359	=(A6*PI())/180	=TAN(Bb)					/	
8	-357	=(A8*PI0)/180	=TAN(87)					/	
9	-356	=(A9*PI0)/180	=TAN(89)						
10	-355	=(A10*PIN)/180	=TAN(B10)					/	
11	-354	=(A11*PI())/180	=TAN(B11)			1 ~		· · · · · · · · · · · · · · · · · · ·	
12	-353	=(A12*PI())/180	=TAN(B12)			-8	-6	-4	
13	-352	=(A13*PI())/180	=TAN(B13)						
14	-351	=(A14*PI())/180	=TAN(B14)					/	
15	-350	=(A15*PI())/180	=TAN(B15)			-			
16	-349	=(A16^PI())/180	=TAN(B16)			-			
17	-340	=(A17*PI0)/160	=TAN(D17)						
10	-346	=(A18 PI0)/180	-TAN(B10)						
20	-345	=(A20*PI0)/180	=TAN(B10)						
21	-344	=(A21*PI0)/180	=TAN(B21)						
22	-343	=(A22*PI0)/180	=TAN(B22)						
23	-342	=(A23*PI())/180	=TAN(B23)						
24	-341	=(A24*PI())/180	=TAN(B24)						
25	-340	=(A25*PI())/180	=TAN(B25)	Eje x	Grados				
26	-339	=(A26*PI())/180	=TAN(B26)			/	1	/	
27	-338	=(A27*PI())/180	=TAN(B27)					/	
28	-337	=(A28*PI())/180	=TAN(B28)						
29	-336	-(A29 PI()/180	-TAN(629)					/	
31	-334	=(A31*PI0)/180	=TAN(B31)						
32	-333	=(A32*PI0)/180	=TAN(B32)					/	
33	-332	=(A33*PI())/180	=TAN(B33)			ŕ			
34	-331	=(A34*PI())/180	=TAN(B34)			-360	-260	-160	
35	-330	=(A35*PI())/180	=TAN(B35)					/	
36	-329	=(A36*PI())/180	=TAN(B36)					/	
37	-328	=(A37*PI())/180	=TAN(B37)				/	r	
38	-327	=(A38**PI())/180	= I AN(B38)						
39	-326	=(A39*PI())/180	=TAN(B39)				1 /		
40	-324	=(A41*PI0)/180	=TAN(B40)						
42	-323	=(A42*PI0)/180	=TAN(B42)						
43	-322	=(A43*PI0)/180	=TAN(B43)						
44	-321	=(A44*PI())/180	=TAN(B44)						
45	-320	=(A45*PI())/180	=TAN(B45)						
46	-319	=(A46*PI())/180	=TAN(B46)						
47	-318	=(A47*PI())/180	=TAN(B47)						
48	-317	=(A48*PI())/180	=TAN(B48)						
49	Eupción Eupción	seno / Eunción coseno /	Eunción tangente / Eun	ción arcoseno / Eunción arcoco	seno / Eunción arcotang			• I	-
Liebe		- I A I ANGON COUCH	. analyricangence A run		(rendorrencedeng]			NU INA	

2.3. Representación de orbitales atómicos

En este apartado vamos a aplicar los conocimientos adquiridos hasta ahora en representación de funciones para representar la función radial de los orbitales 1s, 2s y 2p, siendo

$$\sigma = \frac{2 \cdot z \cdot r}{n \cdot A_0}$$

$$\Psi 1s = 2 \cdot \left(\left(\frac{z}{A_0}\right)^{\frac{3}{2}}\right) \cdot e^{\frac{-\sigma}{2}}$$

$$\Psi 2s = \left(\frac{1}{2 \cdot \sqrt{2}}\right) \cdot \left(\frac{z}{A_0}\right)^{\frac{3}{2}} \cdot (2 - \sigma) \cdot e^{\frac{-\sigma}{2}}$$

$$\Psi 2p = \left(\frac{1}{2 \cdot \sqrt{6}}\right) \cdot \left(\frac{z}{A_0}\right)^{\frac{3}{2}} \cdot (\sigma) \cdot e^{\frac{-\sigma}{2}}$$

con $A_0=0.529$, z=1, n(1s) = 1, n(2s) = 2 y n(2p) = 2.

En primer lugar vamos a representar el orbital 1s:

🕅 Mie	rosoft Excel - Capitulo2EXCEL7				
۹	<u>A</u> rchivo <u>E</u> dición <u>V</u> er Insertar <u>E</u> o	ormato <u>H</u> erramientas Da <u>t</u> o	s Ve <u>n</u> tana <u>?</u>		Escriba una pregunta 🔹 🗕 🗗 🗙
	🍃 🔜 🔩 🎒 🗟 🖤 🛛 🎖 🖻 I	🖻 = 🝼 🗠 = 🖂 = 🍓	₀Σ - 🔀 2↓ 2↓ 🛍 📣 130% - Ϋ	Arial • 11 • ₩ <i>K</i> <u>S</u> ≡ ≡ ≡ 🖽 🗐 € % 00	• *** •** 健 健 • 🖄 • 🔺 • •
č a	ta ta 22 📭 ta 🖉 🗣 🔎	♥♥ Responder con gambios	Terminar revisión		
	A41 ▼ f≈ n2s =		-	-	
	A	В	С	D	E _
1	Orbitales				
2					
3	Ao	0,529			
4	z	1			
5	n1s =	1			
6	-				
7	1s	r	σ	Ψ	
8		0	=((2*z*B8)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C8/2)	
9		=B8+Ao	=((2*z*B9)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C9/2)	
10		=B9+Ao	=((2*z*B10)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C10/2)	
11		=B10+Ao	=((2*z*B11)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C11/2)	
12		=B11+Ao	=((2*z*B12)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C12/2)	
13		=B12+Ao	=((2*z*B13)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C13/2)	
14		=B13+Ao	=((2*z*B14)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C14/2)	
15		=B14+Ao	=((2*z*B15)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C15/2)	
16		=B15+Ao	=((2*z*B16)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C16/2)	
17		=B16+Ao	=((2*z*B17)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C17/2)	
18		=B17+Ao	=((2*z*B18)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C18/2)	
19		=B18+Ao	=((2*z*B19)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C19/2)	
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
32					
33					
la a Listo	H\\Hoja1 / Hoja2 / Hoja3 / Hoja4	4_/		Suma=20	8.9988076 NUM

Puesto que tenemos varios valores constantes, hemos utilizado un recurso de EXCEL[®] que nos permite cambiar la denominación cartesiana de las celdas por el nombre que a nosotros nos convenga. De esta manera, la celda B3 ha sido renombrada como Ao. Para ello debemos seleccionar del menú **Insertar>Nombre>Definir**:

🔀 Mi	crosoft Excel - Capitulo2EXCE	1.7			
	<u>A</u> rchivo <u>E</u> dición <u>V</u> er <u>I</u> nsert	ar <u>F</u> ormato <u>H</u> erramientas Da <u>t</u> os	Ve <u>n</u> tana <u>?</u>		Escriba una pregunta 🔍 🗕 🗗 🗙
D 1	🛎 🖬 🛍 🖨 🗟 💞 🛛 X	B 🛍 • 🚿 ⊷ • ⊶ - 😫	∑ • 🔂 ≜↓ 🛴 🛍 🚜 130% • 🔭	Arial • 11 • N K S = = = = = 9	€ % 000 *& ,% ∰ ∰ • ⊉ • ▲ • .
1] @ ♥₩Responder con cambios 1	fer <u>m</u> inar revisión 🖕		
	Δ 40 40,5.	29 B)	D	F T
1	Orbitales	0	C	6	
2	Cibitales				
3	A 0	0.529			
4	z	1			
5	_ n1s =	1		/	
6					
7	1s Definir no	mbre	I N	Ψ	
8	Nombres e	n el libro:	Aceptar 1 S*A0))	=2*((z/Ao)^(3/2))*EXP(-C8/2)	
9			Cerrar S*Aeri	$=2^{((z/Ao)^{(3/2)})}$ EXP(-C9/2)	
10	nis -2-		La (S*Ao))	=2*((z/Ao)^(3/2))*EXP(-C10/2)	
11	n2s		Agregar 11s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C11/2)	
12	2		Eliminar 11s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C12/2)	
13			11s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C13/2)	
14			11s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C14/2)	
15	Se refiere	a:	11s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C15/2)	
16			1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C16/2)	
17		=B16+Ao	=((2*z*B17)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C17/2)	
18		=B17+Ao	=((2*z*B18)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C18/2)	
19		=B18+Ao	=((2*z*B19)/(n1s*Ao))	=2*((z/Ao)^(3/2))*EXP(-C19/2)	
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					
30					
31					
14 4	▶ ▶ N Hoja1 / Hoja2 / Hoja3	/ Hoja4 /	·		
Di <u>b</u> uj	o 🕶 😓 🛛 Autoformas 🕶 🔨 🔌		• <u>-</u> - <u>-</u> = = = = <u>-</u> - <u>-</u>		
Listo					NUM
🟉 In	icio 🔯 🕑 🙈 🕅 🕅 🗎	informatica-vf_convincul CanEX	CEL CONTEVASCAP	Capitulo2EXCEL7 W p36-1 - Paint	Ca Bandeia de entrada nara

En la ventana se teclea el nuevo nombre de la celda (Ao en este caso) y se elige **Agregar** y a continuación **Aceptar**. A partir de este momento la celda ya no se denomina B3 sino Ao, y se puede usar el nuevo nombre en las fórmulas, como se puede observar en la figura. De la misma manera, en esta hoja se han renombrado r, n1s, n1p y n2p. Asimismo, en la columna r se ha introducido una fórmula que calcula la suma de la celda anterior más Ao para definir el eje de las x de una manera rápida. La gráfica a partir de r(x) y $\Psi(y)$ para 1s, aplicando el proceso aprendido en el apartado anterior y siguiendo el camino que marca el asistente para el diseño de gráficos, es el siguiente:

🖾 Mic	rosoft Excel - Capitu	lo2EXCEL7									_ <u>8</u> ×		
B	🗟] gychivo Edición Yer Insertar Formato Herramientas Datos Ventana ? Escriba una pregunta 🍷 🖉 🗙												
	é 🖬 🔨 🖨 🗟	🍄 🔏 🔏 ·	• 🍕 🔊 • 🕬 •	🍓 Σ 🔹 🔂 🤶 🤮 🛍	🐻 140% 👻 🙄	Arial	• 11 • N K	<u>s</u> = = = E	S € % 000	*•8 •98 €≣ €≣ ⊞	• 🕭 • A • •		
2 Ča	ta ta 22 😘 ta	2 🖷 😥 🖘	Responder con <u>c</u> amb	ios Ter <u>m</u> inar revisión 🖕									
	F27 -	<i>f</i> ∗ −	-	-	_	-	-				=		
	A	В	C	D	E	F	G	н	1	J	К 🔺		
1	Orbitales												
2													
3	Ao	0,529											
4	z	1											
5	n1s =	1											
6													
7	1s	r	σ	Ψ									
8		0	0	5,198122233				Orbital 1	.s				
9		0,529	2	1,912282302									
10		1,058	4	0,703489345		6							
11		1,587	6	0,258799267		5							
12		2,116	8	0,09520693		. 4							
13		2,645	10	0,035024672		2 3 -							
14		3,174	12	0,012884857		2 -							
15		3,703	14	0,004740074		1 -							
16		4,232	16	0,001743776		0		• • • •	• • •	 ◆¬			
17		4,761	18	0,000641499		0	1 2	3 4	¥ 5	6			
18		5,29	20	0,000235994				r					
19		5,819	22	8,68175E-05									
20													
21													
22													
23													
24													
25													
26													
27]						
28													
29													
30													
14 4	Hoja1 Hoja2	/ Hoja3 / Hoja4 /											
Listo										NU	M		

🕝 J. Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7

Repetimos el proceso para la representación de los orbitales 2s y 2p, utilizando las fórmulas correspondientes. El resultado es el siguiente:

Como se puede observar, se han seleccionado diferentes colores para cada orbital marcando la línea del gráfico y haciendo clic con el botón derecho del ratón, con lo que aparece la ventana del menú para cambiar el formato del gráfico, como se observa en la figura:

Las fórmulas para los orbitales 2s y 2p son las siguientes:

🕅 Mic	rosoft Excel - Ca	pitulo2EXCEL7				_ & ×
B 4	Archivo <u>E</u> dición	⊻er Insertar Eormato Herra	amientas <u>G</u> ráfico Ve <u>n</u> tana <u>?</u>		Escriba una pregunta	×
	2 🖬 🖏 😂	🖪 🖤 🎖 🖻 🛍 • 🚿 *	ο• ⊂⊶ + 🍓 Σ + 🔂 ĝ↓ ፩↓ [🛍 🚯 🔄 📲 🔛 🖾 🔹 10 🔹 🕅 🗶 🔄 🚍 🔤 🖼	/ € % 000 *88 +98 ∰ ∰ ⊞ • \$	<u>2</u> • <u>A</u> • •
	ta ta 24 😘 i	🖆 🗹 ங 😥 💖 Responder	r con gambios Terminar revisión 🖕			
Area	del gráfico 👻	<i>f</i> ×	-	-	-	_
	A	в	C	D	E	<u> </u>
20	n2s =	2			· · · · · · · · · · · · · · · · · · ·	
21	25	0	0			
22		U = B 2 2 1 A a	=(2*2*B22)/(h25*A0)	$=(1/(2^{*}RAIZ(2)))^{*}((2/A0)^{*}(3/2))^{*}(2-C22)^{*}EXP(-C22/2)$ $=(1/(2^{*}RAIZ(2)))^{*}((-(A c)A(2/2)))^{*}(2-C22)^{*}EXP(-C22/2)$		
23		-B22+A0	-(2 2 B23)/(12S A0)	$-(1/(2 \text{ RAIZ}(2))) ((2/A0)^{(3/2)}) (2-C23) \text{ EXP}(-C23/2)$ $-(1/(2*\text{RAIZ}(2)))*((2/A0)^{(3/2)})*(2 \text{ C24})*\text{EXP}(-C24/2)$	Ž 🤙	
24		-B23+A0	-(2 2 B24)/(125 A0)	=(1/(2 RAIZ(2))) ((2/A0) (3/2)) (2-C24) EXF(-C24/2) $=(1/(2 \text{ RAIZ}(2)))*((-(A \circ)A(3/2)))*(2 \circ C25)*\text{EXP}(-C25/2))$	1.5	
25		-B24+A0	-(2 2 B25)/(125 A0)	$-(1/(2 \text{ RAIZ}(2))) ((2/A0)^{(3/2)}) (2-C25) \text{ EXP}(-C25/2)$		< III
20		-B25+A0	$=(2 \times 2 \times$	$=(1/(2 \text{ RAIZ}(2))) ((2/RO) (3/2)) (2 \cdot C20) \text{ EXF}(-C20/2)$ $=(1/(2 \cdot RAIZ(2)))*((2/A_0))(3/2))*(2 \cdot C27)*\text{EXP}(-C27/2)$	1	
2/		-B20+A0	$=(2 \times 2 \times 27)/(12 \times 40)$	-(1/(2 RAIZ(2))) ((2/R0) (3/2)) (2-C27) EXP(-C27/2) -(1/(2 RAIZ(2)))*((2/R0) (3/2))*(2 C28)*EXP(-C28/2)		
20		-B27+A0	$=(2 \times 2 \times$	=(1/(2 RA(2))) ((2/R0) (3/2)) (2 C28) EXP(-C28/2) =(1/(2 RA(2))) ((2/R0) (3/2)) (2 C28) EXP(-C28/2)	0,5	
29		=B29+A0	$=(2^{*}z^{*}B_{2}0)/(n_{2}c^{*}A_{0})$	=(1/(2 RAIZ(2))) ((2/R0) (3/2)) (2 - C29) EXP(-C29/2) =(1/(2*PAIZ(2)))*((z/A0)^(3/2))*(2-C30)*EXP(-C30/2)		
21		=B30+A0	$=(2^{*}z^{*}B31)/(n2s^{*}As)$	=(1/(2 + RA(Z(2))))((2RO) + (3/2))(2 + C3O) + EXP(-C3O(2)) =(1/(2 + RA(Z(2)))*((2/Ao))(3/2))*(2 - C3O) + EXP(-C3O(2))		
32		=B31+Ao	$=(2^{*}z^{*}B32)/(n2s^{*}A_{0})$	$=(1/(2 + RA(Z(2)))) ((2/A_0)^{(3/2)}) (2 - C(3)) = (1/(2 + RA(Z(2)))) (2/A_0)^{(3/2)}) = (1/(2 + RA(Z(2)))) = (1$	-0.5	
32		=B32+Ao	$=(2^{*}z^{*}B_{33})/(n_{2s}^{*}A_{0})$	$=(1/(2^*RA[7(2)))^*((7/Ao)^{(3/2)})^*(2-C33)^*EXP(-C33/2)$		
34	n2n =	2				
35	2p	- r	σ	W		
36	-	0	=(2*z*B36)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C36*EXP(-C36/2)		
37		=B36+Ao	=(2*z*B37)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C37*EXP(-C37/2)		
38		=B37+Ao	=(2*z*B38)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C38*EXP(-C38/2)	0,5	
39		=B38+Ao	=(2*z*B39)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C39*EXP(-C39/2)	0.4	
40		=B39+Ao	=(2*z*B40)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C40*EXP(-C40/2)	0,4	_
41		=B40+Ao	=(2*z*B41)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C41*EXP(-C41/2)	0,3	
42		=B41+Ao	=(2*z*B42)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C42*EXP(-C42/2)	0,2	
43		=B42+Ao	=(2*z*B43)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C43*EXP(-C43/2)	0.1	r 👘
44		=B43+Ao	=(2*z*B44)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C44*EXP(-C44/2)	0,1	
45		=B44+Ao	=(2*z*B45)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C45*EXP(-C45/2)	0 🖝	
46		=B45+Ao	=(2*z*B46)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C46*EXP(-C46/2)	0	
47		=B46+Ao	=(2*z*B47)/(n2p*Ao)	=(1/(2*RAIZ(6)))*((z/Ao)^(3/2))*C47*EXP(-C47/2)		
48						
49						
50						
51						
52	▶ N Hoja1 / Ho	ia2 / Hoja3 / Hoja4 /			1	
Listo					NUM	

Finalmente se pueden representar los tres orbitales en la misma gráfica seleccionando r como eje de abscisas y Ψ para 1s, 2s y 2p como y1, y2 e y3. El resultado es el siguiente:

3. Resolución de problemas sencillos

3.1. Resolución gráfica de ecuaciones

La potencia de EXCEL[®] en la representación de funciones se puede utilizar también para el cálculo de las soluciones de ecuaciones gráficamente. El fundamento es simplemente representar las funciones y conseguir visualizar los cortes con las x, de manera que se pueda determinar la solución con la precisión deseada. Pongamos como ejemplo el estudio del polinomio de segundo grado

$$3 \cdot x^2 - 20 \cdot x + 5 = 0$$

Para la resolución de ecuaciones gráficamente debemos elegir siempre el tipo de gráfico **XY** (**Dispersión**), en el primer paso del **Asistente para gráficos**. Esta opción, recordemos, permite diseñar gráficos con ambos ejes numéricos (abscisas y ordenadas), es decir, representan coordenadas en abscisas y no categorías. Para representar frente a categorías (que pueden ser números o texto y que son equidistantes, independientemente de su significado) podemos usar el tipo de gráfico **Líneas**.

Después de los conocimientos adquiridos en anteriores apartados podemos representar la ecuación introduciendo una columna con valores de x al azar (ya que pretendemos resolverla gráficamente y no *a posteriori* de una determinación analítica de las soluciones), y otra columna con la ecuación, como se puede ver en la figura.

🔀 Microsoft Excel - Libro3					_ <u>8 ×</u>
Archivo Edición Ver Insertar	Eormato <u>H</u> erramientas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>			Escriba una pregunta 🔹	- 8 ×
🗈 🛩 🖬 🗞 🖨 🗟 🖤 🕺 🗈	🛍 • 🚿 🗠 • 🖙 - 🍓 🗵 • 🔀 🛃 👗 🛍 🤣	150% • • Arial •	10 🔹 関 🗶 🚊 🗮 🖼 🗐 1	€ % ००० *₀೫ ₊⁰೫ ∰ ∰ 🔠 • 🖄 •	<u>A</u>
1 🖆 🖆 🗃 🗣 🏠 🖓 🦗 🔎	♥₽ Responder con cambios Terminar revisión 🖕				
A2 - fx [3x^2-20	x+5=0]	2	D	–	
A	B	C	D	E	<u> </u>
2 [3x^2-20x+5=0]					
3					
4					_
5					
6					
/ X	y				
8 0	=3*A8*2-20*A8+5				
9 1	=3*A9*2-20*A9+5				
10 2	=3*A10*2-20*A10+5				
	=3*A11*2-20*A11+5				
12 4	=3*A12^2-20*A12+5				
13 5	=3*A13^2-20*A13+5				
14 6	=3*A14^2-20*A14+5				
15					
16					
17					_
18					_
19					_
20					
21					
22					
23					
24					
25					
26					
27					
28					
29					+
30					
31					
Hoja1 / Hoja2 / Hoja3 /			-[] • [•
Listo				NUM	

A continuación, representamos x e y mediante el Asistente de gráficos:

Como era de esperar, no se pueden observar las soluciones de la ecuación con la suficiente precisión, por lo que deberíamos modificar la x, la escala, etc. Esto sería un proceso largo y tedioso que no utilizaría todos los recursos de la hoja de cálculo. Siempre podemos ingeniar algoritmos que permitan aprovecharnos de los recursos del EXCEL[®] al máximo, y utilizar las diferentes opciones a nuestra disposición.

Para ello, vamos a diseñar la columna de las x utilizando la fórmula que se muestra en la figura (celda anterior más un valor d), junto con la representación gráfica de x vs. f(x).

Mic:	A Microsoft Excel- Libro3											
🖳 A	rchivo Edición Ver Insertar Eormato Herramienta	s Datos Ventana Z						Escr	riba una pregunta	3 💌	- 8 ×	
	🗧 🔜 🔩 🖾 🖤 🛛 🖧 🛍 🛍 • 🝼 🗠 •	× - 🙈 Σ • 🔂 ĝ↓ Ž↓ 🛍 🦑 150%	• • Arial • 10	• N	K <u>s</u> ≡	= = =	§ € %	000 *08 +09	信 信 🖂	- 🖄 -	A	
1 🖾 1	🔄 🚵 🖾 🥦 🚵 📝 🎭 😥 🕅 🖓 Responder con ga	ambios Terminar revisión 🖕										
	D1 • 12	D	0								-	
1	A	В	L L			U			E	<u>.</u>		
	10-40 00-15-01											
2	[3x^2-20x+5=0]											
3												
4		E	-								_	
5	a=	5										
0		6 (1-1)				f(x)						
1	X											
8		=3^A8^2-20^A8+5	14000 ¬									
9	=A8+d	=3*A9*2-20*A9+5										
10	=A9+0	=3*A10*2-20*A10+5	12000 -									
12	= A 10+0	=3 ATT*2-20 ATT+5	10000 -									
12		-3 A12-2-20 A12+5										
14	-A12+d	-3*A14A2 20*A14+5	8000 -									
15	$= \Delta 14 + d$	=3*415^2-20*415+5	6000 -									
16	=A15+d	=3*A16^2-20*A16+5										
17	=A16+d	=3*A17^2-20*A17+5	4000 -									
18	=A17+d	=3*A18^2-20*A18+5	2000 -									
19	=A18+d	=3*A19^2-20*A19+5										
20	=A19+d	=3*A20^2-20*A20+5	0	-								
21	=A20+d	=3*A21^2-20*A21+5	-2000 ^Ø	1	2	3	4	5	6	7		
22	=A21+d	=3*A22^2-20*A22+5										
23											_	
24												
25												
26												
27												
28												
29												
30												
31											-	
14 A >	H Hoja1 / Hoja2 / Hoja3 /			1) I	
Listo									N	JM		

Se ha renombrado la celda B5 como d, con lo que cambiando el valor numérico de esa celda se puede modificar toda la columna de las x, consiguiendo así más o menos espacio entre las marcas del eje de abscisas y, como consecuencia, la representación de diferentes intervalos más o menos amplios, lo que funciona como si fuera un *zoom* que enfoca la gráfica como mejor nos convenga. Para el valor d=5, no aparece nada en la grafica. Si "enfocamos" introduciendo d=0.5, el resultado es el siguiente:

Mic:	rosoft Excel - Capitulo2EX	CEL8								_ 8 ×
💌 A	rchivo <u>E</u> dición <u>V</u> er <u>I</u> nse	ertar <u>F</u> ormato <u>H</u> errami	entas Da <u>t</u> os Ve <u>n</u> tan	a <u>?</u>				E	iscriba una pregunta	×
	÷ 🖬 🔩 🖨 🖪 🖤 🛛	2 🖻 🖻 - 💅 🗠	• CH + 🍓 E • 🕃	3 2↓ 🕺 🛍 🐼 160)% 🔹 🌺 Arial	• 10 • N	<i>X</i> <u>s</u> ≡ ≡ ≡	፼ ፼ € % 000 *38	・% 仁声 信声 田・ 4	≥ - A
1 🖾 1	1a ta 24 Ta 6a (2) !	🗄 😥 🐄 Responder co	on <u>c</u> ambios Ter <u>m</u> inar re	evisión 🖕						
	Δ	B	C	П	F	F	G	н	I	-
1		D	0		-	•			•	
2	[3x^2-20x+5=	0. x1						l l		
3	•	-,								
4										
5	d=	0,5								
6										
7	×	f (x)				f (x)				
8	0,0	5,00								
9	0,5	-4,25	1:	5 -						
10	1,0	-12,00	1	o -				▶		
11	1,5	-18,25								
12	2,0	-23,00		Ň						
13	2,5	-26,25	'		20	20 40	50 6			
14	3,0	-28,00		500 • 1.0	2,0	3,0 4,0	5,0 0,			
15	3,5	-28,25	-1	o- ∖						
16	4,0	-27,00	-1	5 - 🔨			×			
17	4,5	-24,25	-21	о –	×		*			
18	5,0	-20,00		5 -						
20	5,5	-14,25				*****				
20	6,5	1 75	-51	_						
22	7.0	12.00	-3	5 -						
23		12,00								
24										
25										
26										
27										
28										
29										
30		2 / 14								
Listo	H (Hoja1 / Hoja2 / Hoja	15 / III							NUM	

A partir de aquí debemos mejorar la precisión, ya que sólo podemos deducir que las soluciones están entre 0 y 1, y entre 6 y 7. Disminuimos la diferencia d para lograr mayor precisión. En la figura siguiente se muestra el mismo gráfico para una diferencia h=0.05 y e=0.005. Obtenemos una solución x=0.260, para e=0.005. Como se puede observar en la figura, se ha cambiado también el valor del primer punto (celda A44=0.250). Esta maniobra nos permite "centrar la foto" de la gráfica en la zona deseada.

Micros	soft Excel - Capiti	Ilo2EXCEL8										_ 8 ×
Arch	ivo <u>E</u> dición <u>V</u> ei	Insertar Eormat	o <u>H</u> erramientas	Datos Venta	na <u>2</u>						Escriba una pregunta	×
D 😅	🔲 🔁 🖾	🌱 🐰 🖻 🛍 ·	1 m + m +	🤮 Σ • 🕻	हि 👌 🏹 🛍 🚜 13	30% 🔹 🎽 Arial	• 10	• N K S		₽€% 000 *.8	.º8 € <u></u> = € <u></u> 00	- <u>A</u> - A
i i ta ta	the 128 Web 169	🛛 🛤 🝙 😒	Responder con cambi	ios Terminar	revisión							
J28	3 +	fx			•							
	A	В	С	D	E	F	G	Н	1	J	K	L 🗖
23												
24												
25	h=	0,05										
26												
27	x	f (x)										
28	0,00	5,00										
29	0,05	4,01										
30	0,10	3,03										
31	0,15	2,07										
32	0,20	1,12				f (x)						
33	0,25	0,19										
34	0,30	-0,73		^{0,4} 1								
35	0,35	-1,63										
36	0,40	-2,52		0,2 -								
37	0,45	-3,39		+								
38	0,50	-4,25		0,0		+						
39				0,256	0,258	0,260 0	0,262 0,	264				
40		0.005		0,2 -								
41	e=	0,005										
42		5 (11)		0,4								
43	X	r (x)										
44	0,250	0,188	-	0.01								
45	0,255	0,095		na J								
40	0,260	0,003										
47	0,203	-0,089										
40	0,275	-0,101										
50	0,270	-0,275										
51	0,200	-0.456										
52	0.290	-0 548			¥=0.260							
53	0,200	0,630			X=0,200	-						
54	0,280	-0,033										
55	0,500	0,750										
56												
57												
58												
59												-
4 F	Hoja1 / Hoja2	/ Hoja3 /										

Además, llegados a este punto es necesario modificar la escala para obtener más decimales (marcar el eje x, clic con el botón derecho y aparece el menú que se muestra en la figura).

🖾 Mic	rosoft Excel - Capitu	ulo2EXCEL8										_ 8 :	×
📳 e	rchivo <u>E</u> dición ⊻er	<u>I</u> nsertar <u>E</u> ormat	o <u>H</u> erramientas	<u>G</u> ráfico Ve <u>n</u> tana	2					Es	scriba una pregunta		×
	ê 🖬 🔁 🎒 🕰	😻 🕹 🕷 🕈	- St Kh + CH -	- 🖗 Σ - 🔂	21 Z1 🛍 🕹 📃	- 🌺 Arial	v 8	• N K S	= = = = 9	€ % 000 *00 ,	•% ∰ ∰ III 88	• 🕭 • 🗛 •	-
	ta ta 🖉 🔁 ta	🖸 ங 😥 🖘	Responder con <u>c</u> amb	oios Ter <u>m</u> inar rev	isión 🖕								
Eje de	valore 👻	fx .											_
	A	B	C	D	E	F	G	Н	1	J	K	LĪ	•
23													
24													
25	h=	0,05											
26													
27	x	f (x)											
28	0,00	5,00											
29	0,05	4,01											
30	0,10	3,03											
31	0,15	2,07											
32	0,20	1,12				f (x)							
33	0,25	0,19											
34	0,30	-0,73		0,4]									
30	0,35	-1,63											
30	0,40	-2,52		0.2 -									
38	0,45	-3,39											
20	0,50	-4,20			0.050		262 01	Formato de e	njes				
39				0,400	0,200 C	J,260 U	262 0,2	Borrar					
40	0-	0.005		0,2]									
41	-0	0,005		.0.4 -									
42	~	F (y)		.0,4									
4.5	A 0.050	(X) 0.100		.n.e									
44	0,250	0,100											
40	0,200	0,093		.0,8]									
40	0,200	-0.089											
48	0,200	-0,003											
49	0,275	-0.273											
50	0.280	-0.365											
51	0,285	-0,456											
52	0,290	-0,548			x=0,260								
53	0.295	-0.639											
54	0,300	-0,730											
55													
56													
57													
58													
59		111-1-0.1											-
Listo	> H H												
de Ini	io 🐼 💿 🚿	Dinformatica-	vf. convi [🍋 c.	aDEXCEL		B Libro3		Capitulo2EXCEL8	1 p43-2 - Paint	🔄 Bani	deia de entrada n		,
_											,		

En la opción **Formato de ejes** nos encontramos con el siguiente menú dentro de **Número**, en el que podemos modificar el número de decimales en las marcas del eje.

En **Escala** podemos modificar el valor máximo, el mínimo y las distancias entre marcas, y en **Fuente** tenemos la posibilidad de modificar el tamaño y otras características.

La otra solución se obtendría operando de la misma forma, variando el valor de la diferencia (en este caso m) y el valor del primer punto de la x.

En este caso, además, hemos utilizado la opción de representar el rango que más nos convenga para mejorar la gráfica, arrastrando la caja azul que nos muestra el intervalo representado cuando marcamos la línea de la gráfica mediante un clic. Hemos obtenido la solución con 4 decimales.

En resumen, los recursos que tenemos para conseguir una óptima resolución gráfica de una ecuación serían:

- El algoritmo utilizado en la columna de las x, variando el valor de la diferencia ("enfoque de la zona de la solución").
- Variar el primer punto de las x ("encuadre de la zona de la solución").
- Modificar el formato de los ejes, para obtener la máxima precisión.
- Modificar el intervalo que se representa ("mejora del encuadre").

3.2. Cálculo del pH de una disolución de ácido fuerte

Los problemas de cálculo del pH de disoluciones nos brindan la oportunidad de resolver ecuaciones de más sencillas a más complicadas. Concretamente, el cálculo del pH de un ácido fuerte nos permite practicar el uso de funciones como logaritmos, raíces o exponentes, aplicando lo que ya hemos aprendido sobre el uso de

funciones con EXCEL[®] en el Capítulo 2.

El problema que vamos a resolver en este apartado es el cálculo del pH de disoluciones con diferentes concentraciones de un ácido fuerte. Mediante la hoja que vamos a diseñar calcularemos el pH exacto y el pH aproximado, que no tiene en cuenta el producto iónico del agua, para concentraciones entre 10⁻¹ y 10⁻¹⁴ M. Además, gracias a los recursos que nos ofrece el EXCEL[®] que siempre debemos intentar aprovechar al máximo, los compararemos con un mínimo esfuerzo mediante su representación en una gráfica pH vs. concentración de ácido.

Como ejemplo se toma el HCl, que en disolución acuosa se disocia totalmente:

$$HCl \rightarrow H^+ + Cl^-$$

Empezamos el diseño de la hoja introduciendo las concentraciones, arrastrando la fórmula que se observa en la columna A desde la segunda concentración (celda A7):

🖾 Mic	rosoft Excel - Capitulo3EXCEL2				_ & ×						
🖲 é	iyrchivo Edición Ver Insertar Eormato Herramientas Datos Ventana ? Escriba una pregunta 🝷 🗗 🗙										
	2 🖬 🖻 🎒 💽 🖤 🕺 🖻 🛍 • 🚿	🗠 • 🖙 🔌 Σ • 🔂 Ž↓ 🛣 🛍	46 150% - 💥 Arial - 1	0 ▼ ₩ X S ≡ ≡ ≡ ⊡ 9 € % ∞ *& *	ᅊᅊᆝ᠃・◬・ᅀ・.						
Č.	🏜 🏜 🌌 📬 🚵 💆 🎭 🔎 💎 Respo	onder con gambios Terminar revisión 🖕									
	C29 - fx	-									
	A	В	C	D	E_						
1	Cálculo del pH de un ácido										
2											
3											
4											
5	Ca										
6	0,1										
7	=A6/10										
8	=A7/10										
9	=A8/10										
10	=A9/10										
11	=A10/10										
12	=A11/10										
13	=A12/10										
14	=A13/10										
15	=A14/10										
16	=A15/10										
17	=A16/10										
18	=A17/10										
19	=A18/10										
20											
21											
22											
23											
24											
25											
26											
27											
28											
29											
30											
31											
27	Hoja1 / Hoja2 / Hoja3 /				▼ ►						
Listo					NUM						

Al observar los resultados nos damos cuenta que el formato de las concentraciones cambia a partir de la celda A14, cuando ya hay 9 decimales. El programa cambia automáticamente a la notación **Científica** (exponentes de 10) puesto que el número de ceros es demasiado grande para poder mostrarlos.

Mic:	osoft Excel - Capitulo3E	EXCEL2								_ 8 ×
🖲 🖻	rchivo <u>E</u> dición <u>V</u> er <u>I</u> r	nsertar <u>E</u> ormato <u>H</u>	erramientas Da <u>t</u> os Ve <u>n</u> ta	na <u>?</u>				E	scriba una pregunta	- 8 ×
D 🖸	7 🗋 월 🔤 🌮	🕺 🖻 🛍 • 🝼	🗠 • 🕞 • 👹 Σ • 🕻	🗟 👌 🏹 🛍 🤣 150% ·	- 🌺 Arial	• 10 • N A		₫ 野 € % 000 *ぷ	•% €≢€≣ ⊞•,	🏝 • 🗛 • 📮
1 🖾 1	la la 🖉 🔁 🖄 🗹	😼 😥 🐄 Respon	nder con <u>c</u> ambios Ter <u>m</u> inar	revisión 🖕						
	F9 ▼ <i>f</i> ×	D	0	D		-	0			.=
4	A Other data and a	B da un á sida a		U	E	F	G	н		J_
1	Calculo del pH	de un acido	tuerte							
2										
3										
4	6.2									
6	0 1									
7	0,1									
8	0,01									
9	0,001						1			
10	0 00001						•			
11	0.000001									
12	0.0000001									
13	0.00000001									
14	0,000000001									
15	1E-10									
16	1E-11									
17	1E-12									
18	1E-13									
19	1E-14									
20										
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
H A P	Hoja1 / Hoja2 / Ho	oja3 /	· · · · · · · · · · · · · · · · · · ·		·			·		

Para homogeneizar la notación de las concentraciones, marcamos las celdas correspondientes y vamos a **Formato>Número>Científica**.

Mici	rosoft Excel - Capitulo3I	EXCEL2							_ 8 ×
📳 A	rchivo <u>E</u> dición <u>V</u> er <u>I</u>	nsertar Eormato <u>H</u> erra	mientas Datos Ve <u>n</u>	tana <u>?</u>				Escriba una pre	egunta 🔹 🖬 🗙
	💝 🗟 😂 😰 🖬 🗧	🛛 🕹 🛍 • 🝼 🗠	• CH + 🝓 E •	🔂 2↓ 2↓ 🛍 📣 150%	• 💥 Arial	• 10 • N K S	≣ ≡ ≣ 📴 😨 ≪	: % 000 *08 . °8 ∰ ∰	🗄 • 🕭 • 🗛 • 🖕
1 ča 1	ta ta 22 🗠 4a 2) 😼 😥 🖤 Responder	con gambios Termina	r revisión 🖕					
-	A6 🕶 f×	0,1	•	-	_	-	-		
	A	В		D	E	F	G	H	J_ <u>_</u>
1	Calculo del pH	de un acido fue	erte						
2									
3									
4	0								
5	Ca	1							
6	0,1								
	0,01								
8	0,001								
9	0,0001			Formato de celdas		? ×			
10	0,00001			Número Alipeación	Evente Bordes Tramas	Proteger			
11	0,000001			⊆ategoría:	Muestra				
12	0,0000001			General A	1,E-01				
13	0,00000001			Moneda Contabilidad	Posiciones decimales:	₽			
14	0,000000001			Fecha					
15	1E-10			Porcentaje Fracción					
16	1E-11			Científica					
17	1E-12			Especial Personalizada					
18	1E-13								
19	1E-14								
20									
21				-					
22									
23					Acepta	r Cancelar			
24									
25									
20									
27									
20									
29									
21									
31									
14 A >	Hoja1 / Hoja2 / H	oja3 /							
LISCO	ia ᢙ 🚱 🚳	Dipformatica-vf. convi			Capitulo3EXCEL1	Capitulo3EYCEL2	107 p47-1 - Paint	Bandeia de entre	da n 🕅 🦄 11-12
							and a second second	- 5110010 00 011010	

El resultado es el siguiente:

🖾 Mic	rosoft Excel - Capitulo3E	XCEL2								_ 8 ×		
8	🔓 🛃 🚽 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹 🕹											
	2 🖬 🖻 🖨 🖓	👗 🖻 🛍 • 🝼	🖍 🔹 🖓 🔺 👹 Σ 🔹	🕃 🛃 🕌 🛍 🤣 150%	• • Arial	• 10 • ₩ A			•% € ⊨ € ⊨ 00 • ;	🕭 • A • •		
č a	ta ta 22 🗞 ta 🖸	Respon	nder con <u>c</u> ambios Ter <u>m</u> ina	ar revisión 🖕								
	Ab 🕶 🏂	0,1	<u> </u>	D	E	F	6	L		1=		
1	A Céleule del pH	D de un éside d	fuerte	U	E	F	G			J		
2		de un acido	luerte									
2												
1												
5	Ca											
6	1 F-01											
7	1 E-02											
8	1 E-03											
9	1.E-04											
10	1.E-05											
11	1.E-06											
12	1,E-07											
13	1,E-08											
14	1,E-09											
15	1,E-10											
16	1,E-11											
17	1,E-12											
18	1,E-13											
19	1,E-14											
20												
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31										-		
14 4	Hoja1 / Hoja2 / Ho	oja3 /				I▼I				ÞÍ		

La aproximación que habitualmente se lleva a cabo para el cálculo del pH de disoluciones de ácidos fuertes consiste en no tener en cuenta el producto iónico del agua, con lo que:

$$\left[H^{+}\right] = \left[Cl^{-}\right] = \left[HCl\right]_{0} \equiv Ca ,$$

donde Ca es la concentración inicial de ácido.

El cálculo del pH se convierte en una sencilla operación, ya que basta con obtener el –logaritmo decimal de la concentración molar inicial de ácido. Esta aproximación es válida a concentraciones altas de ácido, ya que entonces los protones cedidos por el agua son despreciables. En la hoja se calcula el –logaritmo decimal de dicha concentración, o lo que es lo mismo pCa, puesto que el operador "p" realiza este cálculo del argumento correspondiente.

Sin aproximaciones, se tiene en cuenta también el equilibrio:

$$H_2O \rightleftharpoons OH^- + H^+$$

y se incluye en los balances de cargas y masas

Balance de cargas: $[H^+]=[Cl^-]+[OH^-]$ Balance de masas: $[Cl^-]=Ca$

$$Kw = [OH] \cdot [H^+]$$

A partir de este sistema de ecuaciones es posible calcular la concentración exacta de protones mediante una ecuación de segundo grado:

$$\left[OH^{-}\right] = \frac{Kw}{\left[H^{+}\right]}$$

$$\begin{bmatrix} H^+ \end{bmatrix} = Ca + \frac{Kw}{\begin{bmatrix} H^+ \end{bmatrix}}$$
$$\begin{bmatrix} H^+ \end{bmatrix}^2 - \begin{bmatrix} H^+ \end{bmatrix} \cdot Ca - Kw = 0$$
$$\begin{bmatrix} H^+ \end{bmatrix} = \frac{Ca + \sqrt{Ca^2 + 4} \cdot Kw}{2}$$

que se puede traducir fácilmente al formato $\text{EXCEL}^{\$}$, incluyendo el cálculo del –logaritmo de la concentración de protones (H⁺) para obtener el pH:

$$=-LOG((B7+(B7^{2}+4*Kw)^{(1/2)})/2).$$

También se puede utilizar la función RAIZ():

$$=-LOG((B7+RAIZ(B7^{2}+4*Kw))/2).$$

Puesto que necesitamos utilizar la constante del producto iónico del agua, se ha definido la celda B3 como *Kw* con el objeto de facilitar la traducción de la fórmula. En las figuras se pueden ver las fórmulas utilizadas:

Image: Control of the product Contro	Mie Mie	rosoft Excel - Capitulo3EXCEL2				_ @ ×
C ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ ⊂ Q × C (Q × C) × Q × Avi F I 0 × H × S ⊂ ⊂ ⊂ ⊂ × C × C × C × C × C × C × C × C		archivo Edición ⊻er Insertar Eormato	Herramientas Datos Ventana <u>2</u>		Escriba u	na pregunta 🔹 🗕 🗗 🗙
Image: Control of Control Contecontro Contecontrol Contrelation Control Control Control Control	0	🍃 🖬 🔁 🎒 🗟 🖤 🕺 🖻 🛍 • <	🌮 🗠 📲 🍓 🗵 🕶 🔀 🛃 🛣	🔟 🛷 150% 🔍 🚬 Arial	• 10 • N X S = = = = = = = K ∞ * % ∞ * % + %	€ 🚝 🗄 • 🏖 • 🗛 • .
Display A B C D E 1 Câlculo del pH de un ácido E E E E E E <	2	🖆 🏜 🚄 🍋 🍓 🛛 🖓 🖓 🖓 🐄 Rest	ponder con <u>c</u> ambios Ter <u>m</u> inar revisión 🖕			
A B C D E C D E E E A E A C D E A E A C D E C D E A C D D E A A B C D <thd<< th=""> D D D</thd<<>		D5 - A pH exacto	D	•	D	
Calculo del pH de un acido 2 Description 3 Kw= =10^{(-14)} 4 PCa pH aprox pH exacto 5 Ca pCa pH aprox pH exacto 6 0.1 =-LOG(A6) =-LOG(A6) =-LOG(A7(A2+(A7^{+2}+4*Kw)^{(1/2))/2) 7 =A8/10 =-LOG(A8) =-LOG(A8) =-LOG(A8+(A8^{+2}+4*Kw)^{(1/2))/2) 8 =A7/10 =-LOG(A8) =-LOG(A8) =-LOG((A10+(A10^{+2}+4*Kw)^{(1/2))/2) 9 =A8/10 =-LOG(A10) =-LOG(A11) =-LOG(A11) =-LOG(A14+(A10^{+2}+4*Kw)^{(1/2))/2) 10 =-LOG(A11) =-LOG(A11) =-LOG(A11) =-LOG(A11(A11^{+2}+4*Kw)^{(1/2))/2) 11 =A10/10 =-LOG(A12) =-LOG(A12) =-LOG(A14+(A12^{+2}+4*Kw)^{(1/2))/2) 11 =A10/10 =-LOG(A13) =-LOG(A14) =-LOG(A14+(A12^{+2}+4*Kw)^{(1/2))/2) 12 =A11/10 =-LOG(A15) =-LOG(A14) =-LOG(A14+(A12^{+2}+4*Kw)^{(1/2))/2) 13 =A12/10 =-LOG(A15) =-LOG(A14+(A12^{+2}+4*Kw)^{(1/2))/2) =-A12/10 14 >A13/10 =-LOG(A15) =-LOG(A14+(A12^{+2}+4*Kw)^{(1/		A	В	U U	D	E _
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Calculo del pH de un acido				
3 KW= = I0 ⁴ (-14) 4 pCa pH aprox pH exacto 5 Ca pCa pH aprox pH exacto 6 0.1 =-LOG(A6) =-LOG(A6) =-LOG(A6(A) LOG(A7(A)^2+4*Kw)^{(1/2)/2} 7 =A6/10 =-LOG(A8) =-LOG(A8) =-LOG(A8) =-LOG(A8) =-LOG(A8)^{(1/2)/2} 9 =A8/10 =-LOG(A10) =-LOG(A10) =-LOG(A10) =-LOG(A10(A1)(A10^2+4*Kw)^{(1/2)/2}) 11 =A10/10 =-LOG(A11) =-LOG(A12) =-LOG(A11+(A11^2+4*Kw)^{(1/2)/2}) 12 =A3/10 =-LOG(A12) =-LOG(A12) =-LOG(A12/A1+(A14^2+4*Kw)^{(1/2)/2}) 13 =A12/10 =-LOG(A13) =-LOG(A13) =-LOG(A14+(A14^2+4*Kw)^{(1/2)/2}) 14 =A13/10 =-LOG(A14) =-LOG(A15) =-LOG(A15/A1+(A14^2+4*Kw)^{(1/2)/2}) 16 =A15/10 =-LOG(A16) =-LOG(A16) =-LOG(A17+(A17^2+4*Kw)^{(1/2)/2}) 16 =A16/10 =-LOG(A17) =-LOG(A18) =-LOG(A17+(A17^2+4*Kw)^{(1/2)/2}) 17 =A16/10 =-LOG(A18) =-LOG(A18) =-LOG(A18+(A18^2+4*Kw)^{(1/2))/2}) 18	2	Kee	-100(11)			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3	Kw=	=10^(-14)			
5 Ca product product product product 6 0.1 =LOG(A6) =LOG(A6) =LOG(A6+(A6*2+4*Kw)^{(1/2))/2}) 7 =A6/10 =LOG(A7) =LOG(A8) =LOG((A8+(A8*2+4*Kw)^{(1/2))/2}) 8 =A7/10 =LOG(A8) =LOG(A8) =LOG((A8+(A8*2+4*Kw)^{(1/2))/2}) 9 =A8/10 =LOG(A9) =LOG(A8) =LOG((A8+(A8*2+4*Kw)^{(1/2))/2}) 10 =A9/10 =LOG(A10) =LOG(A8) =LOG((A10+(A10*2+4*Kw)^{(1/2))/2}) 11 =A10/10 =LOG(A11) =LOG(A11) =LOG((A11+(A11*2+4*Kw)^{(1/2))/2}) 12 =A11/10 =LOG(A12) =LOG(A13) =LOG((A11+(A14*2+4*Kw)^{(1/2))/2}) 13 =A12/10 =LOG(A13) =LOG(A13) =LOG((A14+(A14*2+4*Kw)^{(1/2))/2}) 14 =A13/10 =LOG(A14) =LOG(A15) =LOG((A15+(A15*2+4*Kw)^{(1/2))/2}) 14 =A14/10 =LOG(A16) =LOG(A15) =LOG((A15+(A15*2+4*Kw)^{(1/2))/2}) 15 =A16/10 =LOG(A17) =LOG(A18) =LOG((A15+(A15*2+4*Kw)^{(1/2))/2}) 16 =A15/10 =LOG(A18) =LOG(A18) =LOG((A15+(A15*2+4*Kw)^{(1/2))/2}) <th>4</th> <th>62</th> <th>202</th> <th>nH annov</th> <th>nH avasta</th> <th></th>	4	62	202	nH annov	nH avasta	
0 0.1 =-LOG(A6) =-LOG(A6) =-LOG(A6)(A6)(A6)(A6)(A6)(A6)(A6)(A6)(A7)(A7)(A7)(A7)(A7)(A7)(A7)(A7)(A7)(A7	5	Ca				g
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	0,1	=-LOG(A6)	=-LOG(A6)	$= -LOG((A0+(A0^{2}+4 \text{ KW})^{2}(1/2))/2)$	
\bullet =A1/10 =-LOG(A5) =-LOG(A5) =-LOG(A6) =-LOG(A8)^{-1}(A8)^{-2}4^{+}(W)^{+}(1/2)/2) 10 =A9/10 =-LOG(A10) =-LOG(A10) =-LOG(A10)^{-2}4^{+}(W)^{+}(1/2)/2) 11 =A10/10 =-LOG(A11) =-LOG(A11) =-LOG(A11)^{-2}4^{+}(W)^{+}(1/2)/2) 12 =A11/10 =-LOG(A12) =-LOG(A12) =-LOG(A12)^{-2}4^{+}(W)^{+}(1/2)/2) 13 =A12/10 =-LOG(A13) =-LOG(A13) =-LOG(A13)^{-2}4^{+}(W)^{+}(1/2)/2) 14 =A13/10 =-LOG(A13) =-LOG(A13) =-LOG(A14)^{-2}4^{+}(W)^{+}(1/2)/2) 15 =A14/10 =-LOG(A14) =-LOG(A14) =-LOG(A14)^{-2}4^{+}(W)^{+}(1/2)/2) 16 =A15/10 =-LOG(A16) =-LOG(A16) =-LOG(A16)^{-2}4^{+}(W)^{+}(1/2)/2) 17 =A16/10 =-LOG(A17) =-LOG(A18) =-LOG((A17)^{-2}4^{+}(W)^{+}(1/2)/2) 18 =A17/10 =-LOG(A18) =-LOG(A18) =-LOG((A19^{+}(A19^{+}24^{+}KW)^{+}(1/2))/2) 19 =A18/10 =-LOG(A19) =-LOG(A19) =-LOG((A19^{+}(A19^{+}24^{+}KW)^{+}(1/2))/2) 21 22 23 24 25 26 27	-	=A6/10	=-LOG(A7)	=-LOG(A7)	$=-LOG((A7+(A7^{*2}+4 \text{ KW})^{*}(172))/2)$	
9 =Ability =-LOG(A9) =-LOG(A9) =-LOG(A1)(A2)(A2)(A2)(A2)(A2)(A2)(A2)(A2)(A2)(A2	0	=A7/10	=-LOG(A8)	=_LOG(A8)	$= -LOG((A0+(A0^{2}+4 \text{ KW})^{-}(1/2))/2)$	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	9	=A0/10	=-LOG(A9)	=-LOG(A9)	$= -LOG((A9+(A9^{-2}+4 \text{ KW})^{-}(1/2))/2)$	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11	=A9/10	=-LOG(A10)	=-LOG(A10)	$= -LOG((A10+(A10^{-2}+4 \text{ KW})^{-}(1/2))/2)$	
12 =A11/10 =-LOG(A12) =-LOG(A12) =-LOG(A12)/(A12+(A12*2+4+KW)*(1/2))/2) 13 =A12/10 =-LOG(A13) =-LOG(A13) =-LOG(A13)/(A13*2+4*KW)*(1/2))/2) 14 =A13/10 =-LOG(A14) =-LOG(A14) =-LOG((A14+(A14*2+4*KW)*(1/2))/2) 15 =A14/10 =-LOG(A15) =-LOG((A15+(A15*2+4*KW)*(1/2))/2) 16 =A15/10 =-LOG(A16) =-LOG((A16+(A16*2+4*KW)*(1/2))/2) 17 =A16/10 =-LOG(A17) =-LOG(A18) 18 =A17/10 =-LOG(A18) =-LOG(A18) 19 =A18/10 =-LOG(A19) =-LOG(A19) 20	12	=A10/10	=-LOG(A12)	=-LOG(A11)	=-LOG((A17+(A17*2+4 KW)*(1/2))/2)	
13 =A12710 =-LOG(A13) =-LOG(A13) =-LOG(A14) 14 =A13/10 =-LOG(A14) =-LOG(A14) =-LOG(A14+(A14^2+4*Kw)^*(1/2))/2) 15 =A14/10 =-LOG(A15) =-LOG(A15) =-LOG((A15+(A15^2+4*Kw)^*(1/2))/2) 16 =A15/10 =-LOG(A16) =-LOG(A16) =-LOG((A16+(A16^2+4*Kw)^*(1/2))/2) 17 =A16/10 =-LOG(A17) =-LOG(A17) =-LOG((A17+(A17^2+4*Kw)^*(1/2))/2) 18 =A17/10 =-LOG(A18) =-LOG((A18+(A18^2+4*Kw)^*(1/2))/2) 19 =A18/10 =-LOG(A19) =-LOG((A19+(A19^2+4*Kw)^*(1/2))/2) 20	12	=A11/10	= -LOG(A12)	=-LOG(A12)	$= -LOG((A12+(A12A2+4KW)^{(1/2)})/2)$	
14 =A13710 =-LOG(A14) =-LOG(A14) ==LOG(A14) 15 =A14710 =-LOG(A15) =-LOG(A15) =-LOG(A15^*+4 Kw)^*(1/2))/2) 16 =A15710 =-LOG(A16) =-LOG(A16) =-LOG(A16^*+4 Kw)^*(1/2))/2) 17 =A16/10 =-LOG(A17) =-LOG(A17) =-LOG((A17+(A17*2+4*Kw)^*(1/2))/2) 18 =A17/10 =-LOG(A18) =-LOG((A18+(A18*2+4*Kw)^*(1/2))/2) 19 =A18/10 =-LOG(A19) =-LOG(A19) 20 20 20 20 21 22 23 24 22 23 24 25 26 26 26 27	13	=A12/10	=-LOG(A13)	=-LOG(A13)	$= 100((A13+(A143+4KW))^{(1/2)})/2)$	
15 -A14/10 LOG(A15) LOG(A15) LOG(A15) 16 -A14/10 LOG(A15) LOG(A16) LOG(A16^+(A15^2+4^+Kw)^*(1/2))/2) 17 -A16/10 LOG(A17) LOG(A16) LOG((A16+(A16^2+4^+Kw)^*(1/2))/2) 18 LOG(A17) LOG(A18) LOG((A18+(A18^2+4^+Kw)^*(1/2))/2) 19 LOG(A19) LOG(A19) LOG((A19+(A19^2+4^+Kw)^*(1/2))/2) 20 LOG(A19) LOG((A19+(A19^2+4^+Kw)^*(1/2))/2) 21 LOG(A19) LOG(A19 22 LOG(A19) LOG(A19 23 LOG(A19 LOG(A19 24 LOG(A19 LOG(A19 25 LOG(A19 LOG(A19 26 LOG(A19 LOG(A19	14	=A13/10	=-LOG(A14)	=-LOG(A14)	$= -LOG((A14+(A14^{-2}+4 KW)^{-1}(1/2))/2)$	
10 =-LOG(A16) =-LOG(A16) =-LOG(A17) 17 =A16/10 =-LOG(A17) =-LOG(A17) =-LOG(A17+(A17^2+4*Kw)^{(1/2))/2}) 18 =A17/10 =-LOG(A18) =-LOG(A18) =-LOG((A18+(A18^2+4*Kw)^{(1/2)})/2) 19 =A18/10 =-LOG(A19) =-LOG(A19) =-LOG((A19+(A19^2+4*Kw)^{(1/2)})/2) 20 20 21 22 23 23 23 24 25 26 26 27	10	-A14/10	=-LOG(A16)	=-LOG(A15)	$= 100((A15+(A15^2+4 KW)^{(1/2)})/2)$	
11 LOG(A17) LOG(A17) LOG(A17+(A17*2+4 KW)*(172))/2) 18 =A17/10 =-LOG(A18) =-LOG((A18+(A18*2+4*KW)*(1/2))/2) 19 =A18/10 =-LOG(A19) =-LOG((A19+(A19*2+4*KW)*(1/2))/2) 20 21 22 23 24 24 25 26 27 27	17	=A15/10	=-LOG(A17)	=-LOG(A18)	$= -LOG((A17+(A17^2+4 \text{ KW})^{-}(1/2))/2)$	
10 =-LOG(A18) =-LOG(A16) =-LOG(A16+(A16*2+4 KW)*(1/2))/2) 19 =A18/10 =-LOG(A19) =-LOG(A19+(A19*2+4*Kw)*(1/2))/2) 20 21 22 23 23 23 24 25 26 26 26 27 27 27 27	10	-A10/10	=-LOG(A17)	=-LOG(A18)	$= 100((A17+(A17^{-2}+4 \text{ KW})^{-1}(1/2))/2)$	
15 LOG(A19) LOG(A19, 274 kw)*(172))(2) 20 LOG(A19, 274 kw)*(172))(2) 21 LOG(A19, 274 kw)*(172))(2) 22 LOG(A19, 274 kw)*(172))(2) 23 LOG(A19, 274 kw)*(172))(2) 24 LOG(A19, 274 kw)*(172))(2) 25 LOG(A19, 274 kw)*(172))(2) 26 LOG(A19, 274 kw)*(172))(2) 27 LOG(A19, 274 kw)*(172))(2)	10	=A17/10	=-LOG(A18)	=-LOG(A18)	$= -LOG((A10+(A10A2+4KW)^{(1/2)})/2)$	
20 21 22 23 23 24 25 26 27 27	19	=A18/10	=-LOG(AT9)	=-LOG(AT9)	$=-LOG((AT9+(AT9^{-2}+4 KW)^{-}(T/2))/2)$	
21 22 23 24 25 26 27 27	20					
22 23 24 25 26 27	21					
23 24 25 26 27	22					
24 25 26 27	23					
26 27	24					
27	20					
	20					
20	21					
20	20					
20	30					
	30					
	32					-
((+) \ Hoja1 / Hoja2 / Hoja3 /	III III	H Hoja1 / Hoja2 / Hoja3 /				E DI IM

y el resultado es el siguiente:

🕅 Mic	rosoft Excel - Capitulo	3EXCEL2								_ 8 ×
B 4	archivo <u>E</u> dición <u>V</u> er	Insertar Eormato H	erramientas Datos Ve	mtana ?					Escriba una pregunta	×
	# 🖬 🛍 🎒 🗟 🖇	🌮 - 🎖 🗈 🕲 🖓	K) • CH • 🤹 Σ	• 🔂 🤶 🕌 🕌 🛍 📣 150% •	- 🌺 Arial	• 10 • N .	K <u>s</u> ≡ ≡ ≡	፼ \$ € % 000	*.8 ,08 🗐 🗐 👘 ·	• 🕭 • 🗛 • 🖕
č a	ta ta 🗷 🔁 🍇	🔄 🔩 😥 💘 Respo	nder con <u>c</u> ambios Ter <u>m</u> i	nar revisión 🖕						
	F5 - f	λ. D	0	D	-	F	<u> </u>			
4	A Célevile del pl	D	C.	U	—	Г	G			
1	Calculo del pl	n de un acido	luerte							
2	K	15.14								
3	NW-	10-14								
4	6.	n Ca	nH anray	nH avaata						
6		pca 1		1 0000000		L				
7	1,E-01	1		2,00000000						
0	1,E-02	2	2	2,00000000						
0	1,E-03	3	3	3,00000000						
10	1,E-04	4		4 00005659						
11	1,E-05	5	5	5 99572079						
12	1,E=00	7	7	6 79101236						
12	1,E-07	8	8	6 97829/31						
14	1,E-00	9	9	6 99782854						
15	1,E=00	10	10	6 99978285						
16	1,E=10	11	11	6 99997829						
17	1,E112	12	12	6 99999783						
18	1 E-13	13	13	6 99999978						
19	1 F-14	14	14	6 99999998						
20	.,			0,0000000						
21										
22										
23										
24										
25										
26										
27										
28										
29										
30										
31										
32	N Hojal / Hoja2 /	Hoja3 /						1		×
Listo		10,007							NUN	4

Por último, vamos a representar el pH exacto y aproximado a lo largo del intervalo de concentraciones estudiado (columnas C y D) frente a la concentración inicial de ácido, lo que nos permite constatar claramente la diferencia entre la aproximación y el pH exacto. Utilizamos el **Asistente para gráficos**:

Mici	rosoft Excel - Capitulo	3EXCEL2									_	8×
■ A	rchivo <u>E</u> dición ⊻er	Insertar Eormato H	ierramientas Datos 1	/entana 2						Escriba una pregunta	· -	₽×
		7 % 🖻 🖻 - 🚿	K) + Ci + 66 Σ	* 🔁 2+ 4+ 🛄 🐠 150%	- Carial	- 10 - N	<i>X</i> <u>s</u> ≡		\$#€% 000	*** +** EF EF EE	- 🖄 - 4	A
		☑ 帕ဩ (jel ♥₽Respo	nder con <u>c</u> ambios Ter <u>r</u>	ninar revisión 🖕								
	► →	* pca	C	n	F	F	G		н	1		1 =
1		H de un ácido	fuerte		L		0			-		<u> </u>
2	Calculo del pi		lucite									
2	K.w	1 = 14										
4	1.00-	16-14			Asistente para grá	ficos - paso 2 de 4: d	atos de origen		<u>?</u> ×			
5	Ca	nCa	nH aprox	nH evacto	Rango de datos	Serie						
6	1 F-01	1	1	1 0000000	16 7							
7	1 E-02	2	2	2 00000000	14							
8	1 E-03	3	- 3	3,00000000	10			pH aprox				
q	1,E-00	4	4	3 99999957				- pH exacto				
10	1,E-04	5	5	4 99995658	4							
11	1,E-06	6	6	5 99572079		5 10	15					
12	1 E-07	7	7	6 79101236								
13	1 E-08	8	8	6 97829431	Rango de datos:	Hoja11\$8\$5:\$D\$19						
14	1,E-09	9	9	6,99782854	Series en:	C Film						
15	1 F-10	10	10	6 99978285	Jones en.	 Columnas 						
16	1 F-11	11	11	6 99997829								
17	1 F-12	12	12	6 99999783								
18	1 F-13	13	13	6,99999978								
19	1 F-14	14	14	6,99999998								
20	.,			0,00000000		Cancelar < <u>A</u> trá	s Siguiențe	e > Einali	lizar			
21												
22												
23												
24												
25												
26												
27												
28												
29												
30												
31												
22	N Hoial / Hoial /	Hoja3 /				1.1						-
Séñar Suma								Suma=286	,7625709 NL	M	20	
🏉 Inic	io 🕑 🕑 🥌	informatica-vf_cor	wi 🛛 🗀 CapEXCEL	C NUEVASCAP	Capitulo3EXCI	EL1 EL1 Capitu	Io3EXCEL2) p50-1 -	Paint 🛛	🗿 Bandeja de entrada p	. 🔍 🐍	11:15

Como se puede observar en la figura, se ha seleccionado la columna correspondiente al pCa (-logaritmo de la concentración inicial de ácido) como eje de abscisas. El resultado final, ajustando los diferentes parámetros estudiados en diferentes apartados anteriores del asistente de gráficos (títulos x e y, máximo 14 en escala y, tamaño fuente y alineación etiquetas eje x), es el que se muestra en la figura siguiente. Además, se ha ajustado el número de decimales en cada columna y, como hemos visto anteriormente, se ha homogeneizado la notación de las concentraciones.

Se debe tener en cuenta que en el laboratorio rara vez se trabaja a concentraciones menores a 10⁻⁵ M, por lo que la aproximación es perfectamente válida en el trabajo rutinario de laboratorio. Sin embargo, la utilización de una hoja de cálculo como EXCEL[®] minimiza el trabajo necesario para el cálculo del pH exacto, cuando ello sea necesario.

3.3. Trabajo de expansión de gases reales. Cálculo numérico del trabajo reversible.

En condiciones de baja presión y temperatura no excesivamente baja, el comportamiento de un mol de gas encerrado en un recipiente de volumen v, en condiciones de presión P y temperatura absoluta T, viene bien descrito mediante la ecuación de estado ideal, Pv = RT. Por ello, en procesos isotermos, o sea de temperatura constante, el trabajo de expansión reversible se calcula de manera muy sencilla, mediante una expresión analítica. En efecto, recordemos que el trabajo de compresión o expansión de un gas, desde un

volumen inicial v_1 hasta un volumen final v_2 , se calcula mediante la suma de los trabajos diferenciales $P \cdot dv$ a lo largo del proceso. O sea, el trabajo viene dado por,

$$w = \int_{v_1}^{v_2} P \cdot dv.$$

Puesto que el proceso es isotermo y la presión P puede expresarse, con ayuda de la ecuación de estado, en términos del volumen molar v, que es variable, y la temperatura T que es constante, tenemos que,

$$w = \int_{v_1}^{v_2} P \cdot dv = \int_{v_1}^{v_2} \frac{RT}{v} dv = RT \int_{v_1}^{v_2} \frac{dv}{v} = RT \ln \frac{v_2}{v_1}$$

Sin embargo, a presiones moderadamente elevadas y temperatura ambiente, o incluso temperatura más alta, el comportamiento del gas real no se ajusta bien a la ecuación ideal de estado. Por este motivo, se han propuesto diversas ecuaciones empíricas con parámetros ajustables, que permiten una correcta descripción del comportamiento real. La primera, y sin duda la más conocida, es la ecuación de Van der Waals. Ésta constituye el primer intento de modificar la ecuación del gas ideal mediante la introducción de parámetros. Una primera corrección implica el volumen, argumentándose que el volumen libre por donde se mueven las moléculas del gas es menor que el volumen total, puesto que las propias moléculas de gas ocupan un volumen por donde el resto de moléculas no pueden transitar. Por ello, el volumen molar v de la ecuación del gas ideal es sustituido por un volumen molar menor v - b. La segunda corrección implica la presión y es consecuencia de la atracción que unas moléculas contra la membrana, se vea disminuida por la atracción de las moléculas que tienen detrás. Por ello, la presión P en la ecuación ideal se incrementa mediante un factor proporcional al cuadrado de la concentración del gas.¹ Con todo ello la ecuación de Van der Waals queda,

$$(P + \frac{a}{v^2})(v - b) = RT$$

Las constantes $a ext{ y } b$ se deben obtener mediante ajuste a datos experimentales de cada gas. Existen otras ecuaciones similares a ésta como la de Clausius o la de Berthelot, así como otras con una apariencia más diferente, como por ejemplo la ecuación de Dieterici,

$$P(v-b) = RT e^{-\frac{a}{vRT}}.$$

La tabla siguiente incluye los parámetros a y b de tres gases con un grado distinto de aproximación al comportamiento ideal.

¹ Cada molécula que choca ve disminuida su contribución a la presión de manera proporcional al número de moléculas por unidad de volumen que la están atrayendo cuando ésta efectúa la colisión. Por otra parte, el número de colisiones contra la membrana, que determina la presión total, es proporcional al número de moléculas por unidad de volumen.

	a (at·L ² /mol ²)	b (L/mol)
CO ₂	3,59	0,0427
H ₂	0,244	0,0266
Éter	17,4	0,1344

En general, aun cuando podamos despejar la presión como función del volumen, la temperatura y los parámetros ajustables en la ecuación de estado del gas real, el cálculo del trabajo isotermo deja, en general, de tener una expresión analítica y debemos recurrir a la integración numérica. En el presente apartado calcularemos el trabajo de expansión de un mol de éter a la temperatura de 298K que inicialmente ocupa un volumen de 1L y se expande hasta un volumen final de 2L. Para ello, usaremos las ecuaciones de estado ideal, de Van der Waals y de Dieterici. En primer lugar, procederemos a representar la gráfica de la presión como función del volumen P(v), a la temperatura constante de 298K. Posteriormente, calcularemos el trabajo suponiendo comportamiento ideal, en cuyo caso el trabajo se puede expresar mediante la fórmula analítica anteriormente comentada. También supondremos que el éter sigue la ecuación de Van der Waals. En este caso calcularemos el trabajo numéricamente usando la fórmula de integración de los trapecios, que viene explicada en el apéndice 11.4. Finalmente asumiremos la ecuación de Dieterici y calcularemos el trabajo, también numéricamente, esta vez usando la fórmula los rectángulos, que viene explicada en el mismo apéndice. Se pretende que se realice la comparación de los resultados del trabajo de expansión reversible del gas, calculado con las distintas ecuaciones de estado antes mencionadas, así como la precisión que se alcanza, para un paso de integración dado, con una u otra técnica de integración numérica. Finalmente, que se estudie la convergencia de la integral numérica, a medida que se disminuye el paso de integración. Se puede repetir el problema empleando las constantes de los otros dos gases, comparando así sus discrepancias relativas respecto del comportamiento ideal.

A la hora de construir la hoja de cálculo, introducimos en primer lugar los datos del problema: ecuaciones de estado que vamos a emplear, constantes de gases R, $a \neq b$, temperatura absoluta $T \neq paso de integración \Delta h$, que definiremos, una vez seleccionada la celda donde está cada valor numérico, usando las opciones del menú **Insertar>Nombre>Definir** que hay dentro del menú principal. Alternativamente, esta misma operación puede realizarse acudiendo al *cuadro de nombres* que esta situado a la izquierda de la línea de comandos, encima del encabezamiento de columnas, escribiendo allí el nombre de la constante. La apariencia del inicio de la hoja de cálculo seria más o menos como se muestra a continuación.

	A	В	C	D	E	F	G	н	115
1		1.274	19470						
2									
3			Cálcu	lo del tr	abajo en gases	reales			
4									
5	Alguna	as constantes d	e gases		Ecuac	iones térmicas de	gases		
6	14	a (at/(L-mol))	b (L/mol))						
7	CO2	3,59	0,0427		Gas ideal	Pv = RT			10
8	H2	0,244	0,0266						
9	Eter etilico	17,4	0,1344		Van der Waals	$\left(P+\frac{a}{2}\right)$	(v-b) = RT		
10						v ²			
11						RT	- 4	_	
12					Dieterici	$P = \frac{n}{n-h}e$	vRT		
13					5	<u>v-b</u>			_
14		Contractory and a service of the ser	Concernance - The second second	1000				-	-
15		CASO DEL E	TER ETILICO	R	0,082	a (at/(L·mol))	17,4		-
16				Т	298	b (L/mol))	0,1344		
17						3			
18				Paso de	e integración ∆h	0,1			
19								_	
20									
24.	Ganos Reals					Della Constanti			21

Ahora procederemos a la representación gráfica de la presión como función del volumen P(v), a la temperatura constante de 298K.

Vemos en el esquema anterior que mientras que la representación de la ecuación de Van der Waals incluye los valores extremos de volumen inicial y final, la representación que hemos hecho de la ecuación de Dieterici empieza medio paso $\Delta h/2$ después y acaba medio paso antes de los valores extremos de volumen (en las fórmulas de la hoja de cálculo, llamamos "hh" a dicho paso, que tomamos de 0.1 L). Ello se ha hecho así con objeto de preparar los datos para las posteriores integraciones, que se discutirán después. Como consecuencia de esta disparidad en la lista de los valores de la variable independiente nos encontramos con el pequeño inconveniente, a la hora de representar, de tener que introducir los datos como series distintas, tal y como viene mostrado en el esquema anterior. Mostramos, a continuación, el detalle interno de las fórmulas.

Vemos en el gráfico que, a pesar de la distinta apariencia de las ecuaciones de Van der Waals y Dieterici, su comportamiento es muy similar, siendo mucho más parecidos entre si que lo que cada uno de ellos se parece al comportamiento ideal. Esto también se refleja en el valor del trabajo de expansión, que calculamos a continuación. Éste, como era de esperar, resulta muy similar si se calcula con una u otra ecuación de gas real, no resultando tan parecido a lo que se obtiene con la fórmula del gas ideal.

Las fórmulas de integración de los rectángulos y los trapecios, que vienen deducidas en el apéndice <u>11.4</u>, y que emplearemos en este problema son, respectivamente,

$$I = \Delta h \cdot \sum_{i=0}^{n-1} f[x_1 + (i+1/2)\Delta h]; \qquad I = \frac{\Delta h}{2} \left[f(x_1) + 2 \cdot \sum_{i=1}^{n-1} f(x_1 + i\Delta h) + f(x_2) \right].$$

donde x_1 y x_2 son los limites de integración y Δh el paso. Mostramos el resultado de la integración:

🖾 Microso	ft Excel - Int.N	umerica.xls									_ 8 ×
·	o Edición Y	er Insertar Eormato	Herramientas Datos	Ve <u>n</u> tana <u>?</u>						Escriba una pregunta	×
: 🗋 🚅 🛛		1 🕰 I 🌮 📖 I X 🖬	😤 = 🛷 🔊 = (× - 😣 Σ - 👌	🕺 🕍 🌆 150% 👻 🙆						
Arial	•	.0 - N K § ≣	= = 🔤 🕎	% 000 % 🖋 🗐	E 🖅 🔛 • 💩 • 🗛 • 📗						
H65	-	f.									
	А	В	С	D	E	F	G	Н		J	К 🗖
60											
61											
62			Fomulas d	el trabajo de	expansión para la	as diversas ecu	aciones				
63											
64		V ₂		Va i		V ₂	,				
65	w _{ideal} =	$RT \ln \frac{2}{V_1}$		(Ι	T a a	$\mathbf{w}_{\mathbf{w}} = \mathbf{i} - \mathbf{k}$	$\frac{2T}{Exp} = \frac{a}{2}$	dV	1		
66		•1	W _{VanderWa}	$ais = \int \left \frac{1}{V} \right $	$\frac{-h}{V^2} aV$	$\int_{V}^{V} Dieterici$	- b - r (R1	v , T	.ä		
67			-	V_1	<i>U V</i>)						
68											
69		Fomulas	de los rectár	iquios y tran	ecios nara la inter	aración de las d	iversas ecuar	iones			
70		i onuus ,		iguios y trup	colos para la integ	gradion de las a		None5			
71											
72		rectángulos			tranecios						
72		rectangulos			li apecios						
73		_1		Г., г	27 _1						
74	$I = \Lambda h^{\frac{n}{2}}$	$\frac{1}{2} f(x_{i} + f) + \frac{1}{2}$	1 (2) AB 1	$I = \frac{\Delta h}{h}$	$(x_{i}) + 2\sum_{i=1}^{n} f(x_{i})$	$+i\Lambda h$) + $f(x_{a})$	n				
75		-0	1/ 2/Bil	2	$(x_1) + 2 \sum_{i=1}^{n} j(x_1)$	$+ i \Box i i j + j + j + j + j + j + j + j + j +$	′				
70		-•		L	8-1	1					
70											
78				Man	den Mie ele			Distanta			
79	79 IDEAL		-	Van	der vvaais		44.0500	Dieterici			
80 10	80 16,937745 at.L			10,061	at.L		11,2599	at.L			
81											
82											
83											
84											
85	Gasos Reals	ļ									
Dibuio -	Autoformas	· \ \ □ 0 8 .	al 😷 🖪 🗔 🔕	•	= ₹]]						<u></u>
Licto					····· +						

El detalle interno del cálculo de las tres integraciones viene dado en el cuadro siguiente:

🔀 Microsoft E	cel - Int.Numerica.xls					_ 8 ×
🕙 Archivo	Edición Ver Insertar Eormato Herra	amientas Datos Ve <u>n</u> tana <u>?</u>			Escriba una pr	egunta 🔹 🖬 🗙
: 🗋 🞽 📕	💪 🚑 🎯 💪 💝 📖 👗 ங 🛝	$\neg \checkmark \checkmark \neg \land \land \bigotimes \Sigma \neg \underset{Z}{\wedge} \underset{X}{\wedge} $	🗼 🔛 150% 🕒 🔞 💂			
Arial	• 10 • N K § 🗐 🖷	= 🔄 🛒 % 000 % 🕺 🗊 🕯	🗐 🗉 • 🌭 • 📥 • 🥛			
C71	▼ fx					
	В	C	D	E	F	<u> </u>
78						
79						
80						
81						
82						
83						
84				IDEAL		
85			=R*T*LN(2)	at.L		
86			. ,			
87						
88			V	an der Waals		
89			=(hh/2)*(E26+E36+2*S	lat.L		
90			(
91						
92				Dieterici		
93			=hh*SUMA(H26·H35)	at l		
94						
95						
96						
97						
08						
00						
100						
100						
101						
102						
	sos Reals					► ►
Dibujo 🕶 🔓	Aytoformas 🔹 🔪 🔽 🔿 🔠 ᆀ 🔅	े 🛽 🖉 🖄 • 🚄 • 📥 • 🚍 🖷	:≓ ■ ■]			
Listo						

Como problema complementario, el estudiante podría documentarse en la web sobre otras ecuaciones de estado para el gas real, así como otras fórmulas de integración numérica y extender el estudio presentado en este apartado.

4. Aplicación de métodos iterativos en la resolución de problemas

El objetivo del presente capítulo es la aplicación de la hoja de cálculo MS EXCEL[®] en la determinación del pH de disoluciones de ácidos débiles mono y polipróticos, así como la construcción de los correspondientes diagramas que muestran la concentración de las distintas especies en disolución frente al pH. Como veremos, a la hora de determinar el pH de manera exacta, incluso en el caso más sencillo del ácido débil monoprótico, las ecuaciones de balance y equilibrio dan lugar a una polinomio de grado mayor que dos igualado a cero, polinomio cuya variable independiente es la concentración de protones, $[H^+]$. El valor del pH es el menos logaritmo de una de las raíces de este polinomio (la única real, positiva y con sentido químico). Las raíces de este polinomio de grado mayor que dos no pueden determinarse por fórmula, como en el caso de polinomios de orden uno y dos, sino que se requiere del uso de técnicas de cálculo numérico para poder encontrarlas. Antes pues de entrar al detalle de los problemas de interés químico (que es nuestro objetivo primordial) incluimos dos apartados breves en los que mostraremos cómo implementar en una hoja de cálculo un par de métodos de cálculo numérico de las raíces de una ecuación. El fundamento matemático de ambos métodos se recoge en el apartado 11.3 de los apéndices. Nos referimos al método iterativo simple y al de Newton. En el apartado 10.2 se incluye un tercer método para esta misma finalidad, el llamado método de la bisección. Este último método requiere más esfuerzo de cálculo que los que presentamos aquí, pero nunca falla. Por eso debe emplearse cuando los otros métodos no aciertan a encontrar las soluciones, cosa que en la práctica rara vez sucede (y cuando es el caso, como se detalla en el apartado 11.3, lo podemos prever). Es decir, sabemos a priori en qué condiciones estos métodos más rápidos pueden fallar y, por tanto, cuándo debemos buscar una alternativa en la bisección. Para más detalles al respecto, el lector debe acudir a la sección 11.3. Ahora nos limitaremos a mostrar cómo podemos plasmar el método iterativo simple y el de Newton en una hoja de cálculo.

4.1. El método iterativo simple

En el <u>capítulo 2</u> hemos estudiado las posibilidades del EXCEL[®] para encontrar las raíces de una función gráficamente. El procedimiento no era el mejor para obtener soluciones con una alta precisión, pero sí era extremadamente útil para encontrar, sin demasiado esfuerzo, todas soluciones aproximadas en que podamos estar interesados.

Los métodos iterativos, tanto el iterativo simple que presentamos en esta sección como el de Newton que desarrollaremos en la siguiente, hacen lo contrario: si tenemos una idea aproximada de por donde se encuentra la raíz (o sea, si disponemos de una raíz con escasa precisión) son capaces de mejorar la precisión sin demasiado esfuerzo adicional. Por este motivo, la combinación de la resolución gráfica (como método para obtener aproximaciones groseras a las soluciones) con los métodos iterativos (que a partir de estas aproximaciones groseras logran unas soluciones muy precisas) es práctica habitual.

Vamos a explicar cómo trabajar con este método en un ejemplo. Supongamos que queremos encontrar las raíces de la función seno(x). En este caso, podemos obviar la etapa inicial de representar la función para ver

por donde aparecen las raíces, puesto que por tratarse de un ejercicio académico ya sabemos de antemano que una solución se encuentra alrededor de x = 3.

Como se expone en la sección <u>11.3</u>, para encontrar las raíces de una función y, en particular, de la función seno(x), el método iterativo simple construye una nueva función f(x) = seno(x) + x. Puesto que cuando x_0 es una raíz de seno(x) sucede que $seno(x_0)=0$, también deberá suceder que $f(x_0)=x_0$. Por tanto, en lugar de buscar el valor de la variable que anula la función, buscamos aquel valor de la variable para el que la función es igual al mismo. Esto es, buscamos el punto de corte entre la función y la diagonal del primer cuadrante (ver gráfica en sección <u>11.3</u>). Y esto lo traducimos ahora a un procedimiento numérico iterativo: Partimos de un valor x_0 y calculamos $f(x_0)$. Si x_0 fuese la raíz entonces $f(x_0) = x_0$. Pero como no lo es, lo que sucede es que obtenemos otro valor distinto: $f(x_0) = x_1$. Pero no desesperamos. Lo que hacemos ahora es tomar x_1 como punto de partida, haciendo la hipótesis que es mejor que el punto de partida anterior y calculamos $f(x_1)$, con la esperanza que coincida con x_1 . Éste no suele ser el caso, sino que obtenemos un nuevo valor al que llamamos x_2 y calculamos $f(x_2)$ esperando la coincidencia de valores, que de nuevo no sucede. Sin embargo, si el método converge, vemos que cuando hacemos iteraciones los sucesivos valores x_i y $f(x_i)$ están más y más cercanos. Repitiendo el proceso varias veces logramos que sean iguales, dentro de la precisión deseada.

Antes de proceder a implementar este procedimiento en la hoja de cálculo mostramos en una misma gráfica la diagonal del primer cuadrante g(x) = x y la función f(x) = seno(x)+x, con objeto de mostrar el punto de corte entre ambas para el valor de la raíz $x = \pi = 3.14159$... Para ello utilizamos la técnica que aprendimos en el apartado 3.1 de resolución gráfica de ecuaciones, y representamos ambas funciones en el intervalo adecuado. Podemos ver que el punto de corte que buscamos está entre 3 y 3.5, tal como marca la flecha.

Product Decision by Spectra Domain Libraraments Dagle Vegans 2 Conclusion program 1 Conclusion program 1	Micro	soft Excel - Capitulo3EX	CEL3							_ 8	×
A B C D E F G H I 1 A B C D E F G H I 1 A B C D E F G H I 2 d = 0,5	Arct	hivo <u>E</u> dición ⊻er Inse	ertar Eormato Herramien	tas Datos Ve <u>n</u> tana	2				Escriba una	pregunta 🔹 🗕 🗗 :	×
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	i 🗅 😅		<u>%</u> № @ •	CH 👻 🧶 Σ 🕶 🔀 🤶	170%	• 🍄 🛛 Arial	• 10 • ₩ <i>K</i> <u>S</u>		€ % 000 *08 ₊08 €⊯	💷 · 🖄 · 🛆 ·	-
A B C D E F G H I 1	B1	1 222 420 420 2 1 8 - ≴	" G G C C C C C C C C C C	gambios Terminar revisió	in 🖕						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		А	В	С	D	E	F	G	Н	I 1	•
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1										
3 $f(x)=x+sen(x)$ $g(x)=x$ 5 0.5 0.979426 0.5 6 1.0 1.841471 1.0 7 1.5 2.497495 1.5 8 2.0 2.909297 2.0 9 2.5 3.098472 2.5 10 3.0 3.141120 3.0 12 4.0 3.243198 4.0 13	2	d =	0,5								
4 x f(x)=x+sen(x) g(x)=x 5 0,5 0,979426 0,5 6 1,0 1,841471 1,0 7 1,5 2,497495 1,5 8 2,0 2,909297 2,0 9 2,5 3,098472 2,5 10 3,0 3,141120 3,0 11 3,5 3,149217 3,5 12 4,0 3,243198 4,0 15	3										
5 0.5 0.979426 0.5 6 1.0 1.841471 1.0 7 1.5 2.999297 2.0 9 2.5 3.098472 2.5 3.0 3.141120 3.0 11 3.5 3.149217 3.5 12 4.0 3.243198 4.0 13 3.243198 4.0 1.5 0.5 16 0.5 0.0 0.5 1.0 1.5 0.0 18 10 0.5 0.0 0.0 0.5 <t< td=""><td>4</td><td>×</td><td>f(x)=x+sen(x)</td><td>g(x)=x</td><td></td><td>18 Annoving</td><td>aián al intar</td><td>nala</td><td><u>]</u></td><td></td><td></td></t<>	4	×	f(x)=x+sen(x)	g(x)=x		18 Annoving	aián al intar	nala	<u>]</u>		
6 1,0 1,841471 1,0 7 1,5 2,497495 1,5 8 2,0 2,999297 2,0 9 2,5 3,098472 2,5 10 3,0 3,141120 3,0 12 4,0 3,243198 4,0 13	5	0,5	0,979426	0,5		I* Aproxima	cion al inter	valo			
7 1,5 2,497495 1,5 8 2,0 2,909297 2,0 9 2,5 3,098472 2,5 10 3,0 3,141120 3,0 11 3,5 3,149217 3,5 12 4,0 3,243198 4,0 15	6	1,0	1,841471	1,0	4,5	- F (v) - v					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	1,5	2,497495	1,5	4,0 -	- I(x)-x	+sen(x)	<u>_</u>			
9 2,5 3,098472 2,5 10 3,0 3,141120 3,0 11 3,5 3,149217 3,5 12 4,0 3,243198 4,0 13	8	2,0	2,909297	2,0	3,5 -	g(x)=>	¢ .	× .			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	2,5	3,098472	2,5	3,0 -	-	· · · ·	• •			
11 3,5 3,149217 3,5 12 4,0 3,243198 4,0 13	10	3,0	3,141120	3,0	2.5	-					
12 4,0 3,243198 4,0 13	11	3,5	3,149217	3,5	2.0						
13 14 1.0	12	4,0	3,243198	4,0	15-	. / /					
14 0.5 0.5 0.6 0.5 0.0 0.0 0.5 0.0 <td>13</td> <td></td> <td></td> <td></td> <td>1.0</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>	13				1.0	-					
15 <td>14</td> <td></td> <td></td> <td></td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td>	14				0.5					-	
16 0.0 0.5 1-1 <td>15</td> <td></td> <td></td> <td></td> <td>0,5</td> <td></td> <td>↓</td> <td></td> <td></td> <td></td> <td></td>	15				0,5		↓				
17 0.3 0.3 1.3 1.3 1.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0	16				0.0 -	0 05 10 15	20 25 30	35 40 45			
18	17					0 0,0 1,0 1,0	2,0 2,5 5,0	3,5 4,0 4,5			
19 19 19 10 10 10 20 20 20 20 20 20 21 22 20 20 20 23 24 25 26 26	18)		
20 20 20 21 22 22 23 24 25 25 26	19										
21 21 22 23 24 26 25 26	20										
22 23 24 25 26 27	21										
23 24 25 26 27	22										
24	23										
	24										
26	25										
	26										
	27										
	28				, , .						-
4 (4) Hojai / Hoja2 / Hoja3 / Hoja4 / Hoja5 / Hoja5 / Hoja7 / Hoja8 / Hoja9 / Hoja10 / Hoja11 / Hoja12 / Hoja13 / Hoja14 / Hoja15	Listo	Hoja1 / Hoja2 / Hoja	₃3 / Hoja4 / Hoja5 / Hoja6	🗶 Hoja7 🗶 Hoja8 🗶 Hoja9	🗶 Hoja10 🗶 Hoja11 🗶 Hoja	12 🗶 Hoja13 🗶 Hoja14 🗶 H	loja15 4			NUM	

Las fórmulas implicadas en la figura anterior las podemos visualizar si acudimos al menú Herramientas>Opciones>Ver y marcamos Fórmulas:

G J. Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7

Micro	osoft Excel - Capitulo3EXCEL3				- 8 2	<
🕘 Are	:hivo Edición ⊻er Insertar Eormato Herram	ientas Datos Ventana <u>?</u>		Escriba un	a pregunta 🔹 🗕 🗗 >	<
i 🗅 🚅	: 🖬 👒 🖾 🖤 X 🖻 🛍 • 🝼 🗠	• ⊂≃ - 🍓 Σ • 靇 ĝ↓ 👬 🛍 🥵 170%	• * Arial • 10 • N K S	≡ = = = = = 🐨 € % ∞ *# .% ∰	: 💷 - 💁 - 🛆 - 1	
1 🛵 🖻	🛚 🕍 🖾 🏷 🖄 🔁 🖏 🙆 🗮 🛠 Responder o	con gambios Terminar revisión 🖕				
В	18 • 12	P	<u> </u>	D		=
1	A	В	C			Ì
2	d =	0.5				
3	-	0,0				
4	×	f(x)=x+sen(x)	a(x)=x	(
5	0.5	=SENO(A5)+A5	=A5			
6	=A5+d	=SENO(A6)+A6	=A6	4.5 T		
7	=A6+d	=SENO(A7)+A7	=A7	4.0 -		
8	=A7+d	=SENO(A8)+A8	=A8	3.5		
9	=A8+d	=SENO(A9)+A9	=A9	3.0		
10	=A9+d	=SENO(A10)+A10	=A10	3,0		
11	=A10+d	=SENO(A11)+A11	=A11	2,5		
12	=A11+d	=SENO(A12)+A12	=A12	2,0 -	×	
13				1,5 -		
14				1,0 -	•	_
15				0,5 -	-	
16				0,0 +	-++-	
17				0,0	0,5 1,0	
18						
19				<u> </u>		
20						
21						
22						
23						
24						
25						
26						
27						
28						
	Hoja1 / Hoja2 / Hoja3 / Hoja4 / Hoja5 / Hoj	a6 / Hoja7 / Hoja8 / Hoja9 / Hoja10 / Hoja11 / Ho	oja12 / Hoja13 / Hoja14 / Hoja15 🛛	I		-
Listo					NUM	

Para implementar el proceso iterativo simple en la hoja de cálculo escribimos el valor de partida x_0 en una celda y calculamos $x_{1=g}(x_0)$ en la celda contigua. En el grafico siguiente esto se hace en las celdas A2 y B2. A continuación, debajo de x_0 escribimos x_1 , esto es, en la celda A3 escribimos "=B2". Después, arrastramos la celda B2 en la B3. Finalmente, seleccionando A3 y B3 arrastramos hacia abajo tantas celdas como queramos:

Micro	soft Excel - Capitulo3EXCEL3		
📳 Arc	hivo Edición <u>V</u> er Insertar Eormato <u>H</u> erramie	ntas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>	
🗋 🖻 🚔	🖥 🔁 🖨 🖪 🖤 👗 🖻 🛍 • 🝼 🗠 •	🗠 🖙 🍓 Σ 🗕 🔂 🤶 🖓 🖓 170% -	• 🐣 Arial • 10 • N K S
1 🖾 🐿	🗈 🖾 🚾 🐲 🛛 😨 🎭 😥 🗮 🕬 Responder co	n <u>c</u> ambios Ter <u>m</u> inar revisión 🖕	
B	18 ▼ f ≈		
	A	В	C
1			
2	d =	0,5	
3			
4	x	f(x)=x+sen(x)	g(x)=x
5	0,5	=SENO(A5)+A5	=A5
6	=A5+d	=SENO(A6)+A6	=A6
7	=A6+d	=SENO(A7)+A7	=A7
8	=A7+d	=SENO(A8)+A8	=A8
9	=A8+d	=SENO(A9)+A9	=A9
10	=A9+d	=SENO(A10)+A10	=A10
11	=A10+d	=SENO(A11)+A11	=A11
12	=A11+d	=SENO(A12)+A12	=A12
40			

En este caso el método converge muy rápido. Si partimos de un valor 3.0 sólo hacen falta tres iteraciones para conseguir una precisión de nueve decimales, como mostramos en la figura:

🔀 Microsoft Excel - Libro 1									
🖹 Archi	📳 Archivo Edición Ver Insertar Eormato Herramientas Datos Ve <u>n</u> tana <u>?</u>								
🗋 🗁	🖬 🔁 🎒 💽 🖤 🕺 🖿 🛙	🖹 ▼ 🝼 🖗 ∽ ⊂ ♀ 🝓 Σ ▼ 🔂 🛃 🛣 🛍 🐌 200% 🔹 🐉 Arial							
1 ն 🔝	📩 🖾 😘 🏠 🔽 🖏 🖉	Responder con <u>c</u> ambios Ter <u>m</u> inar revisión 🖕							
B4		D(A4)							
	А	В							
1	Х	f(x) = x + seno(x)							
2	3	3,141120008							
3	3,141120008	3,141592654							
4	3,141592654	3,141592654							
5									
6									

Para ver mejor como trabaja el método iterativo podemos empezar el proceso con un valor inicial más grosero, por ejemplo x = I. Como se muestra de manera esquemática en la figura siguiente, con tres iteraciones nos plantamos con un valor muy cercano a 3, que es el punto de partida usado antes. En cuanto al proceso, vemos que se parte de una abscisa $x_0 = I$ y se busca la función, siguiendo la línea que arranca de $x_0 = I$ y sube verticalmente hasta cortar la función. El valor encontrado para la función se reasigna a la variable, cosa que en el dibujo vemos como una flecha horizontal que va de la función a la diagonal. Tenemos pues la nueva abscisa (bajando verticalmente al eje horizontal). Repetimos el proceso calculando de nuevo la función, que supone subir verticalmente desde la diagonal hasta la función, para luego movernos horizontalmente hasta encontrar la diagonal y obtener la nueva abscisa, etc.

Podemos preguntarnos el motivo por el cual no encontramos la raíz x=0 partiendo de x=1, sino que encontramos la raíz $x=\pi$, siendo que x=0 está mucho más cerca de x=1 que de $x=\pi$. Como ya habíamos

anunciado, a veces al método diverge, o sea, se aleja de la solución en vez de acercarse. En la sección <u>11.3</u> mostramos gráficamente y demostramos algebraicamente que siempre que la pendiente de la función en la zona de la raíz sea mayor que la pendiente de la diagonal, el proceso será divergente. O sea, irá mal. La pendiente de la diagonal es la derivada de la función g(x) = x, que vale la unidad para cualquier valor de la coordenada. La pendiente de la función f(x) = seno(x)+x es su derivada f(x)' = cos(x)+1, cuyo valor para la raíz x=0 es 2. Por eso aun cuando nos pongamos en un valor inicial muy cercano al cero (e.g. 0.0001) el proceso iterativo nos llevará a la raíz $x=\pi$, huyendo de la raíz x=0. En estos casos, para encontrar la raíz, debemos acudir a otro método iterativo más robusto, como pueda ser el de Newton que explicamos a continuación o el de la bisección que se discute en la sección <u>10.2</u>.

4.2. El método iterativo de Newton-Raphson

Los fundamentos matemáticos del método de Newton se recogen en el apartado <u>11.3</u> de los apéndices. Nuestro objetivo ahora es ver como podemos implementarlo en una hoja de cálculo. Dicha implementación la llevaremos a cabo en el contexto de un problema concreto de interés químico: el cálculo de la presión total de un equilibrio gaseoso. Consideremos pues el equilibrio en fase gaseosa:

$$A+B \rightleftharpoons C+2D$$

Si llamamos Pa, Pb, $Pc \ y \ Pd$ a las presiones iniciales de los gases antes de reaccionar y llamamos x al incremento de presión que sufre el gas C cuando se alcanza el equilibrio, la siguiente tabla nos resume las presiones en el equilibrio de todas las especies en función de la incógnita x:

	A -	+ B	<i>C</i> +	+ 2D
inicio	Pa	Pb	Pc	Pd
reaccionan	- <i>x</i>	- <i>x</i>	x	2x
equilibrio	Pa-x	Pb-x	Pc+x	Pd+2x

La constante de equilibrio Ke en términos de presiones parciales es pues:

$$Ke = \frac{(Pc+x) \cdot (Pd+2x)^2}{(Pa-x) \cdot (Pb-x)}$$

La presión total del sistema será: Pf = Pa+Pb+Pc+Pd+x. El valor de la incógnita x lo deducimos a partir de la fórmula de la constante de equilibrio, que se nos convierte en un polinomio igualado a cero:

$$P(x) = 4 \cdot x^{3} + (4 \cdot (Pc + Pd) - Ke) \cdot x^{2} + (4 \cdot Pd \cdot Pc + Pd^{2} + Ke \cdot (Pa + Pb)) \cdot x + (Pc \cdot Pd^{2} - Ke \cdot Pa \cdot Pb) = 0$$

La resolución de esta ecuación de grado tres la llevaremos a cabo con el método de Newton. Aunque, como veremos, este método es bastante potente, pues utiliza no sólo la función, sino también su derivada para buscar las raíces, también tiene alguna limitación a tener en cuenta. En efecto, puede ser ineficiente si el valor de la derivada en las cercanías de la solución presenta un valor cercano a cero. En estos casos no

convergerá, y deberemos acudir a algún método alternativo, como por ejemplo el de la bisección, que resulta seguro pero mucho más prolijo si se quiere obtener la solución con muchos decimales.

El método de Newton se fundamenta en la expansión de la función en serie de Taylor truncada en el término de primera derivada. Si llamamos x_0 al valor inicial, que podemos encontrar mediante un método gráfico, y α a la raíz buscada, llamaremos *h* a su diferencia, $h = \alpha - x_0$. Entonces, desarrollamos la función *f*(*x*) cuyas raíces deseamos conocer en serie de Taylor tomando x_0 como *origen* del desarrollo. Si particularizamos la serie para un valor $\alpha = h + x_0$, punto en el cual la función es cero por ser α una de sus raíces, tenemos que:

$$f(\alpha) = 0 = f(x_0 + h) \approx f(x_0) + f'(x_0)h \Longrightarrow h \approx -\frac{f(x_0)}{f'(x_0)}$$

Si tomamos el valor aproximado obtenido para h y lo sumamos a x_0 , en vez de obtener la raíz exacta α obtenemos la aproximación $x_1 = x_0 + h$. Entonces, nos encontramos en una situación similar a la que nos habíamos encontrado antes con el método iterativo simple: x_1 no es la raíz buscada, pero está más cerca de la solución que x_0 . Entonces, repetimos el proceso tomando x_1 en vez de x_0 como origen del desarrollo. Calculamos con ello un nuevo valor para h y se lo sumamos a x_1 con la esperanza de obtener ya la solución α . Pero lo que sucede es que encontramos un valor x_2 que está más cerca de la solución, pero que aun no es la solución buscada con los decimales que queremos. Y el método se itera hasta encontrar la exactitud deseada.

Para poder implementar el método de Newton será necesario el cálculo de la primera derivada, que es este caso es la derivada del polinomio P(x) anterior:

$$P(x)' = 12 \cdot x^2 + (8 \cdot (Pc + Pd) \cdot 2 \cdot Ke) \cdot x + (4 \cdot Pd \cdot Pc + Pd^2 + Ke \cdot (Pa + Pb))$$

Asimismo, debemos especificar unas condiciones iniciales para el sistema gaseoso y el valor de la constante de equilibrio. Por ejemplo:

Diseñamos la hoja EXCEL[®] para efectuar un estudio preliminar de la función, con el objeto de visualizarla y poder seleccionar un buen punto de partida para las iteraciones. Los parámetros adecuados para visualizar la zona de la solución se han determinado utilizando la técnica de resolución gráfica de ecuaciones, como viene detalladamente explicado en la sección <u>3.1</u>. No entramos ahora pues en más detalles al respecto. El resultado lo mostramos en la figura:

E3 Mic	21 Microsoft Even a Control of Even a Control of Even a										
- (B)	🕼 Archivo Edición Ver Insertar Eormato Herramientas Datos Vergiana 2 Eoriba una pregunta 👻 🕹 X										
	□ ☞ 晶 勉 母 Δ ♡ / & 昀 ඬ + ♂ ♀ · ♀ / 逸 Σ + 蹋 封 舏 幽 栂 140% + ? Arial										
1 2 2	🤄 🏥 🎥 🖉 🎭 🏂 📝 🖏 🔁 💘 Responder con gambios Terriginar revisión										
	15 👻	fx									
	A	В	С	D	E	F	G	н	I	J	K
1											
2					(Pc*Pd^2)						
3	REACCION:	A + B = C	C + 2D	Ke =	((Atm.)					
4					(Pa*Pb)						
5											
6											
7											
8	FUNCION: 4	*X^3+(4*(Pc+	-Pd)-Ke)*X^2+	(4*Pd*Pc+P	d^2+Ke*(Pa	+Pb))*X+(Pc*P	d^2-Ke*Pa*`Pk)			
9											
10	DERIVADA:	12*X^2+(8*(Pc+Pd)-2*Ke)	*X+(4*Pd*P	c+Pd^2+Ke*	(Pa+Pb))					
11											
12											
13			_								
14	CONDICION	ES INICIALE	s								
15											
16											
17	Pa(0)	Pb(0)	Pc(0)	Pd(0)	Ke		P(TOTAL)				
18	1	2	1	0	1		4,408663				
19			(Anr	ovimación	a la raía) —				
20				Apr	Oximación	a la l'al2					
21		B ()		100	₹ ^{10,0} T						
22	X	P(x)			8,0 +	*					
23	-1,000	-6,000			6,0 +						
24	-0,750	-4,250			4.0 +	1					
25	-0,500	-3,250			201	_					
26	-0,250	-2,625			. ^{2,0} T	× .					
21	0,000	-2,000	1.5	10 1		0.5 1.0	1.5				
28	0,250	-1,000	-1,5	-1,0 -1	-2.000	0,0 1,0	1,0				
29	0,500	0,750			-4,0 +		x				
30	0,750	3,625			-6,0 +						
31	1,000	8,000			-e n 1						
32	d	0.25			-0,0						
33	a	0,25	<u> </u>								
		(11-2-0) (11-2-4) (11-2)	- Course Course Co	the future for	-10 (11-1-11 (11-1	10 (11-1-10 (11-1-1-	(united to the second s				
lieto.	Hoja1 / Hoja2 /	< Ноја3 ∠ Ноја4 ∠ Ној	a5 🗸 Hoja6 🔏 Hoja7 🔏 H	1оја8 🗶 Ноја9 🗶 Ној	alu 🗶 Hojall 🗶 Hoj.	a12 / Hoja13 / Hoja14 /	(Hoja15 •			50.1	

Las fórmulas utilizadas en la representación gráfica anterior se muestran en la siguiente figura:

El siguiente paso será ya programar la hoja de cálculo para aplicar el método de Newton. Utilizaremos como inicio de las iteraciones un valor cercano a la solución, deducido por inspección visual de la representación gráfica antes realizada. Aunque podríamos hacer una mejor propuesta, tomaremos el valor 0.25 para ver mejor la convergencia del proceso.

La siguiente figura muestra cómo se ha diseñado la hoja para la aplicación del método de Newton: En una primera línea escribimos el punto de inicio, el valor de la función y el de la derivada en dicho punto, y finalmente el valor del incremento h. En la gráfica anterior esto se ha escrito en las celdas B41-E41. Debajo del punto de inicio x_0 escribimos la nueva propuesta $x_1 = x_0 + h$, que plasmamos en la celda B42 como =B41+E41. Seleccionamos las celdas C41-E41 y arrastramos una fila. Después seleccionamos B42-E42 y arrastramos tantas filas como iteraciones deseamos realizar:

A partir de la solución encontrada, que reconocemos porque se ha hecho constante el valor de la columna B41-B48, podemos determinar la presión final aplicando la fórmula

$$Pf = Pa + Pb + Pc + Pd + x$$

en la celda G18. La hoja final tendría este aspecto:

4.3. Cálculo del pH de una disolución de ácido débil monoprótico

Siguiendo con la aplicación de métodos iterativos para la resolución de problemas, en este apartado programaremos una hoja para el cálculo del pH de un ácido débil monoprótico, lo que nos servirá también para recordar el tratamiento de equilibrios en disolución (es muy recomendable consultar la bibliografía sobre Química General recomendada en el <u>capítulo 12</u>. Bibliografía recomendada).

A diferencia de los ácidos fuertes que se disocian en su totalidad, para el cálculo del pH de disoluciones de un ácido débil debemos tener en cuenta la constante de acidez, que nos va a indicar el grado de disociación del ácido en disolución.

$$HAc \rightleftharpoons H^{+} + Ac^{-}$$
$$Ka = \frac{[H^{+}] \cdot [Ac^{-}]}{[HAc]}$$

Como en el caso del ácido fuerte, habitualmente se utilizan aproximaciones con el objeto de hacer los cálculos más sencillos, y que son útiles dentro de ciertos márgenes de concentración de ácido.

• *l^a Aproximación: sin tener en cuenta el producto iónico del agua*

$$Ka = \frac{[H^+] [Ac^-]}{[HAc]}$$
$$Ka = \frac{x^2}{Ca - x}$$

donde Ca es la concentración inicial de ácido. Trabajando la expresión anterior e igualando a 0 obtenemos una ecuación de 2º grado de fácil resolución:

$$x^2 + Ka \cdot x - Ka \cdot Ca = 0$$

• 2^{a} Aproximación: además, x es despreciable frente a Ca (Ca>>>x)

$$\left[H^+\right] = \sqrt{Ka \cdot Ca}$$

• Sin aproximaciones:

Balance de cargas: $[H^+] = [Ac^-] + [OH^-]$ Balance de masas: $Ca = [HAc] + [Ac^-]$ Producto iónico del agua: $Kw = [H^+] \cdot [OH^-]$

$$Ka = \frac{\left[H^{+}\right] \cdot \left[Ac^{-}\right]}{\left[HAc\right]}$$

$$\left[Ac^{-}\right] = \frac{Ca \cdot Ka}{Ka + \left[H^{+}\right]}$$

Sustituyendo en el balance de cargas:

$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{Ca \cdot Ka}{Ka + [H^{+}]} + \begin{bmatrix} OH^{-} \end{bmatrix}$$
$$\begin{bmatrix} H^{+} \end{bmatrix} = \frac{Ca \cdot Ka}{Ka + [H^{+}]} + \frac{Kw}{[H^{+}]}$$
$$\begin{bmatrix} H^{+} \end{bmatrix}^{3} + Ka \cdot [H^{+}]^{2} - (Ca \cdot Ka + Kw) \cdot [H^{+}] - Ka \cdot Kw = 0$$

Para la resolución del problema, es decir, la determinación de la concentración de protones sin ninguna aproximación, deberemos resolver la ecuación de 3^{er} grado que hemos obtenido.

Para empezar a diseñar la hoja de cálculo podemos introducir las constantes que vamos a necesitar: Kw, que siempre conocemos, y la Ka del ácido débil que estemos estudiando. En ambos casos definiremos la celda con el valor numérico con el nombre de la constante (en la figura B5 y B6). Después podemos introducir en diferentes columnas la concentración de ácido (que gracias a las facilidades del EXCEL[®] puede comprender el intervalo entre 10^{-1} y 10^{-14} M), el –logaritmo de la concentración de ácido, pAHi, el pH aproximado sin tener en cuenta el producto iónico del agua que antes hemos desarrollado, y por último el pH exacto. Para el cálculo de esta última columna necesitaremos aplicar en otra parte de la hoja el método de Newton, como hemos visto en el apartado anterior.

B) drove taken jer jeneter Bonato legislavite and jeneter Bonato jeneter	🕅 Mici	osoft Excel - Capitu	lo4EXCEL3							_ & ×
Column	🖳 A	chivo <u>E</u> dición ⊻er	Insertar Eormato Herramientas Dat	os Ve <u>n</u> tana 2					Escriba una pre	gunta 🔹 🗕 🗗 🗙
Clip Clip Clip C D E F G H I 2 3 Câlculo del pH de una disolución de un acido débil	🗋 🗅 🖬	ê 🖬 🐿 🖾	🏁 🎖 🖻 💼 • 🚿 🗠 • 🖓 • 🎯	s Σ • 🔂 2↓ 🛴 🛍 🛷 150°	% 🔹 🥐 Arial	• 10 •	N K <u>S</u> = =	≡ ⊡ 97 € %	000 *08 ₊08 €≢ €≢	🗆 - 💁 - 📥
A B C D E F G H I 1 3 Cálculo del pH de una disolución de un acido débil	1 🖾 1	12 12 12 12 12	🙄 ங 😥 🖤 Responder con cambios	Terminar revisión 🖕						
A B C D E F G H I I 2 Cálculo del pH de una disolución de un acido débil		516 ¥	<i>≸</i> ∼	6	D	-	-	0		
2 Cálculo del pH de una disolución de un acido débil 3 Cálculo del pH de una disolución de un acido débil 4 5 5 Ka = 1,5E-05 6 6 Kw = 10 Co 7 7 8 7 9 9 11 1,E-01 12 1,E-02 13 1,E-03 13 1,E-04 4 4,4955382 15 1,E-06 16 6 6 6,60264235 17 1,E-08 18 1,E-08 18 1,E-08 18 1,E-09 19 1,E-09 19 1,E-09 10 10,000000 21 1,E-11 11 11,0000003 22 1,E-12 12 12,0000000 23 1,E-13 13 13,0000000 24 1,E-14 14 14,0000000 <	1	A	В	C		E	F	G	н	<u> </u>
Cálculo del pH de una disolución de un acido débit 4 5 Ka = 1,5E-05 6 Kw = 1E-14 7 8 9 10 Co 7 PH(aprox) 11 1,E-01 1.E-02 2 3.4203639 12 1,E-03 3 3.9365328 14 1,E-03 15 1,E-05 16 1,E-06 17 1,E-07 7 7 7 7 7 7 16 1,E-08 18 1,E-08 18 1,E-08 19 1,E-10 10 10,000000 21 1,E-11 11 11,0000000 22 1,E-12 12 1,2-14 14 14,0000000 22 1,E-13 13 13,0000000 23 1,E-13 26										
3 Calculo dei pri de una disolución de un acido debi 4 5 5 Ka = 1,5E-05 6 Kw = 1E-14 7 7 8 7 9 9 10 Co 7 1 11 1,E-01 12 1,E-02 13 1,E-03 13 1,E-03 14 1,E-04 1 1,E-05 15 1,E-06 16 1,E-06 16 1,E-08 17 1,E-08 18 1,E-08 18 1,E-08 18 1,E-08 19 1,E-09 19 1,E-09 10 10 11 11 11,0000003 22 1,E-11 11 11,0000000 21 1,E-13 13 13,0000000 23 1,E-13 24 1,E-14 14 14,0000000 23<	2									
* Ka = 1,5E-05 6 Kw = 1E-14 7	3	Calculo del p	on de una disolución de ur	n acido debii						
3 Nd - 1,0E-03 6 Kw = 1E-14 7 1E-14 1 8 9 9 10 Co pAHi pH(aprox) pH(exacto) 11 1,E-01 1 2,9146139 1 12 1,E-02 2 3,4203639 1 13 1,E-03 3 3,9385328 1 1 14 1,E-04 4 4,4955382 1 1 15 1,E-05 5 5,1635888 1 1 16 1,E-06 6 6,0264235 1 1 19 1,E-08 8 8,0002892 1 1 19 1,E-09 9 9,0000290 1 1 1 20 1,E-11 11 11,0000003 1 1 1 21 1,E-12 12 12,0000000 1 1 1 21 1,E-13 13 13,0000000 1 1 1 22 1,E-14 14 14,000	4	Ka -	1 65 05							
0 NW = 1E-14 7 7 8 9 10 Co pAHi pH(aprox) pH(exacto) 11 1,E-01 1 2,9146139 12 1,E-02 2 3,4203639 13 1,E-03 3 3,9385328 14 1,E-04 4 4,4955382 15 1,E-05 5 5,1635868 16 1,E-06 6 6,0264235 18 1,E-07 7 7,0028668 19 1,E-10 10 10,0000290 20 1,E-11 11 11,0000003 21 1,E-12 12 12,0000000 23 1,E-13 13 13,0000000 25 7 7 7,0024668 7 26 7 7 14 14 14 14,0000000 7 7 21 1,E-14 14 14,000000 7 26 7 7 7 7 27 7 7	5	Ka -	1,52-05							
' PH(aprox) PH(exacto) 11 1,E-01 1 2,9146139 12 1,E-02 2 3,4203639 13 1,E-03 3 3,9385328 14 1,E-04 4 4,4955382 15 1,E-05 5 5,1635868 16 1,E-06 6 6,0264235 17 1,E-07 7 7,0028668 18 1,E-09 9 9,0000290 20 1,E-10 10 10,0000029 21 1,E-11 11 11,0000003 22 1,E-12 12 12,0000000 23 1,E-13 13 13,000000 24 1,E-14 14 14,000000 25	7	KW =	10-14							
0 Co pAHi pH(aprox) pH(exacto) 11 1.E-01 1 2,9146139	0									
Co pAHi pH(aprox) pH(exacto) 11 1,E-01 1 2,9146139	0									
10 10 <th< td=""><td>10</td><td>Co</td><td>n A Hi</td><td>pH(aprov)</td><td>nH(exacto)</td><td></td><td></td><td></td><td></td><td></td></th<>	10	Co	n A Hi	pH (aprov)	nH(exacto)					
11 1 2,4203639 13 1,E-01 1 14 1,E-02 2 13 1,E-03 3 14 1,E-04 4 15 1,E-05 5 16 1,E-06 6 16 1,E-07 7 17 1,E-07 7 18 1,E-08 8 18 1,E-09 9 19 1,E-09 9 20 1,E-10 10 10 10,0000290 21 1,E-11 11 11,0000003 22 1,E-13 13 13,000000 23 1,E-14 14 14 14,000000 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30	11	1 E-01		2 9146139						
12 1, L=02 1 3, 9385328 13 1, E=03 3 3, 9385328 14 1, E=04 4 4, 4955382 15 1, E=05 5 5, 1635868 16 1, E=06 6 6,0264235 17 1, E=07 7 7,0028668 18 1, E=08 8 8,0002892 20 1, E=10 10 10,0000029 21 1, E=11 11 11,0000003 22 1, E=12 12 12,0000000 23 1, E=13 13 13,0000000 24 1, E=14 14 14,0000000 25 26 28 29 30 30 30 30 30 30 30 30	12	1 E 02	2	3 4203639						
13 1, E-03 3 3, 4955322 14 1, E-04 4 4, 4955322 15 1, E-05 5 5, 1635888 16 1, E-06 6 6, 0264235 17 1, E-07 7 7, 0028688 18 1, E-08 8 8, 0002892 19 1, E-09 9 9, 0000290 20 1, E-10 10 10, 0000029 21 1, E-11 11 11, 000003 22 1, E-12 12 12, 0000000 23 1, E-13 13 13, 0000000 24 1, E-14 14 14, 0000000 25	13	1,E-02	2	3 9385328						
1, E-04 4 1, 1, 1, 2, 0, 1 15 1, E-05 5 5, 1635888 16 1, E-06 6 6, 0264235 17 1, E-07 7 7, 0028668 18 1, E-08 8 8, 0002892 19 1, E-09 9 9, 0000290 20 1, E-10 10 10, 0000003 21 1, E-11 11 11, 0000003 22 1, E-12 12 12, 0000000 23 1, E-13 13 13, 0000000 24 1, E-14 14 14, 0000000 25 26 27 28 29 30 30 30 30 30 30 30	14	1,E-03	3	4 4955382						
16 1,E-06 6 6,0264235 17 1,E-07 7 7,0028688 18 1,E-08 8 8,0002892 19 1,E-09 9 9,0000290 20 1,E-10 10 10,0000029 21 1,E-11 11 11,0000003 22 1,E-12 12 12,0000000 23 1,E-13 13 13,0000000 24 1,E-14 14 14,000000 25 26 28 29 30 30 30 30 30 30 30 30	15	1,E-04		5 1635868						
17 1,E-07 7 7,0028668 18 1,E-08 8 8,0002892 19 1,E-09 9 9,0000290 20 1,E-10 10 10,0000029 21 1,E-11 11 11,0000003 22 1,E-12 12 12,0000000 23 1,E-13 13 13,0000000 24 1,E-14 14 14,000000 25	16	1,E-06	6	6.0264235						
18 1,E-03 1 1,0002892 19 1,E-09 9 9,000290 20 1,E-10 10 10,0000029 21 1,E-11 11 11,0000003 22 1,E-12 12 12,000000 23 1,E-13 13 13,000000 24 1,E-14 14 14,000000 25 26 27 28 29 30 30 30 30 30 30 30 30 30 30 30	17	1,E-00	7	7.0028668				·		
19 1,E-00 9 9,0000290 20 1,E-10 10 10,0000029 21 1,E-11 11 11,0000003 22 1,E-12 12 12,000000 23 1,E-13 13 13,000000 24 1,E-14 14 14,000000 25 26 26 27 28 29 30 30 30 30 30 30 30 30 30 30	18	1 E-08	8	8 0002892						
20 1,E-10 10,0000029 21 1,E-11 11 11 11,000003 22 1,E-12 12 12,000000 23 1,E-13 13 13,000000 24 1,E-14 14 14,000000 25 26 28 29 30 30 30 30 30 30 30 30	19	1 E-09	9	9,000290						
21 1,E-11 11 11,0000003 22 1,E-12 12 12,000000 23 1,E-13 13 13,000000 24 1,E-14 14 14,000000 25 26 27 28 28 29 30 30 30 31 10,000000 14	20	1 F-10	10	10 0000029						
22 1,E-12 12,0000000 23 1,E-13 13 13 13,000000 24 1,E-14 14 14,000000 25 26 26 27 28 29 30 30 30 30 31 10 Math Hoga / Hog	21	1.E-11	11	11.000003						
23 1,E-13 13 13,0000000 24 1,E-14 14 14,000000 25 26 26 27 26 28 29 29 30 24 14 24 29 29 29 29 30 14 20 14 29 29 29 20 30 14 14 14 14 14,000000 14 14 15 14 14 14,000000	22	1.E-12	12	12.0000000						
24 1,E-14 14 14,0000000 25 26 27 27 28 28 29 30 30 31 Hojai / Hojaž	23	1.E-13	13	13.0000000						
25 26 27 28 29 30 30 30 30 31 34 34 34 34 34 34 34 34 34 34	24	1.E-14	14	14,0000000						
26 27 28 29 30 30 30 30 31 34 34 34 34 34 34 34 34 34 34	25			, í						
27 28 29 30 30 31 34 34 34 34 34 34 34 34 34 34	26									
28 29 30 31 34 Hoja1 Hoja2 (Hoja3 / Hoja2 (Hoja2 (Hoja2 / Hoja2 / Hoja2 (Hoja2 / Hoja2 (Hoja2 / Hoja2 / Hoja2 (Hoja2 / Hoja2 (Hoja2 / Hoja2 (Hoja2 / Hoja2 / Ho	27									
	28									
30 24 K ↔ F) Hoja1 (Hoja2 (Hoja2 / Digujo * ▷ Autoformar > > > ○ ○ ④ 4 ② 0 ▲ 2 × △ × = = = = = = .	29									
	30									
	21	N Hoja 1 / Hoja2	/ Hola3 /			141				▼ ▶
	Dibujo	- 🗟 Autoformas -		» • <u> </u>	7.					

Las fórmulas serían las siguientes:

🔀 Microsoft Excel - Capitulo4EXCEL3									
😰 gychivo Edición Ver Insertar Eormato Herramientas Datos Vegtana Z Escriba una pregunta 💽 🗸 🖉 🗙									
D ☞ 🖬 勉 毎 Q ∜ X 昀 ଈ + ♂ り・⇔ - 🍓 Σ + 砲 外 科 🟙 🕢 150% ♥♥ Anal 💿 ♥ 10 ♥ 🖬 X S 田 吉 田 写 € % ∞ % % ほ ほ 日・塗・▲・↓									
👔 🔄 🖄 🐼 🐼 🔂 🗒 🔁									
	316 🕶 🏂	-	-	_					
	A	В	С	D	<u> </u>				
1									
2									
3	Calculo del pH de una dis								
4									
5	Ka =	=1,5*10^(-5)							
6	Kw =	=10^(-14)							
8									
9									
10	Co	pAHi	pH(aprox)	pH(exacto)					
11	0,1	=-LOG(A11)	=-LOG((-Ka+(Ka^2+4*Ka*A11)^(1/2))/2)						
12	=A11/10	=-LOG(A12)	=-LOG((-Ka+(Ka^2+4*Ka*A12)^(1/2))/2)						
13	=A12/10	=-LOG(A13)	=-LOG((-Ka+(Ka^2+4*Ka*A13)^(1/2))/2)						
14	=A13/10	=-LOG(A14)	=-LOG((-Ka+(Ka^2+4*Ka*A14)^(1/2))/2)						
15	=A14/10	=-LOG(A15)	=-LOG((-Ka+(Ka^2+4*Ka*A15)^(1/2))/2)						
16	=A15/10	=-LOG(A16)	=-LOG((-Ka+(Ka^2+4*Ka*A16)^(1/2))/2)						
17	=A16/10	=-LOG(A17)	=-LOG((-Ka+(Ka^2+4*Ka*A17)^(1/2))/2)						
18	=A17/10	=-LOG(A18)	=-LOG((-Ka+(Ka^2+4*Ka*A18)^(1/2))/2)						
19	=A18/10	=-LOG(A19)	=-LOG((-Ka+(Ka^2+4*Ka*A19)^(1/2))/2)						
20	=A19/10	=-LOG(A20)	=-LOG((-Ka+(Ka^2+4*Ka*A20)^(1/2))/2)						
21	=A20/10	=-LOG(A21)	=-LOG((-Ka+(Ka^2+4*Ka*A21)^(1/2))/2)						
22	=A21/10	=-LOG(A22)	=-LOG((-Ka+(Ka^2+4*Ka*A22)^(1/2))/2)						
23	=A22/10	=-LOG(A23)	=-LOG((-Ka+(Ka^2+4*Ka*A23)^(1/2))/2)						
24	=A23/10	=-LOG(A24)	=-LOG((-Ka+(Ka^2+4*Ka*A24)^(1/2))/2)						
25									
26									
27									
28									
29									
30									
21	H Hoja1 / Hoja2 / Hoja3 /	1			• • •				
Dibujo	🔹 🗟 🛛 Autoformas 🔹 🔪 📜 🔘 🔛	🖪 🔅 🗵 🔛 💁 - 🚄 - 📥 - 🚍 🚍	: 🛄 💣 🗸						

El primer paso para la aplicación del método de Newton consiste, como siempre, en estudiar la función para decidir el inicio de las iteraciones. Para ello, diseñamos la hoja de cálculo siguiente, donde representamos el polinomio de tercer grado obtenido anteriormente frente a la concentración de protones, desde 0 a 0.0016 M. Se supone una concentración inicial de ácido de 0.1 M. La traducción al formato EXCEL[®], habiendo definido con anterioridad las celdas que contienen la *Ka* y la *Kw*, es:

Las fórmulas serían las siguientes:

E P	icrosoft Excel - Capitulo4E	XCEL3						_ & ×	
8	Archivo Edición Ver In	sertar Eormato Herramientas Datos Ventana 2					Escriba una pregunta	8 ×	
- D	□ は 目 助 母 D が 以 国 晩 ・								
25-				• •					
-		Copiar Copiar	•						
	K45 V Jx	D		0	B	E	F		
28	A	B		<u>ر</u>	0	C	F	<u> </u>	
29	NEWTON	RAPSON							
30									
31									
32									
33		POLINOMIO:	[H+]^3 + Ka	[H+]^2 - (Kw + KaCo)[H+					
34		DEDINAR A	000000000000000000000000000000000000000						
35		DERIVADA:	3(H+)/2 + 2Ka	[H+] - (KW + KaCo)					
37									
38									
39									
40									
41	[H+]	P([H+])				DOL N			
42	0	=(A42)^3+Ka*(A42)^2-(Kw+Ka*Co)*(A42)-Ka*Kw				P([0+])			
43	=A42+0,0001	=(A43)^3+Ka*(A43)^2-(Kw+Ka*Co)*(A43)-Ka*Kw	2,E-09 T						
44	=A43+0,0001	=(A44)^3+Ka*(A44)^2-(Kw+Ka*Co)*(A44)-Ka*Kw							
40	= 445+0.0001	$=(\Delta 45)^{3}+Ka^{*}(\Delta 45)^{2}-(Kw+Ka^{*}Co)^{*}(\Delta 45)-Ka^{*}Kw$	2,E-09 -						
47	=A46+0.0001	=(A47)^3+Ka*(A47)^2-(Kw+Ka*Cn)*(A47)-Ka*Kw					/		
48	=A47+0.0001	=(A48)^3+Ka*(A48)^2-(Kw+Ka*Co)*(A48)-Ka*Kw	1,E-09 -						
49	=A48+0,0001	=(A49)^3+Ka*(A49)^2-(Kw+Ka*Co)*(A49)-Ka*Kw							
50	=A49+0,0001	=(A50)^3+Ka*(A50)^2-(Kw+Ka*Co)*(A50)-Ka*Kw	5,E-10 -						
51	=A50+0,0001	=(A51)^3+Ka*(A51)^2-(Kw+Ka*Co)*(A51)-Ka*Kw							
52	=A51+0,0001	=(A52)^3+Ka*(A52)^2-(Kw+Ka*Co)*(A52)-Ka*Kw	0,6+00	- 0.0002 0	1 1 0004 0.0006 0.0	1 1 1	0.0012 0.0014	0.0016	
53	=A52+0,0001	=(A53) ^A 3+Ka^(A53) ^A 2-(Kw+Ka^U0)^(A53)-Ka^Kw	65.10	0,0002 0	,0004 0,0000 0,0	0,001	0,0012 0,0014	0,0010	
55	=454+0.0001	=(A54)^3+Ka (A54)^2-(Kw+Ka CU) (A54)-Ka Kw =(A55)^3+Ka*(A55)^2-(Kw+Ka*Co)*(A55)-Ka*Kw	-5,5-10						
56	=A55+0.0001	=(A56)^3+Ka*(A56)^2-(Kw+Ka*Cn)*(A56)-Ka*Kw	-1.E-09						
57	=A56+0.0001	=(A57)^3+Ka*(A57)^2-(Kw+Ka*Co)*(A57)-Ka*Kw							
58	=A57+0,0001	=(A58)^3+Ka*(A58)^2-(Kw+Ka*Co)*(A58)-Ka*Kw							
59									
60									
61									
62									
64									
65									
66									
67									
68									
69									
70									
72									
73									
74								-	
14 4	Hoja1 Hoja2 Hoja2	ja3 /						<u> </u>	
Dib	uio 🔹 📐 🛛 Autoformas 🔹 🔪								
			· · · · · · · · ·						

El polinomio, por ser de tercer grado, tendrá tres raíces. Como se puede observar en la gráfica solo una de ellas es positiva, que es la que nos interesa. Con el objeto de que el método de Newton no converja hacia una de las soluciones no deseadas (negativas) seleccionamos como punto inicial para las iteraciones un punto que este a la derecha de la raíz buscada (por ejemplo 0.0015), ya que, vista la forma de la gráfica, de esta manera perseguimos la convergencia hacia esta raíz.

Para cualquier otro valor de concentración inicial, puesto que será menor a 0.1, la concentración de protones será menor, por lo que 0.0015 también constituirá un buen punto de partida, si bien se necesitarán más iteraciones para alcanzar la solución. No obstante, como se ha comentado anteriormente, este contratiempo se solventa fácilmente en EXCEL[®] *arrastrando* unas filas más las fórmulas.

El diseño de la hoja para ejecutar el método de Newton se ha visto en un apartado anterior. En este caso se necesita, en primer lugar, definir una celda como Co con la concentración inicial de ácido (B62), y calcular los incrementos -P(x)/P'(x) a partir de las formulas correspondientes:

Polinomio: =(A114)^3+Ka*(A114)^2-(Kw+Ka*Co)*(A114)-Ka*Kw Derivada: =3*(A114)^2+2*Ka*(A114)-(Kw+Ka*Co)

Como se puede observar en la hoja que se presenta a continuación unas pocas iteraciones son suficientes, en este caso para llegar a una solución (concentración de protones). Sin embargo, para concentraciones más diluidas serán necesarias más iteraciones. En cuyo caso, para calcular el pH en la celda G66, se toma la concentración de protones de la celda A93.

<u>R</u> ∃ ►	Kierosoft Excel - Capitulo4EXCEL3										
	🚇 Archivo Edición Yer Insertar Eormato Herramientas Datos Ventana 2 - 🗗 🗙										
	😂 🖬 🔁 🖾 🖤	X = m = √ ∽ + ∽ - (A - (B Σ + R 2 ↓ X ↓	🛍 🚯 100% 🖃 🌺 Arial	• 10 • N K S	= = = 🖬 🦻 €	% 000 *.8 .08 €≣ €	= - <u>ð</u> - <u>A</u>				
26-		Ra Personder con cambios Terminar revisión									
-											
	A	B	C C	D	F	F	6 =				
73		0	č	U	L		_ _				
74											
75											
76	Co =	0,1				Pto. inicial:	0,0015				
77											
78											
79		B()	B 14 A				10000000				
80	x 0.0015	P(x)	P (x)	n=-P(x)/P (x)		рн=	=-LUG(A107)				
82	=481+D81	=(AB7)*3+Ka (AB7)*2-(Kw+Ka*Co)*(AB7)-Ka Kw	$=3*(\Delta 87)*2+2*Ka (\Delta 87)*(Kw+Ka C0)$ =3*($\Delta 87)*2+2*Ka*(\Delta 87)*(Kw+Ka*Co)$	=-882/082							
83	=A82+D82	=(A83)^3+Ka*(A83)^2-(Kw+Ka*Co)*(A83)-Ka*Kw	$=3^{(AB3)^{2+2}Ka^{(AB3)}(Kw+Ka^{(C0)})}$	=-883/083							
84	=A83+D83	=(A84)^3+Ka*(A84)^2-(Kw+Ka*Co)*(A84)-Ka*Kw	=3*(A84)*2+2*Ka*(A84)-(Kw+Ka*Co)	=-B84/C84							
85	=A84+D84	=(A85)*3+Ka*(A85)*2-(Kw+Ka*Co)*(A85)-Ka*Kw	=3*(A85)*2+2*Ka*(A85)-(Kw+Ka*Co)	=-B85/C85							
86	=A85+D85	=(A86)^3+Ka*(A86)^2-(Kw+Ka*Co)*(A86)-Ka*Kw	=3*(A86)^2+2*Ka*(A86)-(Kw+Ka*Co)	=-B86/C86							
87	=A86+D86	=(A87)^3+Ka*(A87)^2-(Kw+Ka*Co)*(A87)-Ka*Kw	=3*(A87)^2+2*Ka*(A87)-(Kw+Ka*Co)	=-B87/C87							
88	=A87+D87	=(A88)^3+Ka*(A88)^2-(Kw+Ka*Co)*(A88)-Ka*Kw	=3*(A88)^2+2*Ka*(A88)-(Kw+Ka*Co)	=-B88/C88							
89	=A88+D88	=(A89)*3+Ka*(A89)*2-(Kw+Ka*Co)*(A89)-Ka*Kw	=3*(A89)^2+2*Ka*(A89)-(Kw+Ka*Co)	=-889/C89							
90	=A89+D89	=(A9U)*3+Ka*(A9U)*2-(Kw+Ka*Co)*(A9U)-Ka*Kw	=3*(A9U)*2+2*Ka*(A9U)-(Kw+Ka*Co)	=-890/090							
91	=A90+D90	=(A91)*3+Ka*(A91)*2-(KW+Ka*Co)*(A91)-Ka*KW	=3"(A91)*2+2"Ka"(A91)-(KW+Ka"C0)	=-B91/C91							
93	=492+D92	$=(A93)^{3}+K_{a}(A93)^{2}-(K_{w}+K_{a}^{*}C_{0})^{*}(A93)_{k}K_{a}^{*}K_{w}$	$=3^{(A92)/2+2}$ Ka $(A92)^{(KW+KaC0)}$ =3*(A93)*2+2*Ka*(A93)_(Kw+Ka*Co)	=-893/093							
94	=A93+D93	=(A94)^3+Ka*(A94)^2-(Kw+Ka*Cn)*(A94)-Ka*Kw	$=3^{(A94)^{2}+2^{(A94)}-(Kw+Ka^{(C0)})}$	=-894/094							
95	=A94+D94	=(A95)^3+Ka*(A95)^2-(Kw+Ka*Co)*(A95)-Ka*Kw	=3*(A95)*2+2*Ka*(A95)-(Kw+Ka*Co)	=-B95/C95							
96	=A95+D95	=(A96)^3+Ka*(A96)^2-(Kw+Ka*Co)*(A96)-Ka*Kw	=3*(A96)^2+2*Ka*(A96)-(Kw+Ka*Co)	=-B96/C96							
97	=A96+D96	=(A97)*3+Ka*(A97)*2-(Kw+Ka*Co)*(A97)-Ka*Kw	=3*(A97)^2+2*Ka*(A97)-(Kw+Ka*Co)	=-B97/C97							
98	=A97+D97	=(A98)*3+Ka*(A98)^2-(Kw+Ka*Co)*(A98)-Ka*Kw	=3*(A98)^2+2*Ka*(A98)-(Kw+Ka*Co)	=-B98/C98							
99	=A98+D98	=(A99)^3+Ka*(A99)^2-(Kw+Ka*Co)*(A99)-Ka*Kw	=3*(A99)^2+2*Ka*(A99)-(Kw+Ka*Co)	=-B99/C99							
100	=A99+D99	=(A100)*3+Ka*(A100)*2-(Kw+Ka*Co)*(A100)-Ka*Kw	=3*(A100)*2+2*Ka*(A100)-(Kw+Ka*Co)	=-B100/C100							
101	=A100+D100	=(A1U1)*3+Ka*(A1U1)*2-(Kw+Ka*Co)*(A1U1)-Ka*Kw	=3*(A101)*2+2*Ka*(A101)-(Kw+Ka*Co)	=-B101/C101							
102	=A107+D107	$=(A102)^{-3+Ka}(A102)^{-2}(Kw+KaC0)(A102)-KaKw$ =(A103)^3+Ka*(A103)^2(Kw+Ka*C0)*(A103)-Ka*Kw	$=3*(A102)^{-2+2}Ka (A102)-(Kw+Ka C0)$ = $3*(A103)*2+2*Ka*(A103)-(Kw+Ka*C0)$	=-B102/C102							
104	=A103+D103	=(A104)*3+Ka*(A104)*2-(Kw+Ka*Co)*(A104)-Ka*Kw	$=3^{*}(A1\Pi 4)^{*}2 + 2^{*}Ka^{*}(A1\Pi 4) - (Kw + Ka^{*}Cn)$	=-B104/C104							
105	=A104+D104	=(A105)*3+Ka*(A105)*2-(Kw+Ka*Co)*(A105)-Ka*Kw	=3*(A105)*2+2*Ka*(A105)-(Kw+Ka*Co)	=-B105/C105							
106	=A105+D105	=(A106)*3+Ka*(A106)*2-(Kw+Ka*Co)*(A106)-Ka*Kw	=3*(A106)*2+2*Ka*(A106)-(Kw+Ka*Co)	=-B106/C106							
107	=A106+D106	=(A107)*3+Ka*(A107)*2-(Kw+Ka*Co)*(A107)-Ka*Kw	=3*(A107)^2+2*Ka*(A107)-(Kw+Ka*Co)	=-B107/C107							
108											
109											
110											
111											
112											
114											
115											
116											
117											
118											
119											
14 4	I ► H Hoja1 / Hoja2 / Hoja	ja3 /		•							
Dib	μον $arbige $ Autoformas - $ige \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$										
Con este diseño, el cálculo del pH real para otras concentraciones consiste en sustituir la concentración inicial de ácido en la celda B62 y copiar el resultado en la tabla que hemos diseñado al principio de la hoja. Asimismo, para cada ácido que nos planteen en el problema deberemos cambiar el valor de la constante *Ka* en la celda B5. El resultado final sería en siguiente, incluyendo una gráfica que representa conjuntamente el pH aproximado y el pH real:

4.4. Diagramas concentración/pH de un ácido monoprótico débil

Para ejemplificar la construcción de este tipo de diagramas tomaremos el caso del ácido acético. Imaginemos que introducimos c_0 moles de ácido acético en un matraz de un litro, una cierta cantidad de otro ácido o base y agua hasta enrasar a 1L. Entonces determinamos el pH de la disolución resultante y queremos saber las concentraciones de acético y acetato.

Disponemos de tres datos para resolver un problema de dos incógnitas. Los datos son: la constante K_a de acidez del ácido acético, la concentración inicial c_0 de acético y el pH. Necesitamos pues dos ecuaciones donde aparezcan las dos incógnitas junto con los datos conocidos. Estas ecuaciones son la de la constante de equilibrio y el balance de materia:

$$K_a = \frac{[Ac^-][H^+]}{[AcH]}$$
; $c_0 = [AcH] + [Ac^-]$

De la primera de las ecuaciones podemos despejar la concentración de acético o la de acetato y podemos usar la segunda para dejar una sola incógnita. En efecto:

$$[AcH] = \frac{[Ac^{-}][H^{+}]}{K_{a}} = \frac{(c_{0} - [AcH])[H^{+}]}{K_{a}} \Longrightarrow [AcH] = \frac{c_{0}[H^{+}]}{K_{a} + [H^{+}]} = \frac{c_{0}}{1 + \frac{K_{a}}{[H^{+}]}} = \frac{c_{0}}{1 + 10^{pH - pKa}}$$
$$[Ac^{-}] = \frac{K_{a}[AcH]}{[H^{+}]} = \frac{K_{a}(c_{0} - [Ac^{-}])}{[H^{+}]} \Longrightarrow [Ac^{-}] = \frac{c_{0}K_{a}}{K_{a} + [H^{+}]} = \frac{c_{0}}{1 + \frac{[H^{+}]}{K_{a}}} = \frac{c_{0}}{1 + 10^{pKa - pH}}$$

En la figura mostramos el resultado que se obtiene si representamos el logaritmo de la concentración frente al pH. La inspección del resultado obtenido nos indica que mientras el medio sea ácido, de manera que el pH sea menor que el pKa del ácido, la especie predominante es la forma ácida (*AcH*), mientras que si el pH es mayor que el pKa, entonces domina la forma básica (*Ac⁻*). De manera esquemática podemos proponer el siguiente diagrama de preponderancias:

4.5. Cálculo del pH de una disolución de ácido débil diprótico

A continuación vamos a desarrollar los equilibrios para el ácido diprótico H_2Ac :

$$H_{2}Ac \rightleftharpoons HAc^{-} + H^{+}$$

$$HAc^{-} \rightleftharpoons Ac^{2-} + H^{+}$$

$$K_{1} = \frac{[H^{+}] \cdot [HAc^{-}]}{[AH_{2}]}$$

$$K_{2} = \frac{[H^{+}] \cdot [Ac^{2-}]}{[AH^{-}]}$$
Balance de cargas: $[H^{+}] = [HAc^{-}] + 2 \cdot [A^{2-}] + [OH]$
Balance de masas: $Ca = [H_{2}Ac] + [HAc^{-}] + [Ac^{2-}]$

Producto iónico del agua: $Kw = [H^+] \cdot [OH]$

La ecuación que se deduce del sistema anterior es la siguiente:

 $F(x) = Ca \cdot [H^{+}] \cdot K_{1} \cdot ([H^{+}] + 2 \cdot K_{2}) - [H^{+}]^{4} - [H^{+}]^{-} [H^{+}]^{3} K_{1} - [H^{+}]^{2} K_{1} K_{2} + (H^{+})^{2} K_{W} + (H^{+}) K_{1} K_{W} + K_{1} K_{2} K_{W}$

La manera de calcular la concentración de protones es similar a la utilizada en el apartado <u>4.3</u>. La única diferencia es que, en este caso, se va a aplicar el método de Newton para la resolución de una ecuación de 4º grado. El diseño de la hoja puede ser muy variado, sirvan las hojas presentadas en las figuras como modelo.

A k1 k2 kw=	B	C 0,001 0,0000001 1,00E-14 1,00E-01	• D	E F	G le celdas	Н		J	ĸ		M
d= 0,001		•	búsqueda gráfi	ca del punto de ini	cio de las iter	aciones					
x 2005-03 3005-03 5,005-03 5,005-03 5,005-03 6,005-03 9,005-03 9,005-03 9,005-03 1,005-02 1,205-02 1,205-02 1,205-02 1,5	y 3,76E-10 7,92E-10 1,26E-09 2,09E-09 2,16E-09 2,16E-09 3,175E-09 4,10E-10 -1,00E-09 -3,87E-09 -3,87E-09 -3,87E-08 -2,16E-08 -3,16E-08 -3,16E-08 -4,40E-08 -6,98E-08 -7,84E-08	4,00E-09 2,00E-09 0,00E+00 5,00E-03 -2,00E-09 - -4,00E-09 - -6,00E-09 -	7,005-03 9,005-03	1,106-02 1,306-02							
1,90E-02 2,00E-02 2,10E-02 2,20E-02 2,30E-02 2,40E-02	-1,01E-07 -1,28E-07 -1,80E-07 -1,97E-07 -2,39E-07 -2,88E-07	-8,00E-09 - -1,00E-08									
Hoja1 / Hoja2	(Hoja3 /	¢ I Z <u>></u> •	∡ · △ · ≡ = =	• • •		(N	UM
osoft Excel - Capito chivo Edición Ve F 🖃 🔁 🎒 🎑 B 🐄 🛥 🕫 🏍	Ilo4EXCEL2 Insertar Eormato H ♥ X Pa @ • √ 2 Pa @ Pa Respon	erramientas Da <u>t</u> os V ∽ ← ⊂ → 🍓 Σ ider con cambios Terr	Ve <u>n</u> tana <u>?</u> • ₩ 2↓ X↓ ₩ 4	3 100% 🔹 🎽 Arial	• 10	• N K S	8 = = =	₩ 9 €	Es % 000 ⁺ 00 →	criba una pregunt º8 🗊 🎼 🗄	a 🔹 . - 🕭 -
Soft Excel - Capit Nove Eddon ye Capit Soft A A 6,00E-03 7,00E-03 8,00E-03 9,00E-03 8,00E-03 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 1,00E-02 2	Insertar Earnato H Treertar Eornato H ** S Ba C ** S Ba C T ** S Ba C T T ** S Ba C T S T T S T T S T T S T T S T T S T T S T T S T T S T T S T	erramientas Datos V → ← C → Q ∑ der con gamblos Terp C 0,00E+00 -2,00E-09 -4,00E-09 -4,00E-09 -8,00E-09 -1,00E-09 -1,00E-09	Херсала 2 • €2 24 24 Ш1 @ gnar revisión ↓ 7,00E-03 9,00E-03	3 100% ♥ ? Arial E F 1,10E-02 1,30E-0	• 10	• N X S		J U	₹5 000 *ŵ + K	criba una pregunto '8 CE CE	а т

 55
 55

 57
 55

 58
 56

 59
 50

 60
 60

 61
 52

 52
 53

 61
 52

 62
 60

 61
 52

 62
 60

 61
 52

 62
 60

 63
 60

 64
 N\http://http:/

1

•

NUM

Las fórmulas serían:

E P	Microsoft Excel - Capitulo4EXC	EL2			<u>- 8 ×</u>
8	Archivo Edición Ver Inse	rtar <u>F</u> ormato <u>H</u> erramientas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>	E	criba una pregunta	8 ×
	😂 🖬 🗞 😂 🔍 🖤 🛛	χ 🗈 🏗 = 🝼 🗠 = 🖓 Σ = 🔂 🛃 👯 🕼 🐼 100% = 🌺 Arial 💿 10 📼 🗷 🗡	rs≡≡≡≡∎ \$9 € % ∞ *.8 ,	양 🞼 🤃 🔛 •	• 🕭 • <u>A</u> • .
1	a ta ta 🗷 🔁 🏠 🔽 🖡	a 😥 🐨 Responder con gambios Terminar revisión			
	B40 - fx				
	A	В	C		D 🔒
1		k1	0,001		
2		k2	0,0000001		
З		kw=	0,0000000000001		
4		co=	0,1		
5					
6					
6		0.004			
8	d=	0,001			
10					
11	×				
12	0.002	$=c_0*\Delta 10^{*}k_1^{*}(\Delta 10+2^{*}k_2)_{\Delta 10^{*}}(\Delta 10^{*})_{A} = \frac{1}{2}k_1^{*}k_2^{*} + \Delta 10^{*}k_2^{*}k_3^{*} + \Delta 10^{*}k_4^{*} + k_2^{*}k_3^{*}$	4 005 09 -		
13	=A12+d	= co*A13*k 1*(A13+2*k 2)-A13*4-A13*4*k 1-A13*2*k 1*k 2+A13*2*kw+A13*k 1*kw+k 1*k 2*kw	4,000-05		
14	=A13+d	=co*A14*k 1*(A14+2*k 2)-A14*4-A14*3*k 1-A14*2*k 1*k 2+A14*2*kw+A14*k 1*kw+k 1*k 2*kw			
15	=A14+d	=co*A15*k 1*(A15+2*k 2)-A15*4-A15*3*k 1-A15*2*k 1*k 2+A15*2*kw+A15*k 1*kw+k 1*k 2*kw	2.00E-09		
16	=A15+d	=co*A16*k 1*(A16+2*k 2)-A16^4-A16^3*k 1-A16^2*k 1*k 2+A16^2*kw+A16*k 1*kw+k 1*k 2*kw			
17	=A16+d	=co*A17*k_1*(A17+2*k_2)-A17^4-A17^3*k_1-A17^2*k_1*k_2+A17^2*kw+A17*k_1*kw+k_1*k_2*kw			
18	=A17+d	=co*A18*k_1*(A18+2*k_2)-A18^4-A18^3*k_1-A18^2*k_1*k_2+A18^2*kw+A18*k_1*kw+k_1*k_2*kw	0,00E+00		
19	=A18+d	=co*A19*k_1*(A19+2*k_2)-A19^4-A19^3*k_1-A19^2*k_1*k_2+A19^2*kw+A19*k_1*kw+k_1*k_2*kw	5,00E-03 6,00E-03	7,00E-03	8,00E-03
20	=A19+d	=co*A20*k_1*(A20+2*k_2)-A20^4-A20^3*k_1-A20^2*k_1*k_2+A20^2*kw+A20*k_1*kw+k_1*k_2*kw			
21	=A20+d	=co*A21*k_1*(A21+2*k_2)-A21*4-A21*3*k_1-A21*2*k_1*k_2+A21*2*kw+A21*k_1*kw+k_1*k_2*kw	-2,00E-09 -		
22	=A21+d	=co*A22*k_1*(A22+2*k_2)-A22*A+A22*A*k_1+A22*2*k_1*k_2+A22*2*k_*+A22*k_1*k_2*k_2*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_2*k_1*k_2*k_1*k_2*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_1*k_2*k_2*k_1*k_2*k_2*k_2*k_2*k_2*k_2*k_2*k_2*k_2*k_2			
23	=A22+d	=co*A23*k_1*(A23+2*k_2)-A23*4-A23*3*k_1-A23*2*k_1*k_2+A23*2*k_*+A23*k_1*k_*+K_1*k_2*kw	4 005 09		
24	=A23+0	=00°A24*K_1*(A24+2*K_2)-A24*4+A24*3*K_1+A24*2*K_1*K_2+A24*2*KW+A24*K_1*K_2*KW+A24*K_1*K_2*KW	*4,000-000		
20	=A24+0	-CU A25 K_L (A25+2 K_2)-A25'4-A25'5 K_1-A25'2 K_L K_2+A25'2 KW+A25 K_L KW+K_L K_2 KW - asA525'k_14'(A25+2'k_2) A26A4 A26A5'k_1 A26A5'k_14'k_2+A26A5'k_14'k_2+A26A5'k_14'k_2+Ak_2+A5'k_2+			
20	=A25+d	-C0 720 FL (2077-74) 2) A 2774 A 2774 K 1 A 2774* 1 * 2 + A 2774* M A 27* L * WHAT K 1* 2*W	-6.00E-09 -		
28	=A2010	= c0*A278*k 1*(A28+2*k 2):A284/A284*k 1.A284*k 1.*21A2* 2*k/m+A28*k 1*(A28+k 1*(A28+2*k))			
29	=A28+d	=co*A29*k 1*(A29+2*k 2)-A29*d-A29*3*k 1-A29*2*k 1*k 2+A29*2*kw+A29*k 1*kw+k 1*k 2*kw			
30	=A29+d	=co*A30*k 1*(A30+2*k 2)-A30*4-A30*3*k 1-A30*2*k 1*k 2+A30*2*kw+A30*k 1*kw+k 1*k 2*kw	-8,00E-09 -		
31	=A30+d	=co*A31*k 1*(A31+2*k 2)-A31^4-A31^3*k 1-A31^2*k 1*k 2+A31^2*kw+A31*k 1*kw+k 1*k 2*kw			
32	=A31+d	=co*A32*k_1*(A32+2*k_2)-A32*4-A32*3*k_1-A32*2*k_1*k_2+A32*2*kw+A32*k_1*kw+k_1*k_2*kw			
33	=A32+d	=co*A33*k_1*(A33+2*k_2)-A33^4-A33^3*k_1-A33^2*k_1*k_2+A33^2*kw+A33*k_1*kw+k_1*k_2*kw	-1,UUE-08 -2		
34	=A33+d	=co*A34*k_1*(A34+2*k_2)-A34^4-A34^3*k_1-A34^2*k_1*k_2+A34^2*kw+A34*k_1*kw+k_1*k_2*kw			
35					
36					
37	-0				
30					
40			1		
41					
42					
43					
44					
45					
46					
47					-
4 -	 Hoja1 / Hoja2 / Hoja3 	3/			
Dib	jujo 🕶 😓 🛛 Autoformas 🕶 🔨 🗎	× □ ○ ≅ 4 ♀ ₪ 📓 🍐 · 🚄 · ▲ · ≡ 🥽 ☴ 🖬 🚰 -			
Listo	0			NUM	1

🕅 Microsoft Exc	el - Capitulo4EXCEL2					_ 8 ×
Archivo Ec	lición <u>V</u> er Insertar Eormato <u>H</u> erramientas Da <u>t</u> os Ve <u>n</u> tana <u>?</u>			Esc	riba una pregunta	×
- - - - - - - - - - - - - - - - - - -	🗁 💽 🚏 🐰 🗈 🛍 • 🝼 ⊨ + 🍓 Σ • 20 2 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	• 10 • N K S = = =	⊒ 🐨 €	% 000 *08 .0	8 🛊 🛊 🔛	• <u>ð</u> • <u>A</u> • .
i 🌇 ta ta 🖂	🛿 🖙 🚋 📝 🎭 😥 😪 Responder con gambios Terminar revisión 🖕					
A36	 A NEWTON-RAPHSON 					
A	В	С	D	E	F	
28 =A27+d	=co*A28*k_1*(A28+2*k_2)-A28*4-A28*3*k_1-A28*2*k_1*k_2+A28*2*kw+A28*k_1*kw+k_1*k_2*kw					
29 =A28+d	=co*A29*k_1*(A29+2*k_2)-A29^4-A29^3*k_1-A29^2*k_1*k_2+A29^2*kw+A29*k_1*kw+k_1*k_2*kw				\ \	
30 =A29+d	=co*A30*k_1*(A30+2*k_2)-A30^4-A30^3*k_1-A30^2*k_1*k_2+A30^2*kw+A30*k_1*kw+k_1*k_2*kw	-8,00E-09 -			× •	
31 =A30+d	=co*A31*k_1*(A31+2*k_2)-A31*4-A31*3*k_1-A31*2*k_1*k_2+A31*2*kw+A31*k_1*kw+k_1*k_2*kw					
32 =A31+d	=co*A32*k_1*(A32+2*k_2)-A32*4-A32*3*k_1-A32*2*k_1*k_2+A32*2*kw+A32*k_1*kw+k_1*k_2*kw	-1.005-08				
33 =A32+0	= C0 ^A35 K_1 (A35 + 2 K_2) ^A35 '4 ^A35 '5 K_1 (A35 + 2 + A35 '2 KW + A35 'K_1 (K2 + K1 + K2 + K) = co * A35 K_1 (A34 + 7 K_2) ^A3 (A + A35 '3 K_1 + A35 '2 K + K1 + K2 + A35 'K + K35 'K + K1 + K2 + K1 + K1 + K1 + K1 + K1 + K					
35	-c0 A34 K_1 (A3472 K_2)-A3474-A3473 K_1-A3472 K_1 K_27A3472 KWTA34 K_1 KWTK_1 K_2 KW					
36 NEWTON-						
37						
38 x	fx	fx	Increment			
39 0,009	=co*A39*k_1*(A39+2*k_2)-A39^4-A39^3*k_1-A39^2*k_1*k_2+A39^2*kw+A39*k_1*kw+k_1*k_2*kw	=2*co*A39*k_1+co*k_1*2*k_2-4*A39*3-3*A	3(=-B39/C39	1		
40 =A39+D39	=co*A40*k_1*(A40+2*k_2)-A40^4-A40^3*k_1-A40^2*k_1*k_2+A40^2*kw+A40*k_1*kw+k_1*k_2*kw	=2*co*A40*k_1+co*k_1*2*k_2-4*A40^3-3*A	4(=-B40/C40			
41 =A40+D40	=co*A41*k_1*(A41+2*k_2)-A41^4-A41^3*k_1-A41^2*k_1*k_2+A41^2*kw+A41*k_1*kw+k_1*k_2*kw	=2*co*A41*k_1+co*k_1*2*k_2-4*A41^3-3*A	4 =-B41/C41			
42 =A41+D41	=co*A42*k_1*(A42+2*k_2)-A42*4-A42*3*k_1-A42*2*k_1*k_2+A42*2*k_w+A42*k_1*k_w+k_1*k_2*k_w	=2*co*A42*k_1+co*k_1*2*k_2-4*A42^3-3*A	41=-B42/C42			
43 =A42+D42	=co*A43*k_1*(A434*2*k_2)-A43*4-A43*3*k_1-A43*2*k_1*k_2+A43*2*kw+A43*k_1*kw+k_1*k_2*kw	=2*co*A43*k_1+co*k_1*2*k_2-4*A43*3-3*A	4:=-B43/C43			
44 = A43+D43	=C0*A44*K_1*(A45+2*K_2)-A44*4-A44*3*K_1*A44*2*K_1*K_2+A44*2*KW+A44*K_1*KU2*KW	=2*c0*A44*K_1+c0*K_1*2*K_2-4*A44*3-3*A	4/=-044/C42			
45 = A44 + D44	$=$ co rads r_{-1} (rads r_{-2}) rads 4 rads 3 r_{-1} rads 2 r_{-1} r_{-2} r_{-2} r_{-2} r_{-1} r_{-2} r_{-1} r_{-2} r_{-1} r_{-1} r_{-2} r_{-1} r_{-2}	=2*co*A45 K_1+co*k_12*k_2-4 A45*5-3 A	4(=-B45/C45			
47 =A46+D46	$= c_0^+ A_47^+ k_1^+ (A_47 + 2^+ k_2) + A_47^+ (A_47^+ A_47^+ k_1^+ k_2^+ k_47^+ k_1^+ k_47^+ k_47$	=2*co*A47*k 1+co*k 1*2*k 2-4*A47*3-3*A	4)=-B47/C47			
48 =A47+D47	=co*A48*k 1*(A48+2*k 2)-A48*4-A48*3*k 1-A48*2*k 1*k 2+A48*2*kw+A48*k 1*kw+k 1*k 2*kw	=2*co*A48*k 1+co*k 1*2*k 2-4*A48^3-3*A	4E=-B48/C4E	1		
49 =A48+D48	=co*A49*k 1*(A49+2*k 2)-A49^4-A49^3*k 1-A49^2*k 1*k 2+A49^2*kw+A49*k 1*kw+k 1*k 2*kw	=2*co*A49*k_1+co*k_1*2*k_2-4*A49^3-3*A	4(=-B49/C49	1		
50 =A49+D49	=co*A50*k_1*(A50+2*k_2)-A50^4-A50^3*k_1-A50^2*k_1*k_2+A50^2*kw+A50*k_1*kw+k_1*k_2*kw	=2*co*A50*k_1+co*k_1*2*k_2-4*A50^3-3*A	5(=-B50/C50	1		
51 =A50+D50	=co*A51*k_1*(A51+2*k_2)-A51^4-A51^3*k_1-A51^2*k_1*k_2+A51^2*kw+A51*k_1*kw+k_1*k_2*kw	=2*co*A51*k_1+co*k_1*2*k_2-4*A51^3-3*A	5 =-B51/C51			
52 =A51+D51	=co*A52*k_1*(A52+2*k_2)-A52*4-A52*3*k_1-A52*2*k_1*k_2+A52*2*kw+A52*k_1*kw+k_1*k_2*kw	=2*co*A52*k_1+co*k_1*2*k_2-4*A52*3-3*A	51=-B52/C52			
63				► pH= =	=-LOG(A52)	
54						
56						
57						
58						
59						
60						
61						
62						
63						
64			_			
66						
67			-			
68						
69						
70						
71						
72						
73						
74					_	
	1 / Hoja2 / Hoja3 /					
Dibujo 🕶 🕞 🛛 Aş	ytoformas • 🛝 🔍 🔿 🖆 🐗 🔅 🖉 📓 🖉 • 🚣 • ≡ 📰 🛱 🛢 💣 •					
Listo					NUT	м

4.6. Diagramas concentración/pH de un ácido poliprótico

Tomaremos como ejemplo el caso del ácido sulfhídrico, que es un ácido diprótico. En este caso tenemos una incógnita más, pero también tenemos una constante de equilibrio más. Por tanto, la resolución del problema es idéntica a la del apartado <u>4.4</u>. Tenemos en este caso:

$$K_{1} = \frac{[SH^{-}][H^{+}]}{[SH_{2}]}; \qquad K_{2} = \frac{[S^{2-}][H^{+}]}{[SH^{-}]}; \qquad c_{0} = [SH_{2}] + [SH^{-}] + [S^{2-}]$$

El álgebra para despejar las concentraciones que buscamos es un poco más complicada que la anterior si se realiza a mano, pero, como veremos en el capítulo 6, no comporta esfuerzo adicional se si dispone de un programa de cálculo simbólico, aunque las fórmulas resultantes son un tanto complejas. Podemos también obtener ecuaciones aproximadas simples pero muy precisas (prácticamente indistinguibles de las exactas a la hora de representarlas en una gráfica). El uso de fórmulas aproximadas simples presenta el inconveniente de que hay que obtener fórmulas aproximadas diferentes para una misma especie, según la región de pH en que queramos calcular su concentración. Ello es debido a que, según las predominancias de una u otra especie, hay que aplicar las aproximaciones pertinentes. El detalle de la obtención de las fórmulas viene detallado en el apartado <u>11.9</u> de los apéndices, y el resumen de las fórmulas que se obtienen para las distintas regiones de pH son las siguientes:

Región 1 de predominancia del sulfhídrico SH₂,

$$[SH_{2}] = \frac{c_{0}}{1+10^{pH-pK_{1}}}; \qquad [SH^{-}] = \frac{c_{0}}{1+10^{pK_{1}-pH}}; \qquad [S^{2-}] = 10^{2pH-pK_{1}-pK_{2}}c_{0}$$

Región 2 de predominancia del bisulfuro SH⁻,

$$[SH_{2}] = \frac{c_{0}}{1+10^{pH-pK_{1}}}; \qquad [S^{2-}] = \frac{c_{0}}{1+10^{pK_{2}-pH}}$$
$$[SH^{-}] = \frac{c_{0}}{1+10^{pK_{1}-pH}}; \qquad [SH^{-}] = \frac{c_{0}}{1+10^{pH-pK_{2}}}$$

Región 3 de predominancia del sulfuro S^{2-} ,

$$[SH_{2}] = 10^{pK_{1}+pK_{2}-2pH} c_{0}; \qquad [SH^{-}] = \frac{c_{0}}{1+10^{pH-pK_{2}}}; \qquad [S^{2-}] = \frac{c_{0}}{1+10^{pK_{2}-pH}}$$

En la figura mostramos el resultado que se obtiene si representamos el logaritmo de las distintas concentraciones frente al pH:

🕎 Mi	crosoft Excel - dia	grama.xls												_ 8 ×
:	<u>A</u> rchivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar <u>F</u> orn	nato <u>H</u> erramientas	Da <u>t</u> os Ve <u>n</u> tana j	2							Escriba un	a pregunta	×
1	💕 🖬 🖪 🍙 b	🖪 🖪 I 🂝 🛍 I 🖁	🕺 🗈 🛍 • 🕩 🖻) • (° - 🤶 Σ	- 21 XI 🛍 🍕	130% 🔹 🙆 💂								
Aria	•	10 - N K S	: = = = =]	🕎 % 000 %% 🗳	8 12 12 🔤 🗸	<u>3</u> - <u>A</u> - 💂								
	C27 -	fx												
	A	B	С	D	E	F	G	Н	1	J	K	L	M	
33														
34														
35		- 0	0.1											
30		CU pk4	0,1											
20		ркт	12			(0.00						- H	
30		ркг	12				0,00							_
40								Y <u>2</u>	4	6 8	10	12 1	4	
41		рН	Log(SH2)	Log(SH)	Log(S)		-2 00	1				\sim		
42		0	-1.00	-8.00	-20.00						\setminus $/$			
43		1	-1,00	-7,00	-18,00									
44		2	-1,00	-6,00	-16,00		-4,00	-			\sim			
45		3	-1,00	-5,00	-14,00		7					<		
46		4	-1,00	-4,00	-12,00		buo					\mathbf{X}		
47		5	-1,00	-3,00	-10,00		<u>5</u> -6,00							
48		6	-1,04	-2,04	-8,00		Los							
49		7	-1,30	-1,30	-6,00		- 00							
50		8	-2,04	-1,04	-5,00		-0,00	Ţ				_ \		
51		9	-3,00	-1,00	-4,00							(2)		
52		10	-4,00	-1,00	-3,00		-10,00	-	/		Log(SH	0		
53		11	-5,00	-1,04	-2,04						Log(S)			
54		12	-6,00	-1,30	-1,30									
50		13	-8,00	-2,04	-1,04		-12,00							
57		14	-10,00	-5,00	-1,00					Hq				
58						(•				
59							~							
60														
61														
62														
63		the first of											_	
14 4 F 14	FIL Hoja1 (Hoj Hoja1 (Hoj			11 As _ A _ A	= = = =	all								
: Digu	io • 😽 Ageoforma			II <u>∽</u> • <u>∠</u> • <u>∆</u>	. = #									
LISCO														

4.7. Cálculo del pH de una disolución de ácido débil triprótico

En este caso los equilibrios y el sistema de ecuaciones a resolver serán los siguientes, tomando al H₃PO₄ como modelo:

$$\begin{split} H_{3}PO_{4} &\rightleftharpoons H_{2}PO_{4}^{-} + H^{+} \\ H_{2}PO_{4}^{-} &\rightleftharpoons HPO_{4}^{2-} + H^{+} \\ HPO_{4}^{2-} &\rightleftharpoons PO_{4}^{3-} + H^{+} \\ K_{1} &= \frac{\left[H^{+}\right] \cdot \left[H_{2}PO_{4}^{-}\right]}{\left[H_{3}PO_{4}\right]} \\ K_{2} &= \frac{\left[H^{+}\right] \cdot \left[HPO_{4}^{2-}\right]}{\left[H_{2}PO_{4}^{-}\right]} \\ K_{3} &= \frac{\left[H^{+}\right] \cdot \left[PO_{4}^{3-}\right]}{\left[HPO_{4}^{2-}\right]} \end{split}$$

Balance de cargas: $[H^+] = 3 \cdot [PO_4^{3-}] + 2 \cdot [HPO_4^{2-}] + [H_2PO_4^{-}] + [OH]$ Balance de masas: $Ca = [PO_4^{3-}] + [HPO_4^{2-}] + [H_2PO_4^{-}] + [H_3PO_4]$ Producto iónico del agua: $Kw = [H^+] \cdot [OH]$ La ecuación que se deduce del sistema anterior es la siguiente:

$$F(x) = K_1 K_2 K_3 K_W + (3 \cdot Ca K_1 K_2 K_3 + K_1 K_2 K_W) \cdot [H^+] + (2 \cdot Ca K_1 K_2 - K_1 K_2 K_3 + K_1 K_W) [H^+]^2 + (Ca K_1 - K_1 K_2 + K_W) \cdot [H^+]^3 - K_1 [H^+]^4 - [H^+]^5$$

Al igual que en apartados anteriores, se muestra a continuación el diseño de la hoja de cálculo con las fórmulas que puede servir de modelo, como en los apartados anteriores, aunque hay infinidad de maneras de llevarlo a cabo.

A partir de la representación se elige el punto de inicio de las iteraciones y se construye el programa que aplica el método de Newton:

M	icrosoft Excel	- Capitulo4EXCE	LPOLI											_	. <u>8 ×</u>
8	🖞 Archivo Edición Ver Insertar Eormato Herramientas Detos Vegtana 2 💽 Escriba una pregunta 💽 🚽 🗗 🗙														
	🛩 🖬 🔩 🛛	🔿 🖪 🖤 🔰	6 🗈 🛍 • 🝼 🗠	• 🖙 🝓 Σ • 🔂	24 🕺 🛍 🕡 100	°% ∗ "	Arial	v 10	• N K S		፼ 8 €	% 000 *08 🔎	8 🗊 🗊 🗆	- 🕭 -	A
1	ta ta 24 4	🔁 📾 🛛 🗹 🖷	🛛 😥 🛛 🖤 Responder o	on <u>c</u> ambios Ter <u>m</u> inar revi	isión 🖕										
	K37 -	f.													
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	-
13	2,00E-03	5,59E-13	2,00E-11 1												
14	3,00E-03	1,72E-12													
15	4,00E-03	3,56E-12	0,00E+00			- F									
17	6.00E-03	7 34E-12	5,00E-03	7,00E-03 9,08E-03	1,10E-02 1,30	E-02									
18	7,00E-03	6,92E-12	-2,00E-11												
19	8,00E-03	2,25E-12													
20	9,00E-03	-9,75E-12	-4,00E-11 -		$\langle \rangle$										
21	1,00E-02	-3,31E-11		/											
22	1,10E-02	-7,31E-11	-6,00E-11												
23	1,20E-02	-1,38E-10			\										
25	1.40E-02	-3.63E-10	-8,00E-11		\										
26	1,50E-02	-5,47E-10			\										
27	1,60E-02	-7,93E-10	-1,00E-10		1										
28	1,70E-02	-1.12E-09													
29	1,80E-02	-1,53E-09	-1,20E-10		\										
31	2 00E-02	-2,06E-09	4												
32	2,00C-02	-3.54E-09	-1,40E-10		×										
33	2,20E-02	4.542-09													
34	2,30E-02	5.74E-09	-1,60E-10												
35	2,40E-02	-7/18E-09													
36		6000													_
37	NEWTON-RA	PSUN													_
39	×	fx f	x	Incremento											
40	0,009	-9,75E-12	-1,69E-08	-0,000575814											
41	0,00842419	-1,73E-12	-1,12E-08	-0,000155316											
42	0,00826887	-1,04E-13	-9,83E-09	-1,06018E-05											
43	0,00825827	-4,62E-16	-9,74E-09	-4,74537E-08											
44	0,00025022	-9,23E-21	-9,74E-09	-9,47637E-13											
46	0.00825822	0.00E+00	-9,74E-09	0											
47	0,00825822	0,00E+00	-9,74E-09	0											
48	0,00825822	0,00E+00	-9,74E-09	0											
49	0,00825822	0,00E+00	-9,74E-09	0											
50	0,00825822	0,00E+00	-9,74E-09	0											
52	0,00625622	0,000000	-9,74E-09 -9.74E-09	0											
53	0.00825822	0.00E+00	-9,74E-09	0											
54					pH= 2,0	08311352									
55															
56															
57															
58															
00	N N Hojal	/ Hoja2 / Hoja3	1					14	1					1	
Dibu	io - D Auto	formas •		🔊 🔜 💩 🗸 🥖 – A											
Listo	,- 10 1.1 <u>0</u> (0)												MAY NI	IM	

Las fórmulas serían las siguientes:

EN N	Hicrosoft Excel -	Capitulo4EXCELPOLI		_ 8 ×
8	Archivo Edició	n <u>V</u> er Insertar <u>F</u> ormato <u>H</u> erramientas Datos Ve <u>n</u> tana <u>7</u>	Escriba un	a pregunta 🛛 👻 🗕 🗗 🗙
	🖙 🔜 🔩 e	⇒ C, ♡ / % Ba	€ % 000 *.8 .98 ∰	∉ ⊡· <u></u> >· <u>∧</u> ·.
26	a ita ita 🖂 🛛	🔭 🛤 🖓 🖏 🚱 😤 Responder con cambios		
-	1/27 -			
	K37 •	/*	C.	
1	A		-0.00074	_
2			-0.000019	
4		n4	-0.0000004	
4			0.00000000	
5		COE	0.1	
6			0,1	
7				
8				
9	d=	0,001		
10				
11				
12	×	Y .		
13	0,002	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A13+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A13^2+(co*k_1-k_1*k_2+kw)*A13^3-k_1*A13^4-A13^5	2.00E-11 ¬	
14	=A13+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A14+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A14^2+(co*k_1-k_1*k_2+kw)*A14^3-k_1*A14^4-A14^5		
15	=A14+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A15+(2*co*k_1*k_2*k_3+k_1*kw)*A15^2+(co*k_1-k_1*k_2*kw)*A15^3-k_1*A15^4-A15^5	0.005.00	
16	=A15+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A16+(2*co*k_1*k_2+L1*k_2*k_3+k_1*kw)*A16^2+(co*k_1-k_1*k_2+kw)*A16^3-k_1*A16^4-A16^5	0,002400	2 6 005 02 7 00
17	=A16+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A17+(2*co*k_1*k_2*k_3+k_1*kw)*A17^2+(co*k_1-k_1*k_2+kw)*A17^3-k_1*A17^4-A17^5	5,000-1	JS 6,00E-05 7,00
18	=A17+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A18+(2*co*k_1*k_2*k_1*k_2*k_3+k_1*kw)*A18*2+(co*k_1+k_1*k_2+kw)*A18*3+k_1*A18*4-A18*5	-2,00E-11 -	
19	=A18+d	=k_1^k_2^k_3+kw+(3^c0^k_1^k_2^k_3+k_1^k_2^kw)^A19+(2^c0^k_1^k_2^k_1^k_2^k_1^k_3+k_1^kw)^A19^2+(c0^k_1-k_1^k_2+kw)^A19^3-k_1^A19^4-A19^6		
20	=A19+d	=k 1 k 2 k 3 kw+(3 cork 1 k 2 k 3 kk 1 k 2 kw) A2U+(2 cork 1 k 2 k 1 k 2 k 1 k 2 k 1 kw) A2U 2 (cork 1 k 1 k 2 kw) A2U 3 k 1 A2U 4 A	-4,00E-11 -	
21	=A20+0			
22	=A21+0	= K_1 K_2 K_3 KW+(3 CO K_1 K_2 K_3 + K_1 K_2 KW) A22+(2 CO K_1 K_2 K_1 K_2 K_3 + K_1 KW) A22*2+(CO K_1 - K_1 K_2 + K) A22*3+A22*3+A22*3+A22*3+A22*3+A22*3+A2*3+A	-6,00E-11 -	
23	=A22+0			
25	=A24+d		-8,00E-11 -	
26	=A25+d		· · · · · · · · · · · · · · · · · · ·	
27	=A26+d	=k 1*k 2*k 3*kw+f3*co*k 1*k 2*k 3+k 1*k 2*kw1*A27+0*co*k 1*k 2*k 1*k 2*k 3+k 1*kw1*A27*2+fco*k 1*k 2+kw1*A27*3-k 1*A27*4-A27*5	-1 ODE-10	
28	=A27+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A28+(2*co*k 1*k 2*k 1*k 2*k 3+k 1*kw)*A28*2+(co*k 1+k 1*k 2+kw)*A28*3-k 1*A28*4-A28*5	1,002.10	
29	=A28+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A29+(2*co*k 1*k 2-k 1*k 2*k 3+k 1*kw)*A29*2+(co*k 1-k 1*k 2+kw)*A29*3-k 1*A29*4-A29*5	1 205 10	
30	=A29+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A30+(2*co*k 1*k 2*k 1*k 2*k 3+k 1*kw)*A30*2+(co*k 1-k 1*k 2+kw)*A30*3-k 1*A30*4-A30*5	-1,202-10	
31	=A30+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A31+(2*co*k_1*k_2+k_1*k_2*k_3+k_1*kw)*A31^2+(co*k_1+k_1*k_2+kw)*A31^3-k_1*A31^4-A31^5		
32	=A31+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A32+(2*co*k_1*k_2*k_3+k_1*kw)*A32*2+(co*k_1-k_1*k_2+kw)*A32*3-k_1*A32*4-A32*5	-1,4UE-10 -	
33	=A32+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A33+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A33^2+(co*k_1-k_1*k_2+kw)*A33^3-k_1*A33^4-A33^5		
34	=A33+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*Kw)*A34+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A34^2+(co*k_1-k_1*k_2+kw)*A34^3-k_1*A34^4-A34^5	-1,60E-10 J	
35	=A34+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_ <u>2*k_</u> 3#K_1*k_2*kw)*A35+(2*co*k_1*k_2*k_1*k_2*k_3+k_1*kw)*A35^2+(co*k_1-k_1*k_2+kw)*A35^3-k_1*A35^4-A35^5		
36				
37	NEWTON-RAI			
38				
39	X		TX	Incremento
40	0,009		=(3*C0*K_1*K_2*K_3+K	1*k_21=-B40/C40
41	=A40+D40	- K, EK, Z KU KWYCJ CO K, EK, Z K, STK, EK, Z KWI AMITZ CO K, EK, Z KK, EK, Z KU TK, EKWI AMITZ CO K, EK, EK, Z KWI AMITZ KU KU KWI AMITZ KU KWI	-(3 CO K_1 K_2 K_3+K_	1*12 0417041
42	= A12+D12		=(3*co*k 1*k 2*k 3+k	1*k 2*=-B43/C43
40	=A43+D43		=(3*co*k 1*k 2*k 3+k	1*k 2*=-B44/C44
45	=A44+D44	=k 1*k 2*k 3*kw+(3*o*k 1*k 2*k 3*k 1*k 2*kw)*Ad5+27*o*k 1*k 2*k 3*k 3*k 1*k 2*k 3*k 1*k 2*k 1*k 2*k 1*k 2*k 4*Ad545	=(3*co*k 1*k 2*k 3+k	1*k 2*=-B45/C45
46	=A45+D45	=k 1*k 2*k 3*kw+3*co*k 1*k 2*k 1*k 2*kw)*A46+2*co*k 1*k 2*k 3*k 3*k 1*kw)*A46+2+co*k 1.k 1*k 2+kw)*A46+3*c	=(3*co*k 1*k 2*k 3+k	1*k 2*=-B46/C46
47	=A46+D46	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A47+(2*co*k 1*k 2*k 1*k 2*k 3+k 1*kw)*A47*2+(co*k 1-k 1*k 2+kw)*A47*3-k 1*A47*4-A47*5	=(3*co*k 1*k 2*k 3+k	1*k 2*=-B47/C47
14 .	Hoja1	Hola2 / Hola3 /	1 1 12 12 12 12 12 12 12	
I pak				
	iuju • 🖓 🛛 Aŭcor			
Liste	0			MAY NUM

E 1	Microsoft E	xcel - Capitulo4EXCELPOLI				_ 8 ×
8	Archivo	Edición Ver Insertar Eormato Herramientas Datos Ve <u>n</u> tana <u>?</u>		Escriba un	a pregunta	×
) 😅 🔜 🧌	b) ⊕ b, ♥ % ๒ 酏・♂ ▷・~~ @ Σ・硷 タ↓ 狱 @ 秒 100% ▼.* Arial ▼ 10 ▼ N X S ≡ ≡ ≡ 国 ☞	€ %	000 *08 ₊08 €	德日•3	<mark>⊳ - <u>A</u></mark>
1	a ta ta	🚈 💀 🚋 📝 🖏 😥 💱 Responder con cambios Terminar revisión 🖕				
	K37					
	A	B		С		
22	=A21+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A22+(2*co*k 1*k 2*k 3+k 1*kw)*A22*2+(co*k 1-k 1*k 2+kw)*A22*3-k 1*A22*4-A22*5	\geq			_
23	=A22+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A23+(2*co*k 1*k 2-k 1*k 2*k 3+k 1*kw)*A23*2+(co*k 1-k 1*k 2+kw)*A23*3-k 1*A23*4-A23*5	-	-6,00E-11 -		
24	=A23+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A24+(2*co*k 1*k 2-k 1*k 2*k 3+k 1*kw)*A24*2+(co*k 1-k 1*k 2+kw)*A24*3-k+*A24*4-A24*5				
25	=A24+d	=k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A25+(2*co*k 1*k 2-k 1*k 2*k 3+k 1*kw)*A25*2+(co*k 1-k 1*k 2+kw)*A25*3-k 1*A25*4-A25*5		-8,00E-11 -		
26	=A25+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A26+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A26^2+(co*k_1+k_1*k_2*kw)*A26^3-k_1*A26^4-A26^5				
27	=A26+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A27+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A27*2+(co*k_1*k_2+kw)*A27*3-k_1*A27*3-k_1*A27*4-A27*5		-1,00E-10 -		
28	=A27+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A28+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A28*2+(co*k_1-k_1*k_2+kw)*A28*3-k_1*A28*4-A28*5				
29	=A28+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A29+(2*co*k_1*k_2-k_1*k_2*k_3+k_4*kw)*A29+2+(co*k_1-k_1*k_2+kw)*A29+3-k_1*A29+4-A29+5		-1.20E-10 -		
30	=A29+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A30+(2*co*k_1*k_2*k_1*k_2*k_3+k_1*kw)*A30^2+(co*k_1-k_1*k_2+kw)*A30^3-k_1*A30^4-A30^5				
31	=A30+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A31+(2*co*k_1*k_2+k_1*k_2*k_3+k_1*kw)*A31^2+(co*k_1-k_1*k_2+kw)*A31^3-k_1*A31^4-A31^5		1 405 10		
32	=A31+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A32+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A32*2+(co*k_1-k_1*k_2+kw)*A32*3-k_1*A32*4-A32*5		-1,402-10		
33	=A32+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A33*(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A33*2+(co*k_1-k_1*k_2+kw)*A33*3-k_1*A33*4-A33*5				
34	=A33+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A34+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A34*2+(co*k_1-k_1*k_2+kw)*A34*3+k_1*A34*4-A34*5		-1,60E-10 -		
35	=A34+d	=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k=9#k_1*k_2*kw)*A36+(2*co*k_1*k_2*k_1*k_2*k_3+k_1*kw)*A36*2+(co*k_1-k_1*k_2+kw)*A36*3+k_1*A36*4-A36*6	-			
36	NEWTON		_			
37	NEWTOP	-RAF	4			
30	×		fr		Incron	onto
40	0.009		-(3*or	オレ 1オレ つオレ ヨエレ	1*L 2*- B/0	/040
40	= A40+D4		=(3*cc	*k 1*k 2*k 3+k	1*k_2*=-B40	/C41
47	= A40+D4	$ = \sum_{k=1}^{n} \sum$	=(3*cc)*k 1*k 2*k 3+k	1*k 2*=-B47	/047
43	=A42+D4	= -1 + 2 + 2 + 3 + (3 + 6 + 6 + 1 + 2 + 6 + 1 + 1 + 2 + 6 + 1 + 2 + 6 + 1 + 2 + 3 + 1 + 2 + 3 + 1 + 2 + 3 + 2 + 2	=(3*cr	1*k 1*k 2*k 3+k	1*k 2*=-B43	/042
44	=A43+D4	3 =k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A44+(2*co*k 1*k 2*k 3*k 3*k 1*kw)*A44*2+(co*k 1*k 1*k 2*kw)*A44*3*k 1*A44*4-A44*5	=(3*cr	*k 1*k 2*k 3+k	1*k 2*=-B44	/C44
45	=A44+D4	4 =k 1*k 2*k 3*kw+G*co*k 1*k 2*k 3+k 1*k 2*kw)*A45+(2*co*k 1*k 2*k 1*k 2*k 3+k 1*kw)*A45*2+(co*k 1*k 1*k 2*kw)*A45*3*k 1*A45*4-A45*5	=(3*cr	*k 1*k 2*k 3+k	1*k 2*=-B45	/C45
46	=A45+D4	5 =k 1"k 2"k 3"kw+(3"co"k 1"k 2"k 3+k 1"k 2"kw)*A46+(2"co"k 1"k 2-k 1"k 2"k 3+k 1"kw)*A46+2+(co"k 1-k 1"k 2+kw)*A46+3-k 1*A46+4-A46+5	=(3*cc	*k 1*k 2*k 3+k	1*k 2*=-B46	/C46
47	=A46+D4	6 =k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A47+(2*co*k 1*k 2-k 1*k 2*k 3+k 1*kw)*A47^2+(co*k 1-k 1*k 2+kw)*A47^3-k 1*A47^4-A47^5	=(3*cc	o*k 1*k 2*k 3+k	1*k 2*=-B47	/C47
48	=A47+D4	7 =k 1*k 2*k 3*kw+(3*co*k 1*k 2*k 3+k 1*k 2*kw)*A48+(2*co*k 1*k 2*k 1*k 2*k 3+k 1*kw)*A48*2+(co*k 1-k 1*k 2+kw)*A48*3-k 1*A48*4-A48*5	=(3*cc	o*k 1*k 2*k 3+k	1*k 2*=-B48	/C48
49	=A48+D4	8 =k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A49+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A49*2+(co*k_1-k_1*k_2+kw)*A49*3-k_1*A49*4-A49*5	=(3*cc)*k_1*k_2*k_3+k	1*k_2*=-B49	/C49
50	=A49+D4	9 =k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A50+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A50*2+(co*k_1-k_1*k_2+kw)*A50*3-k_1*A50*4-A50*5	=(3*cc	o*k_1*k_2*k_3+k_	1*k_2*=-B50	/C50
51	=A50+D5	0 =k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A51+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A51^2+(co*k_1-k_1*k_2+kw)*A51^3-k_1*A51^4-A51^5	=(3*cc	o*k_1*k_2*k_3+k_	1*k_2*=-B51	/C51
52	=A51+D5	1 =k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A52+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A52*2+(co*k_1-k_1*k_2+kw)*A52*3-k_1*A52*4-A52*5	=(3*cc)*k_1*k_2*k_3+k_	1*k_2*=-B52	/C52
53	=A52+D5	2 <u>=k_1*k_2*k_3*kw+(3*co*k_1*k_2*k_3+k_1*k_2*kw)*A53+(2*co*k_1*k_2-k_1*k_2*k_3+k_1*kw)*A53*2+(co*k_1-k_1*k_2+kw)*A53*3-k_1*A53*4-A53*5</u>	=(3*cc)*k_1*k_2*k_3+k_	1*k_2*=-B53	/C53
54			-			
55						
56						
57	_					
58						
59			-			
60	-					
62						
63						
64						
65			1			
66			1			
67			-			
68						-
14	I F F H HC	ja1 / Hoja2 / Hoja3 /				D
Dit						
	6010 NS					
Listo	0				MAY NUM	

5. Aplicación de programas de cálculo simbólico para la resolución de problemas sencillos

En este capítulo emplearemos el programa de cálculo simbólico MATHEMATICA[®] para resolver algunos de los problemas planteados en los temas 3 y 4. Esta herramienta informática permite, entre otras muchas cosas, la resolución de ecuaciones de una manera sencilla y rápida. Su potencia de cálculo resulta muy útil (como comprobaremos en este y posteriores capítulos) para abordar problemas en los que es necesaria la simplificación de sistemas de ecuaciones o la resolución de ecuaciones complejas. Como podremos comprobar, la resolución de determinados problemas con MATHEMATICA[®] requerirá, en comparación con EXCEL[®], un esfuerzo considerablemente menor por nuestra parte. Sin embargo, su complejidad en el diseño de gráficos, junto a la extrema facilidad de uso de la hoja de cálculo hace que el EXCEL[®] resulte más adecuado en algunas ocasiones.

5.1. Cálculo del pH de una disolución de ácido fuerte

Tal como se hizo en el apartado 3.2, consideremos los balances de masa y carga en una disolución acuosa de un ácido fuerte HA, así como la ecuación que rige la disociación del agua:

Balance de masas: $C_a = [A^-]$ Balance de cargas: $[H^+] = [A^-] + [OH^-]$ Producto iónico del agua: $K_w = [H^+] \cdot [OH^-] = 10^{-14}$

Disponemos de tres ecuaciones con tres incógnitas, por lo que el sistema queda perfectamente determinado. Bastará con despejar la concentración de protones para obtener el pH a partir de ella. Pese a que esta operación es aquí lo suficientemente simple como para llevarla a cabo con lápiz y papel, la manipulación algebraica de las ecuaciones puede resultar terriblemente tediosa y complicada en problemas más complejos. Así pues, en este apartado resolveremos el sistema mediante MATHEMATICA[®] a modo de ejemplo ilustrativo, lo que nos pondrá en disposición de abordar problemas más complejos en los temas siguientes.

Antes de iniciar cualquier programa MATHEMATICA[®] resulta altamente recomendable ejecutar el comando **ClearAll** en primer lugar. Este comando permite eliminar todas las asignaciones de valores, atributos, definiciones, etc. que MATHEMATICA[®] pueda guardar en memoria. Es especialmente útil cuando, bien sea por error o por otros motivos, nos vemos obligados a ejecutar de nuevo determinadas partes del código que hemos construido. Las asignaciones, definiciones, etc. de la nueva ejecución pueden entrar en conflicto con las de la antigua, lo que puede provocar errores. Conviene en ese caso ejecutar de nuevo el programa desde el principio, comenzando por eliminar de la memoria todas las definiciones del cálculo previo mediante el comando **ClearAll**. Su sintaxis es como sigue:

```
In[1]:= ClearAll["Global`*"]
```

Conviene apuntar que el editor de código de MATHEMATICA[®] funciona como un editor de textos común, en que la tecla RETURN simplemente actúa como control de carro. Para ejecutar un comando o secuencia de comandos, debe pulsarse simultáneamente las teclas SHIFT+RETURN. Cuando esto ocurre, la secuencia de código evaluada aparece etiquetada en pantalla como "In[n] :=" (donde n es el número que identifica el Input) y, si procede, la respuesta de MATHEMATICA[®] correspondiente (Output) aparece etiquetada como "Out [n]=".

El siguiente paso para resolver nuestro problema es definir los parámetros que intervienen. Tomamos una concentración inicial de ácido 0.01M, y declaramos el producto iónico del agua:

$\ln[2]:= ca = 0.01; kw = 10^{-14};$

A continuación resolvemos el sistema mediante el comando **Solve**. Este comando puede emplearse siempre que pretendamos resolver ecuaciones o sistemas de ecuaciones que impliquen exclusivamente funciones lineales o polinomios, como es nuestro caso:

```
ln[3]:= s = Solve[\{ca == a, h == a + oh, h * oh == kw\}, \{a, oh, h\}]
Out[3]= {{a \rightarrow 0.01, oh \rightarrow -0.01, h \rightarrow -1. \times 10^{-12}}, {a \rightarrow 0.01, oh \rightarrow 1. \times 10^{-12}, h \rightarrow 0.01}
```

Es importante fijarse en la sintaxis del argumento del comando **Solve**: En primer lugar, escribimos entre llaves las ecuaciones (separadas por comas y empleando **doble** signo igual), y después, también entre llaves, escribimos las incógnitas del sistema. Como resultado obtenemos dos conjuntos de valores distintos, de los que solo el segundo tiene sentido químico (el primero contiene concentraciones negativas). El valor que nos interesa es:²

In[4]:= h = s[[2, 3, 2]]
Out[4]= 0.01

Solo resta obtener el menos logaritmo decimal de h, que se expresa como:

```
In[5]:= ph = -Log[10, h]
Out[5]= 2.
```

² La siguiente figura permite entender la sintaxis que emplea MATHEMATICA[®] para identificar las diferentes partes del output, y que hemos utilizado para extraer aquella que nos interesa. En el apéndice 11.10 pueden encontrarse ejemplos adicionales.

Out[3]=	{{a → 0.01,	$oh \to -0.01$,	$\underbrace{h \rightarrow -1. \times 10^{-12}}_{},$	$a \rightarrow 0.01, oh$	$\rightarrow 1. \times 10^{-12}, h \rightarrow 0.01\}$
			s[[1,3]]	s[[2,1,2]]	s[[2,3,1]]
		s[[1]]			s[[2]]

Un modo alternativo de resolver el problema consiste en utilizar el comando **Eliminate** seguido del comando **Solve**. Aunque no es necesario en este caso, esta secuencia de comandos nos será útil en temas posteriores. Mediante el comando **Eliminate**, lo que hacemos es eliminar aquellas incógnitas cuyo conocimiento no nos interesa para resolver el problema, con lo que reducimos el número de ecuaciones (y de incógnitas) que **Solve** debe abordar. En nuestro caso eliminaremos a y oh, con lo que nos quedará una única ecuación en que la única incógnita es h. El código completo se muestra a continuación:

```
\begin{split} &\ln[1] \coloneqq \text{ClearAll}["\text{Global} `*"] \\ &\ln[2] \coloneqq \text{ca} \equiv 0.01; \, kw \equiv 10^{-14}; \\ &\ln[3] \coloneqq p \equiv \text{Eliminate}[\{\text{ca} \coloneqq a, h \coloneqq a + \text{oh}, h * \text{oh} \coloneqq kw\}, \{a, \text{oh}\}] \\ &\text{Out}[3] \coloneqq -1. \times 10^{12} \text{ h} + 1. \times 10^{14} \text{ h}^2 \equiv 1. \\ &\ln[4] \coloneqq s \equiv \text{Solve}[p, h] \\ &\text{Out}[4] \equiv \{\{h \to -1. \times 10^{-12}\}, \{h \to 0.01\}\} \\ &\ln[6] \coloneqq ph \equiv -\text{Log}[10, s[[2, 1, 2]]] \\ &\text{Out}[6] \equiv 2. \end{split}
```

De los ejemplos anteriores es posible extraer ciertas reglas o normas a las que conviene prestar especial atención cada vez que nos planteamos la escritura de un código MATHEMATICA[®]:

- 1- Todos los comandos MATHEMATICA[®] se escriben siempre con la primera letra en mayúscula. No hacerlo así impide que MATHEMATICA[®] reconozca el comando.
- 2- El argumento de todo comando se escribe siempre entre corchetes (no son válidos ni paréntesis ni llaves): ClearAll[argumento], Eliminate[argumento], ...
- 3- Un signo igual significa asignación: ca = 0.01 quiere decir que, en adelante, cuando escribamos ca es como escribir 0.01. El doble signo igual significa igualdad en el sentido matemático: el miembro de la derecha es igual al de la izquierda: h = a + oh. El doble signo debe emplearse siempre que se desee implementar una ecuación.
- 4- La separación entre asignaciones de parámetros o entre comandos dentro de una misma secuencia (un mismo input) se realiza mediante un punto y coma: a=1;b=1;c=2; ...
- 5- El punto y coma tras un comando o asignación evita que MATHEMATICA[®] explicite el output correspondiente. Contrariamente, sin el punto y coma MATHEMATICA[®] escribe el output en pantalla, por obvio que sea:

```
In[1]:= a = 1 + 1;
In[2]:= b = 1 + 2
Out[2]= 3
```

G J. Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7

6- Debido al punto 1, es conveniente (aunque no necesario) escribir los parámetros y variables de nuestro código empleando letras minúsculas (ca, h, oh, ph...). De este modo evitamos definir accidentalmente una variable con el mismo nombre que un comando que desconocemos, con el consecuente error:

```
In[1]:= d = 1; d
Out[1]= 1
In[2]:= D = 1; D
Set::wrsym : Symbol D is Protected. More...
Out[2]= D
```

7- Ante la duda en lo referente a la sintaxis de un determinado comando, resulta muy útil acudir al panel de ayuda implementado en MATHEMATICA[®]. Podemos acceder a él usando las opciones del menú Help/Find Selected Function que hay dentro del menú principal.

5.2. Cálculo de la presión final en equilibrios en fase gaseosa

Una vez hemos resuelto el problema del cálculo de la presión final en un equilibrio gaseoso haciendo uso de los recursos que ofrece la hoja de cálculo EXCEL[®] (capítulo 4, apartado <u>4.2</u>), en este apartado utilizaremos MATHEMATICA[®] para el cálculo de la presión final en el mismo ejemplo.

Recordemos la expresión que toma la constante del equilibrio gaseoso:

$$K_{p} = \frac{(P_{c} + x) \cdot (P_{d} + 2x)^{2}}{(P_{a} - x) \cdot (P_{b} - x)}$$

Esta expresión entre corchetes y precedida del comando adecuado es suficiente para que MATHEMATICA[®] pueda darnos la solución de la ecuación:

$$\begin{aligned} &\ln[1] \coloneqq \text{ClearAll}["\text{Global} *"] \\ &\ln[2] \coloneqq \text{kp} = 1; \text{ pa} = 1; \text{ pb} = 2; \text{ pc} = 1; \text{ pd} = 0; \\ &\ln[3] \coloneqq \text{s1} = \text{Solve}[\text{kp} \coloneqq (\text{pc} + \mathbf{x}) * (\text{pd} + 2\mathbf{x})^2 / ((\text{pa} - \mathbf{x}) * (\text{pb} - \mathbf{x})), \mathbf{x}] \\ &\text{Out}[3] \coloneqq \left\{ \left\{ \mathbf{x} \rightarrow \frac{1}{4} \left(-1 - \frac{3^{2/3}}{(7 + 2\sqrt{13})^{1/3}} + (3(7 + 2\sqrt{13}))^{1/3} \right) \right\}, \\ &\left\{ \mathbf{x} \rightarrow -\frac{1}{4} + \frac{3^{2/3}(1 + i\sqrt{3})}{8(7 + 2\sqrt{13})^{1/3}} - \frac{1}{8}(1 - i\sqrt{3})(3(7 + 2\sqrt{13}))^{1/3} \right\}, \\ &\left\{ \mathbf{x} \rightarrow -\frac{1}{4} + \frac{3^{2/3}(1 - i\sqrt{3})}{8(7 + 2\sqrt{13})^{1/3}} - \frac{1}{8}(1 + i\sqrt{3})(3(7 + 2\sqrt{13}))^{1/3} \right\}, \end{aligned} \end{aligned}$$

Como muestra el ejemplo anterior, el comando **Solve** trata siempre de ofrecer soluciones mediante fórmulas explícitas. Para ecuaciones algebraicas de una variable, esto será posible siempre que la mayor potencia de la variable sea como máximo cuatro. El resultado en forma numérica puede obtenerse del siguiente modo:

 $\label{eq:ln[4]:= s1 = s1 // N $$ Out[4]= \{ \{x \to 0.408663\}, \{x \to -0.579331 + 0.942273 \, i\}, \{x \to -0.579331 - 0.942273 \, i\} \} $$ \label{eq:ln[4]:= s1 = s1 // N } $$ \label{eq:ln[4]:= s1 // N } $$ \lab$

Obtenemos pues dos soluciones complejas y una solución real, que es la que nos interesa:

ln[5]:= x = s1[[1, 1, 2]] Out[5]= 0.408663

Finalmente, calculamos la presión final como:

```
In[6]:= pf = pa + pb + pc + pd + x
Out[6]= 4.40866
```

En las situaciones en que **Solve** no es capaz de ofrecer fórmulas explícitas o cuando simplemente deseemos una aproximación (más o menos precisa) a la solución, podemos hacer uso del comando **NSolve**. Este comando ofrece una aproximación numérica a las soluciones de la ecuación utilizando métodos numéricos como la *Factorización de Gauss* o los *Productos de Markowitz*:

```
In[1]:= ClearAll["Global`*"]
    kp = 1; pa = 1; pb = 2; pc = 1; pd = 0;
    s2 = NSolve[kp == (pc + x) * (pd + 2 x) ^2 / ((pa - x) * (pb - x)), x]
Out[2]= {{x → -0.579331 + 0.942273 i}, {x → -0.579331 - 0.942273 i}, {x → 0.408663}}
```

En el ejemplo anterior se puede constatar la potencia de MATHEMATICA[®] a la hora de realizar algunos procesos matemáticos que resultan a menudo mucho más costosos aplicando EXCEL[®]. Por ejemplo, la resolución de problemas con ecuaciones de grado superior a 2 no representa en general ninguna complicación adicional cuando trabajamos con MATHEMATICA[®]. De hecho, en este apartado hemos resuelto un problema en que intervenía una ecuación de orden 3 mediante el mismo esquema que utilizamos en <u>5.1</u> para ecuaciones de grado 2. Comandos como **Solve**, **NSolve** o **FindRoot** tienen ya implementadas rutinas de cálculo iterativo que nos facilitan en gran medida la programación. Para obtener información acerca de los métodos iterativos que emplean estos y otros comandos puede consultarse el panel de ayuda de MATHEMATICA[®] (**Help/Find Selected Function** dentro del menú principal). En ciertos casos resulta posible escoger el método iterativo particular a emplear, así como manipular a voluntad los parámetros relativos a la precisión del resultado, el número máximo de iteraciones, etc.

5.3. Perturbaciones del equilibrio químico: El principio de Le Chatelier

Uno de los fenómenos de mayor interés en relación al equilibrio químico es ver cómo se desplaza el grado de avance de una reacción química, inicialmente en equilibrio, al producirse una perturbación externa. El principio de Le Chatelier determina dicho desplazamiento. A continuación abordaremos el estudio de este principio aplicado a un caso concreto, con ayuda de MATHEMATICA[®]. Empecemos por recordar el enunciado de dicho principio:

Si tenemos un sistema cerrado en equilibrio químico y externamente producimos una perturbación que rompe dicho equilibrio se generan procesos espontáneos en la dirección que tiende a restablecer el equilibrio del sistema.

Para poder ver el desplazamiento, hacia reactivos o productos, de una reacción química que tiene lugar en el seno de un reactor cerrado, es útil definir primero el concepto de grado de avance de la reacción. El grado de avance es aquel parámetro numérico ξ cuyo valor nos indica, en el camino de reactivos a productos, el punto en que se encuentra nuestra reacción. Hay diversas alternativas para definir el origen, $\xi=0$, del grado de avance. En lo que sigue, tomaremos $\xi=0$ al principio de la reacción, esto es, cuando mezclamos reactivos y/o productos y éstos aun no han empezado a reaccionar. Por ello, según la reacción vaya hacia reactivos o productos, el grado de avance será negativo o positivo, respectivamente.³

Consideremos la reacción:

 $a A + b B \rightleftharpoons c C + d D$

La estequiometría obliga a que si una cantidad diferencial dn_a de moles del reactivo A desaparece, también desaparezca una cantidad dn_b de moles del reactivo B, a la vez que aparecen cantidades diferenciales dn_c y dn_d de moles de productos C y D, de manera proporcional a los coeficientes estequiométricos:

$$-\frac{dn_a}{a} = -\frac{dn_b}{b} = \frac{dn_c}{c} = \frac{dn_d}{d} = d\xi$$

Si integramos la primera de las ecuaciones anteriores,

$$-\frac{dn_a}{a} = d\xi$$

entre el valor inicial n_a^0 , correspondiente a un valor $\xi = 0$, y un valor cualquiera n_a , correspondiente a un grado de avance ξ , obtenemos:

$$n_a = n_a^0 - a\xi$$

³ Alternativamente, podríamos definir el grado de avance como una magnitud positiva, $0 < \xi < \xi_M$, si tomamos el valor cero como el correspondiente al valor máximo que, dada una estequiometría y unos moles iniciales, pueden alcanzar los reactivos.

Procediendo de manera similar para el resto de reactivos y productos obtenemos:

$$n_b = n_b^0 - b \xi$$
$$n_c = n_c^0 + c \xi$$
$$n_d = n_d^0 + d \xi$$

Como decíamos, definido de este modo, el grado de avance puede tomar valores tanto positivos como negativos y su módulo puede ser mayor que la unidad.

Una vez tenemos definido el grado de avance procedemos a considerar un ejemplo de reacción química sobre la que produciremos perturbaciones externas en la presión, temperatura y volumen, y estudiaremos, con ayuda de MATHEMATICA[®], cómo responde el grado de avance. Será la reacción en fase gaseosa ideal siguiente:

 $C(g) \rightleftharpoons A(g) + B(g)$

Para trabajar cómodamente con MATHEMATICA® definimos:

- na0 = moles iniciales de producto A
- nb0 = moles iniciales de producto B
- nc0 = moles iniciales del reactivo C
- nin = moles de un gas inerte que pudiera estar presente en el reactor
- nt = número total de moles

eps (epsv,epsp) = grado de avance (en función del volumen, en función de la presión)

- kp = constante de equilibrio
- t = temperatura Kelvin
- v = volumen
- p = presión total
- r = constante de gases

Comenzaremos por limpiar la memoria y definir los moles de cada compuesto y número total de moles en función del grado de avance:

```
In[1]:= ClearAll["Global`*"];
In[2]:= na = na0 + eps;
    nb = nb0 + eps;
    nc = nc0 - eps;
    nt = na + nb + nc + nin;
```

También será conveniente introducir la orden siguiente que evita que el MATHEMATICA[®] nos escriba una advertencia de posible error cada vez que escribamos una variable de grafía similar a otra introducida previamente:

in[6]= Off[General::spell, General::spell1];

Antes de comenzar con las simulaciones debemos tener en cuenta que la constante de equilibrio depende de la temperatura, por lo que deberemos explicitar dicha dependencia:

$$kp = Exp\left[\frac{-\Delta G^0}{r \cdot t}\right]$$
, donde ΔG^0 , la entalpía libre de reacción, es a su vez función de la temperatura.

Imaginemos una dependencia del tipo $\Delta G^0 = a\mathbf{1} + b\mathbf{1} \cdot t + c\mathbf{1} \cdot t \cdot Ln[t] + d\mathbf{1} \cdot t^2 + e\mathbf{1}/t$, con a1=-0.1, b1=0.5, c1=-0.001, d1=-0.002, e1=-0.000001, r=0.082. La implementación de estas dependencias en nuestro código MATHEMATICA[®] queda:

La constante de equilibrio kp la podemos expresar también en términos de número de moles y volumen o presión total:

$$kp = \frac{P_a \cdot P_b}{P_c} = \frac{na \cdot nb}{nc} \cdot \frac{r \cdot t}{v} = \frac{na \cdot nb}{nc} \cdot \frac{p}{nt}$$

Podemos, pues, escribir el grado de avance en términos de la constante de equilibrio y el volumen o la presión. Para obtener el grado de avance en función del volumen resolvemos la ecuación de la constante de equilibrio escrita en términos del grado de avance:⁴

$$\ln[10]:= aux = Solve[kp == \frac{na * nb}{nc} * \frac{r * t}{v}, eps];$$

$$epsv1 = aux[[1, 1, 2]]; epsv2 = aux[[2, 1, 2]];$$

De manera similar, en función de la presión el grado de avance se determinaría con la orden:

$$\ln[12]:= aux2 = Solve [kp == \frac{na * nb}{nc} \frac{p}{nt}, eps];$$

$$epsp1 = aux2[[1, 1, 2]]; epsp2 = aux2[[2, 1, 2]];$$

⁴ Por motivos de presentación, en las dos siguientes secuencias de comandos MATHEMATICA[®] se ha evitado explicitar las extensas expresiones a que da lugar la ejecución del comando **Solve**. Para ello se ha hecho uso del punto y coma, si bien se recomienda al lector ejecutar dichas secuencias en su ausencia. De este modo le resultará más evidente la nomenclatura empleada en la definición de las expresiones epsv1, epsv2, epsp1, epsp2.

Las ecuaciones anteriores son de segundo grado y tienen por tanto dos soluciones. Sin embargo, solo una de ellas tiene sentido físico, puesto que solo hay una posición de equilibrio, definida por un determinado grado de avance. Para saber cuál de las dos soluciones debemos tomar y cuál debemos descartar, particularizamos las soluciones para unas condiciones dadas, con objeto de obtener valores numéricos y poder descartar así aquella solución que conduzca a un valor numérico sin sentido físico. Elegimos, por ejemplo, una mezcla formada por un mol de cada sustancia, que ocupe un volumen unidad a la temperatura de 300 K:

 $ln[14]:= epsv1 /. \{na0 \rightarrow 1, nb0 \rightarrow 1, nc0 \rightarrow 1, nin \rightarrow 1, t \rightarrow 300, v \rightarrow 1\}$ Out[14]= -1.6234

En este caso, hemos utilizado por conveniencia el signo /. para sustituir datos en la expresión de epsv1. El signo /. significa asignación temporal: cuando, ahora, calculo epsv1 el valor de na0 será 1, el de nb0 será 1, etc., pero la asignación de estos valores no queda almacenada para posteriores operaciones (ver apéndice 11.10).

El resultado que acabamos de obtener no tiene sentido físico, pues partiendo de 1 mol de cada sustancia, un grado de avance -1.6234 da lugar a moles negativos de producto. La cantidad de moles puede ser pequeña o grande, pero nunca negativa. Probamos pues con la otra solución:

```
ln[16]:= epsv2 /. \{na0 \rightarrow 1, nb0 \rightarrow 1, nc0 \rightarrow 1, nin \rightarrow 1, t \rightarrow 300, v \rightarrow 1\}
Out[16]:= -0.52474
```

Este resultado sí que tiene sentido físico, por lo que tomaremos la segunda solución en adelante. Comprobamos ahora la solución que debemos tomar cuando el grado de avance se expresa en términos de la presión. Análogamente, calculamos las dos soluciones en unas condiciones dadas:

```
\label{eq:linear} \begin{array}{ll} \ln[16]:= \mbox{epsp1} /. \{ na0 \rightarrow 1, \mbox{nb0} \rightarrow 1, \mbox{nc0} \rightarrow 1, \mbox{nin} \rightarrow 1, \mbox{t} \rightarrow 300, \mbox{p} \rightarrow 1 \} \\ Out[16]:= \mbox{-}3.59733 \\ \ln[17]:= \mbox{epsp2} /. \{ na0 \rightarrow 1, \mbox{nb0} \rightarrow 1, \mbox{nc0} \rightarrow 1, \mbox{nin} \rightarrow 1, \mbox{t} \rightarrow 300, \mbox{p} \rightarrow 1 \} \\ Out[17]:= \mbox{0.812654} \end{array}
```

Vemos que también en este caso la segunda solución es la buena. Por tanto, escribiendo epsv2 o epsp2 MATHEMATICA[®] nos proporcionará el grado de avance si le definimos los moles, presión, volumen, temperatura, etc.

Antes de proceder a la simulación de un cambio en las condiciones de equilibrio del sistema necesitamos definir dichas condiciones de equilibrio (número de moles de cada componente, presión, temperatura, etc.). Para ello tomamos una mezcla inicial de 1 mol de A, 1.2 moles de B, 0.5 moles de C, y 1.5 moles de un gas inerte, todo ello a la temperatura de 300K y presión 5 atmósferas, y dejamos evolucionar el sistema a presión

y temperatura constantes. Una vez alcanzado el equilibrio, calculamos la nueva configuración del sistema, que constituirá el estado de referencia a perturbar:

```
ln[18]:= ref = epsp2 /. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5\}
Out[18]= 0.0659705
```

Volumen en el equilibrio:

 $ln[19]:= vref = nt * r * t / p /. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow ref\}$ Out[19]= 20.9886

Moles en el equilibrio:

```
\label{eq:linear} \begin{array}{l} \ln[20] \coloneqq n \arg f = n \arg /. \ \{ eps \rightarrow ref, \ na0 \rightarrow 1 \} \\ \\ Out[20] \coloneqq 1.06597 \\ \\ \ln[21] \coloneqq nbref = nb /. \ \{ eps \rightarrow ref, \ nb0 \rightarrow 1.2 \} \\ \\ Out[21] \coloneqq 1.26597 \\ \\ \ln[22] \coloneqq ncref = nc /. \ \{ eps \rightarrow ref, \ nc0 \rightarrow 0.5 \} \\ \\ Out[22] \coloneqq 0.43403 \end{array}
```

Una vez establecido el estado de referencia, provoquemos la perturbación de algunos de los parámetros del sistema. Para ello tomaremos los parámetros del equilibrio calculados anteriormente como las nuevas condiciones iniciales de nuestro sistema, con lo que el grado de avance que determinaremos representará el desplazamiento de la reacción desde el equilibrio de referencia hasta el nuevo equilibrio alcanzado tras la perturbación:

```
Disminución de volumen:

[n[23]:= epsv2 /. {na0 → naref, nb0 → nbref, nc0 → ncref, nin -> 1.5, t -> 300, v → vref - 5}
Out[23]:= -0.0694189
Aumento de volumen:

[n[24]:= epsv2 /. {na0 → naref, nb0 → nbref, nc0 → ncref, nin -> 1.5, t -> 300, v → vref + 5}
Out[24]:= 0.0515739
Aumento de presión:

[n[26]:= epsp2 /. {na0 → naref, nb0 → nbref, nc0 → ncref, nin -> 1.5, t -> 300, p → 8}
Out[26]:= -0.130158
Disminución de presión:

[n[26]:= epsp2 /. {na0 → naref, nb0 → nbref, nc0 → ncref, nin -> 1.5, t -> 300, p → 2}
Out[26]:= 0.204641
```

```
- Aumento de temperatura:

ln[27]:= epsp2 /. \{na0 \rightarrow naref, nb0 \rightarrow nbref, nc0 \rightarrow ncref, nin -> 1.5, t -> 350, p \rightarrow 5\}

Out[27]= 0.254308
```

- Disminución de temperatura:

```
ln[28]:= epsp2 /. \{na0 \rightarrow naref, nb0 \rightarrow nbref, nc0 \rightarrow ncref, nin -> 1.5, t \rightarrow 250, p \rightarrow 5\}
Out[28]= -0.34817
```

Vemos cómo al aumentar/disminuir la presión o disminuir/aumentar el volumen, a temperatura constante, el sistema evoluciona desplazando el equilibrio hacia reactivos/productos, donde hay menor/mayor número de moles. Así mismo vemos variación de ξ con T.

CUESTIÓN.- A la vista del resultado obtenido al variar la temperatura entre 250 y 350 K, indica si la reacción C (g) \rightleftharpoons A (g) + B (g) es endotérmica o exotérmica en este intervalo de temperaturas.

Como puede extraerse de su enunciado, el principio de Le Chatelier atañe exclusivamente a sistemas cerrados (aquellos que no intercambian materia con su entorno), por lo que únicamente contempla perturbaciones del equilibrio producidas por variaciones de presión, temperatura o volumen. Sin embargo, es común extender el principio a sistemas abiertos, y estudiar la respuesta del sistema a pequeñas adiciones o sustracciones de reactivos, productos o inertes. Estudiamos a continuación dicha respuesta empleando el mismo procedimiento que en los casos anteriores:

- Aumento de gas A: $ln[29]:= epsp2 /. \{na0 \rightarrow naref + 1, nb0 \rightarrow nbref, nc0 \rightarrow ncref, nin -> 1.5, t -> 300, p \rightarrow 5\}$ Out[29]= -0.143773
- Aumento de gas B:

 $ln[30]:= epsp2 /. \{na0 \rightarrow naref, nb0 \rightarrow nbref + 1, nc0 \rightarrow ncref, nin -> 1.5, t -> 300, p \rightarrow 5\}$ Out[30]= -0.112574

- Aumento de gas C:

 $ln[31]:= epsp2 /. \{na0 \rightarrow naref, nb0 \rightarrow nbref, nc0 \rightarrow ncref + 1, nin -> 1.5, t -> 300, p \rightarrow 5\}$ Out[31]= 0.662554

- Aumento de gas inerte a presión constante: $ln[32]:= epsp2 /. \{na0 \rightarrow naref, nb0 \rightarrow nbref, nc0 \rightarrow ncref, nin -> 1.5 + 2, t -> 300, p \rightarrow 5\}$ Out[32]= 0.0938039
- Aumento de gas inerte a volumen constante:

 $\label{eq:ln[33]:= epsv2 /. {na0 \rightarrow naref, nb0 \rightarrow nbref, nc0 \rightarrow ncref, nin -> 1.5 + 2, t -> 300, v \rightarrow vref} \\ Out[33]= 0.$

Es importante señalar que la perturbación del equilibrio químico en sistemas abiertos puede dar lugar, en algunos casos, a respuestas a primera vista sorprendentes. Un estudio detallado de la respuesta a perturbaciones que rompen el equilibrio químico en sistemas abiertos se propone como ejercicio dirigido en el tema 10, apartado <u>10.3</u>.

EJERCICIO.- Repite la práctica para el equilibrio:

$$2 \operatorname{A}(g) + \operatorname{B}(g) \rightleftharpoons \operatorname{C}(g) + 3 \operatorname{D}(g),$$

Usa la misma constante de equilibrio en función de la temperatura que se ha utilizado en la práctica anterior.

6. Aplicación de programas de cálculo simbólico para la resolución de problemas con sistemas de ecuaciones

6.1. Cálculo del pH de un ácido débil monoprótico

En el tema <u>4</u>, apartados <u>4.3</u>, <u>4.5</u> y <u>4.7</u>, se abordó el problema de la obtención del pH de disoluciones acuosas de distintos ácidos mediante hojas de cálculo EXCEL[®]. Estos cálculos pueden llevarse a cabo de forma rápida mediante el programa MATHEMATICA[®], sin necesidad de recurrir a las simplificaciones que se emplean comúnmente cuando el problema se resuelve de forma analítica.

Recordemos el sistema de ecuaciones que intervienen en el cálculo del pH de un ácido débil HA:

Balance de cargas: $[H^+] = [A^-] + [OH^-]$ Balance de masas: $C_a = [A^-] + [HA]$

$$K_{a} = \frac{[H^{+}] \cdot [A^{-}]}{[HA]} ; K_{w} = [H^{+}] \cdot [OH^{-}]$$

Tenemos pues un sistema de cuatro ecuaciones con cuatro incógnitas $([H^+], [HA], [A^-], [OH^-])$. A partir de este sistema podemos extraer las variables que deseemos, y obtener una expresión solo dependiente de $[H^+]$. Para ello utilizamos el comando **Eliminate** (véase el apartado <u>5.1</u>):

```
In[1]:= ClearAll["Global`*"]
In[2]:= p = Eliminate[{h == a + oh, ca == a + ha, ka == h * a / ha, h * oh == kw}, {ha, a, oh}]
Out[2]= h<sup>2</sup> + h<sup>2</sup> ka - h kw - ka kw == ca h ka
```

La expresión obtenida relaciona la concentración de protones con los parámetros del sistema, y es válida para cualquier ácido monoprótico y cualquier valor de su concentración inicial. Obtendremos a continuación el pH para un ácido particular ($ka = 1.5*10^{-5}$) con una concentración inicial ca = 0.1. Para ello, definimos dichos parámetros (así como kw) y resolvemos la ecuación obtenida (ecuación a la que hemos llamado p) mediante el comando **Solve**:

 $\label{eq:lin} \begin{array}{ll} \ln[3]:= & \mbox{ca} = 0.1; \ \mbox{ka} = 1.5 \star 10^{-5}; \ \mbox{kw} = 10^{-14}; \\ \mbox{in}[4]:= & \mbox{s} = & \mbox{Solve}[p, \ \mbox{h}] \\ \mbox{out}[4]:= & \mbox{{\{}} \{ \ \mbox{h} \to -0.00123227 \}, \ \mbox{{\{}} h \to -1.\times 10^{-13} \}, \ \mbox{{\{}} h \to 0.00121727 \} \} \end{array}$

La solución positiva es la concentración de protones que se obtuvo en el apartado <u>4.3</u> mediante el método de Newton-Raphson en EXCEL[®]. Como se ha podido comprobar, mediante MATHEMATICA[®] es más rápido, en este caso, llegar a la solución de un polinomio de grado 3.

Para finalizar el problema, solo queda obtener el menos logaritmo decimal de la única solución con sentido químico:

In[5]:= ph = -Log[10, s[[3, 1, 2]]]
Out[5]= 2.91461

En los siguientes apartados incluimos algunos casos más complejos para mostrar que la resolución de los problemas de equilibrio en disolución se limita a resolver un problema de n ecuaciones con n incógnitas. Esto no quiere decir que ya no sea preciso aprender a resolver estos problemas con ayuda de aproximaciones. La intuición de "qué pasa" en disolución la debe tener el químico sin necesidad de hacer cálculos. Ésta es, de hecho, la única ayuda de que dispone para darse cuenta de que un determinado cálculo tiene un error. En otras palabras, excepto los decimales, debemos saber el resultado de un problema antes de abordar su cálculo.

En particular abordaremos el cálculo del pH de una disolución de un ácido débil diprótico, de otro triprótico y de una mezcla que contiene tanto ácidos como bases débiles. Debe subrayarse la sistemática de resolución: se escriben todas las constantes de equilibrio (incluyendo, por supuesto, el equilibrio iónico del agua), todos los balances de materia y el balance de cargas. Con ello debemos tener tantas ecuaciones como incógnitas. Puesto que estamos interesados en el pH, despejamos la concentración de protones y resolvemos el polinomio que se obtiene. De entre las soluciones, solo una tiene sentido químico, le calculamos el menos logaritmo decimal y obtenemos de este modo el pH de la disolución.

6.2. Cálculo del pH de un ácido débil diprótico

Supongamos la disolución de una cantidad inicial C_a de un ácido diprótico H₂A. Los equilibrios presentes en disolución son los siguientes:

$$H_{2}A \rightleftharpoons HA^{-} + H^{+} \qquad K_{a1} = \frac{[HA^{-}] \cdot [H^{+}]}{[H_{2}A]}$$
$$HA^{-} \rightleftharpoons A^{2-} + H^{+} \qquad K_{a2} = \frac{[A^{2-}] \cdot [H^{+}]}{[HA^{-}]}$$
$$H_{2}O \rightleftharpoons H^{+} + OH^{-} \qquad K_{w} = [H^{+}] \cdot [OH^{-}]$$

Los balances de masa y carga quedan:

Balance de masas: $C_a = [H_2A] + [HA^-] + [A^{2-}]$ Balance de cargas: $[H^+] = [HA^-] + 2 \cdot [A^{2-}] + [OH^-]$ Es importante notar la diferente expresión que toman los balances de masa y carga con respecto al caso de ácidos monopróticos. Recomendamos aquí la consulta del apéndice <u>11.8</u>, donde se detalla el modo de obtener estas expresiones.

Una vez establecido el sistema de ecuaciones, empleamos el mismo esquema que en apartado anterior para obtener el pH utilizando MATHEMATICA[®] (comando **Eliminate** para obtener la ecuación de la concentración de protones, definición de parámetros, resolución de la ecuación mediante **Solve** y cálculo del menos logaritmo decimal de la única solución con sentido químico). El código se muestra a continuación:

6.3. Cálculo del pH de un ácido débil triprótico

Del mismo modo que en el apartado anterior, escribimos los equilibrios que tienen lugar en disolución y obtenemos las ecuaciones del sistema:

$H_3A \rightleftharpoons H_2A^- + H^+$	$K_{a1} = \frac{[H_2A^-] \cdot [H^+]}{[H_3A]}$
$H_2 A^- \rightleftharpoons H A^{2-} + H^+$	$K_{a2} = \frac{[HA^{2-}] \cdot [H^+]}{[H_2 A^-]}$
$HA^{2-} \rightleftharpoons A^{3-} + H^+$	$K_{a3} = \frac{[A^{3-}] \cdot [H^+]}{[HA^{2-}]}$
$H_2O \rightleftharpoons H^+ + OH^-$	$K_w = [H^+] \cdot [OH^-]$

Balances:

Balance de masas: $C_a = [H_3A] + [H_2A^-] + [HA^{2-}] + [A^{3-}]$ Balance de cargas: $[H^+] = [H_2A^-] + 2 \cdot [HA^{2-}] + 3 \cdot [A^{3-}] + [OH^-]$

Así pues, el código MATHEMATICA[®] queda:

6.4. Cálculo del pH en mezclas de ácidos y bases débiles

En este apartado consideraremos la determinación del pH de una disolución de un ácido débil triprótico H_3A de concentración inicial C_0 , a la que además incorporamos dos de sus sales sódicas, NaH₂A y Na₂HA, con concentraciones iniciales C_1 y C_2 respectivamente. Aunque es más complicado en su planteamiento, este problema no entraña ninguna dificultad adicional en lo que se refiere a su programación en MATHEMATICA[®].

Comenzamos, como siempre, planteando las reacciones y equilibrios en disolución. Las sales sódicas se disocian **completamente**, dando lugar a los iones correspondientes:

$$NaH_2A \rightarrow Na^+ + H_2A^-$$

 $Na_2HA \rightarrow 2Na^+ + HA^{2-}$

Es importante fijarse en la presencia del ión Na^+ (ausente en los problemas anteriores), pues por tratarse de una especie cargada deberá incluirse en el balance de cargas. También debe notarse que este ión no participa posteriormente en ningún equilibrio, por lo que su concentración inicial total ($C_1 + 2C_2$, suma de la concentración de iones Na^+ aportados por la disociación de la especie NaH_2A y de los aportados por la disociación del Na_2HA) se conservará cuando el sistema haya alcanzado el equilibrio. Así pues, podemos escribir que:

$$[Na^+] = C_1 + 2 \cdot C_2$$

El resto de equilibrios en disolución son los mismos que en el apartado anterior:

$$H_3A \rightleftharpoons H_2A^- + H^+ \qquad K_{a1} = \frac{[H_2A^-] \cdot [H^+]}{[H_3A]}$$

$H_2A^- \rightleftharpoons HA^{2-} + H^+$	$K_{a2} = \frac{[HA^{2-}] \cdot [H^+]}{[H_2 A^-]}$
$HA^{2-} \rightleftharpoons A^{3-} + H^+$	$K_{a3} = \frac{[A^{3-}] \cdot [H^+]}{[HA^{2-}]}$
$H_2O \rightleftharpoons H^+ + OH^-$	$K_w = [H^+] \cdot [OH^-]$

Y los balances, teniendo en cuenta lo expuesto anteriormente, quedan:

```
Balance de masas: C_0 + C_1 + C_2 = [H_3A] + [H_2A^-] + [HA^{2-}] + [A^{3-}]
Balance de cargas: [H^+] + [Na^+] = [H_2A^-] + 2 \cdot [HA^{2-}] + 3 \cdot [A^{3-}] + [OH^-]
```

Hemos obtenido un total de siete ecuaciones con siete incógnitas, que implementamos en MATHEMATICA[®]:

6.5. Diagramas concentración/pH

En este apartado emplearemos MATHEMATICA[®] para calcular los diagramas de concentración-pH de distintos ácidos. Comencemos con el caso del ácido acético, el cual ya fue planteado en el apartado <u>4.4</u>. Como decíamos en dicho apartado, disponemos de tres datos para resolver un problema de dos incógnitas. Los datos son: la constante K_a de acidez del ácido acético, la concentración inicial c_0 de acético y el pH. Necesitamos pues dos ecuaciones donde aparezcan las dos incógnitas junto con los datos conocidos. Estas ecuaciones son la de la constante de equilibrio y el balance de materia:

$$K_a = \frac{[Ac^-][H^+]}{[AcH]}$$
; $c_0 = [AcH] + [Ac^-]$

De estas ecuaciones debemos despejar las concentraciones de ácido acético y anión acetato en función del pH. Después representamos el Logaritmo de estas concentraciones, para lo que utilizamos el comando **Plot**:⁵

ln[6]:= << Graphics `Legend`</pre>

$$\label{eq:linear} \begin{split} &\ln[6] \coloneqq \operatorname{Plot}[\{\operatorname{soll}, \operatorname{soll}\}, \{\operatorname{pH}, 0, 14\}, \operatorname{PlotStyle} \rightarrow \{\operatorname{RGBColor}[0, 0, 1], \operatorname{RGBColor}[1, 0, 0]\}, \\ &\operatorname{PlotRange} \rightarrow \{-12, 0\}, \operatorname{Frame} \rightarrow \operatorname{True}, \operatorname{FrameLabel} \rightarrow \{"\operatorname{pH}", "\operatorname{Log}(\operatorname{conc.})"\}, \\ &\operatorname{PlotLegend} \rightarrow \{"\operatorname{Ac-}", "\operatorname{AcH}"\}, \operatorname{LegendSize} \rightarrow \{0.5, 0.4\}, \operatorname{LegendShadow} \rightarrow \operatorname{None}, \\ &\operatorname{LegendPosition} \rightarrow \{-0.3, -0.3\}, \operatorname{PlotLabel} \rightarrow "\text{Acido acético"}] \end{split}$$

En el caso del ácido sulfhídrico, que es un ácido diprótico, tenemos una incógnita más, pero también tenemos una constante de equilibrio más:

$$K_{1} = \frac{[SH^{-}][H^{+}]}{[SH_{2}]}; \qquad K_{2} = \frac{[S^{2-}][H^{+}]}{[SH^{-}]}; \qquad c_{0} = [SH_{2}] + [SH^{-}] + [S^{2-}]$$

De estas ecuaciones debemos despejar las concentraciones de ácido sulfhídrico, anión bisulfuro y anión sulfuro en función del pH. Después representamos el Logaritmo de estas concentraciones en frente del pH, como se muestra a continuación:

In[1]:= ClearAll["Global`*"]

⁵ Este comando presenta una amplia gama de opciones que permiten variar el aspecto de la gráfica. La sintaxis de las que se muestran en los ejemplos así como de otras muchas puede encontrarse en la ayuda de MATHEMATICA[®].

```
ln[6]:= << Graphics `Legend`</pre>
```

```
In[7]:= Plot[{sol1, sol2, sol3}, {pH, 0, 14},
```

 $\begin{aligned} & \text{PlotStyle} \rightarrow \{\text{RGBColor}[0, 0, 1], \text{RGBColor}[0, 1, 0], \text{RGBColor}[1, 0, 0]\}, \\ & \text{PlotRange} \rightarrow \{-12, 0\}, \text{Frame} \rightarrow \text{True}, \text{FrameLabel} \rightarrow \{\text{"pH"}, \text{"Log}(\text{conc.})\text{"}\}, \\ & \text{PlotLegend} \rightarrow \{\text{"S"}, \text{"SH"}, \text{"SH2"}\}, \text{LegendSize} \rightarrow \{0.5, 0.4\}, \text{LegendShadow} \rightarrow \text{None}, \\ & \text{LegendPosition} \rightarrow \{0.2, -0.4\}, \text{PlotLabel} \rightarrow \text{"Ácido sulfhídrico"} \end{aligned}$


```
Out[7]= - Graphics -
```

Análogamente, en el caso del ácido fosfórico tenemos:

In[1]:= ClearAll["Global`*"]

ln[7]:= << Graphics `Legend`</pre>

Plot[{sol1, sol2, sol3, sol4}, {pH, 0, 14},
PlotStyle → {RGBColor[0, 0, 1], RGBColor[0, 1, 1], RGBColor[0, 1, 0],
 RGBColor[1, 0, 0]}, PlotRange → {-12, 0}, Frame → True,
FrameLabel → {"pH", "Log(conc.)"}, PlotLegend → {"PO4", "PO4H", "PO4H2", "PO4H3"},
LegendSize → {0.5, 0.4}, LegendShadow → None, LegendPosition → {0.9, -0.4},
PlotLabel -> "Ácido fosfórico"]


```
- Graphics -
```

7. Ajuste de datos experimentales a funciones lineales

7.1. Ajuste lineal por mínimos cuadrados. Ley de Beer

El ajuste de datos experimentales a funciones lineales es un cálculo de gran utilidad en estudios de ciencias, pues gran parte de las leyes físicas y químicas se basan en relaciones lineales entre variables.

Cualquier experimento lleva consigo un error aleatorio intrínseco, lo que hace que los valores obtenidos varíen en cierto grado en sentido positivo o negativo respecto al valor teórico, siguiendo las leyes de la probabilidad.

Estudiemos un caso práctico. La Ley de Beer dice que la concentración de un compuesto en disolución tiene una relación lineal con la absorbancia. Este último parámetro será estudiado en la asignatura correspondiente, pero baste saber en nuestro caso que es un parámetro que podemos medir mediante un colorímetro, instrumento óptico que nos sirve para su medición en disoluciones de diferentes concentraciones de compuestos coloreados.

Teóricamente, la medición de la absorbancia de diferentes disoluciones con concentraciones crecientes de compuesto coloreado nos daría una recta descrita por la ecuación

$$y = B \cdot x + A$$

donde B es la pendiente de la recta y A es el corte con ordenadas, tal como se muestra en la siguiente figura:

Sin embargo al realizar el experimento en el laboratorio observamos que los diferentes puntos experimentales están cerca de lo que sería una recta teórica, pero no coinciden exactamente con ella, como consecuencia del error aleatorio experimental comentado anteriormente.

Puesto que los valores de la pendiente (*B*) y de corte con ordenadas (*A*) no los conocemos *a priori*, debemos calcularlos matemáticamente por medio del Método de los Mínimos Cuadrados (ver detalles del método en las secciones <u>11.5</u> y <u>11.6</u> de los apéndices). Asimismo, será deseable poder calcular un coeficiente de la regresión (*r*) que nos diga el grado de coincidencia entre los valores experimentales y la recta teórica calculada a partir de ellos,⁶ o sea, que nos indique la bondad de nuestro ajuste. Este coeficiente sería 1 en el caso de que la coincidencia fuera total, y va bajando su valor a medida que los puntos experimentales se separan de la recta ideal. Las fórmulas del Método de los Mínimos Cuadrados se detallan a continuación:

Para la recta $y = B \cdot x + A$

$$B = \frac{\overline{xy} - \overline{x} \ \overline{y}}{\overline{x^2} - \overline{x}^2}$$
$$A = \overline{y} - B \ \overline{x}$$
$$r = \frac{n \cdot \Sigma(x \cdot y) - (\Sigma x) \cdot (\Sigma y)}{\sqrt{(n \cdot \Sigma x^2 - (\Sigma x)^2) \cdot (n \cdot \Sigma y^2 - (\Sigma y)^2)}}$$

Ya estamos en condiciones de abordar el ajuste de unos datos experimentales a una recta. En la hoja $EXCEL^{(R)}$ de la siguiente figura se pueden observar los datos obtenidos en el laboratorio al medir la absorbancia (*y*) de patrones de concentraciones crecientes de un analito coloreado (*x*) con un colorímetro. En este caso se conoce que la relación entre ambos parámetros es una recta.

⁶ Este coeficiente es la raíz cuadrada del producto $B\beta$ de las pendientes correspondientes al ajuste y = Bx + A, en el que la x se toma como la variable independiente, y al ajuste $x = \beta y + \alpha$, donde ahora es la y la que se toma como variable independiente. Este coeficiente únicamente tiene sentido para ajustes lineales. Existe otro coeficiente, ρ , llamado de autocorrelación o simplemente de correlación, que es más conocido y su uso no se limita a regresiones lineales. Podemos encontrarlo definido en la sección <u>11.5</u> de los apéndices. EXCEL[®] suele proporcionar el cuadrado de este coeficiente y lo denomina R^2 .

Micros	oft Excel - Capitulo7EXCEL1				_ 6	N ×
Arch	vo Edición Ver Insertar Eormato Herramientas Datos	Ventana ?			Escriba una pregunta	×
			Arial 💌 10 💌 🕅		000 [•] 08 ₊08 1≓ 1≓ • 22 • A	• •
E7	Za w the way w the sponder congampios Xa = A7*B7	i erminar revision 🖕				
	Α	В	С	D	E	•
1						
2						
3						
4	x = Concentración	y = Absorbancia				
5	1	2,2				
6	2	3,3				
7	3	3,8				
8	4	5,2				
9	5	6,2				
10	6	6,8				
11	7	8,1				
12	8	9,3				
13	9	9,9				
14	10	10,6				
15						
16						
17						
18						
19						
20						
21						
22						
23						
	Prob8 / Hoja2 / Hoja3 / Hoja4 / Hoja5 / Hoja6 / Hoja7 / H	loja8 🗸 Hoja9 🗶 Hoja10 🗶 Hoja11 🗶 Hoja12 📈 I	Hoja13 🖌 Hoja14 🖌 Hoja15 🛛 📢		1 '	цÈ
Di <u>b</u> ujo •	🗟 Autoformas 🕶 🔪 🔪 💭 🈂 🐗 🎲 🔝 🚵	· <u> </u>			ALL INC.	

Si representamos los datos anteriores el resultado es el siguiente:

Como se puede observar en la gráfica los puntos no coinciden exactamente con una recta, por lo que debemos aplicar el Método de los Mínimos Cuadrados. Si analizamos con detenimiento las fórmulas anteriores nos damos cuenta de que son necesarios sumatorios, sumatorios de productos etc., por lo que el diseño de la hoja debe considerar el cálculo de estos parámetros como se presenta en la siguiente figura. Se

incluye el número de puntos (*n*) calculado mediante la nueva función CONTAR(), que detecta el número de entradas en un determinado campo. Asimismo se representan los puntos correspondientes a los datos experimentales y la recta teórica (*ycalc*).

Kł Mi	rosoft Excel - Ca	pitulo7EXCEL1									_ <u>-</u>
۰	<u>A</u> rchivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar <u>E</u> ormato	Herramientas Gráfico	Ve <u>n</u> tana <u>?</u>					Escriba u	una pregunta	×
D 1	2 🖬 🔩 🖨	🖪 🖤 👗 🖻 🛍 • 😒	🖉 🗠 • 🖓 • 🚱	Σ - 🏦 👌 🚮 🛍 🖉	- 💝 🛛 Arial	• 8 •	N <i>K</i> <u>s</u> = =	≡ 🖾 🕾 € :	% 000 *08 ₊08 ₣	岸 健 🖩 📲 🍕	<u>></u> - A
1 100	ta ta 🗷 😘	🖆 🗹 ங 🙉 🐄 Res	ponder con gambios T	erminar revisión 🖕							
G	áfico 2 👻 👻	fx									
	A	В	С	D	E	F	G	н	1	J	-
1				n =	10						
2											
3											
4	Concentrac	y = Absorbancia	x^2	y^2	xy	(x- <x>)^2</x>	(y- <y>)^2</y>	ycalc			
5	1	2,2	1	4,84	2,2	20,25	18,8356	2,214545			
6	2	3,3	4	10,89	6,6	12,25	10,4976	3,175758			
7	3	3,8	9	14,44	11,4	6,25	7,5076	4,136970			
8	4	5,2	16	27,04	20,8	2,25	1,7956	5,098182			
9	5	6,2	25	38,44	31,0	0,25	0,1156	6.059394			
10	6	6,8	36	46,24	40,8	0,25	0,0676	7,020606			
11	7	8,1	49	65,61	56,7	2,25	2,4336	7,981818			
12	8	9,3	64	86,49	74,4	6,25	7,6176	8,943030			
13	9	9,9	81	98,01	89,1	12,25	11,2896	9,904242			
14	10	10,6	100	112,36	106,0	20,25	16,4836	10,86545			
15						Suma	Suma				
16						82,5	76,644				
17	suma(x)	55		media x =	5,5	(
18	suma(y)	65,4		media y=	6,54		Aju	ste por mínimo	os cuadrados	;	
19	suma(x^2)	385		media x^2 =	38,5						
20	suma(y^2)	504,36		media y^2 =	50,436	1	² T				
21	suma(xy)	439		media x·y=	43,9	1	n 1			_	
22							°		•	•	
23						<u>n</u>	8 		•		_
24	В	A									
25	0,961212	1,253333				Ê	6 -				
26	r					ps a					
27	0,9973					▲ .	4 †	*			
28	01-00	0-40					2 ↓ ◆		•	y – Ausurua	ancia
29	SD^2	Sa^2					-			— ycaic	
30	0,000636	0,024493					o 🗕 🛶 🛶				-
31	SP*2						0 2	4 E	i 8	10	12
32	0,052485							concen	tración		
24							7				
25											
36											
30	N Prob8	pia2 / Hoia3 / Hoiad / Hoi-	a5 / Hoia6 / Hoia7 / H	oia8 / Hoia9 / Hoia10 / Hoia14	/ Hois12 / Hois12	Hoja14 / Hoja15					
Dibut	Autoform										
Listo	- Macoronn				• • •					NUM	
1410 00										NOPI	

Las fórmulas empleadas en la hoja de EXCEL[®], incluyendo los nombres de celdas definidos son:

Es necesario calcular la incertidumbre de los parámetros calculados y del ajuste, tanto en su conjunto como en cada uno de los puntos del intervalo estudiado. Las fórmulas, cuya deducción viene en el apéndice <u>11.5</u>, son las siguientes:

Varianzas de la pendiente B, ordenada en el origen A, regresión y del valor teórico (o calculado) de la y:

$$S_{B}^{2} = \frac{S_{reg}^{2}}{n(\overline{x^{2}} - \overline{x}^{2})}$$

$$S_{A}^{2} = \frac{S_{reg}^{2}}{n} + \overline{x}^{2}S_{B}^{2}$$

$$S_{reg}^{2} = \frac{1}{n-2}\sum(y - A - Bx)^{2}$$

$$S_{ycalc}^{2} = \frac{S_{reg}^{2}}{n} \cdot \left(1 + \frac{n \cdot (x_{i} - \overline{x})^{2}}{\sum(x - \overline{x})^{2}}\right)$$

Cálculo de incertidumbres de los parámetros calculados:

$$I(B) = t \cdot S_B$$
$$I(A) = t \cdot S_A$$
$$I(ycalc) = t \cdot S_{ycalc}$$

donde *t* es un estadístico que sigue una distribución normal y tiene en cuenta el número de puntos ajustados, dándonos una estimación de la incertidumbre con un cierto nivel de probabilidad. Las tablas se incluyen en el apéndice 11.5.

Las fórmulas detalladas anteriormente se incluyen en la hoja para el cálculo de las incertidumbres:

Se representa la *y* calculada (*ycalc*) junto con su cota de error inferior y superior a lo largo del rango de concentraciones considerado. Las fórmulas son:

La hoja completa tendría el siguiente aspecto:

Cambiando las entradas de x e y por otras nuevas la hoja se recalcularía automáticamente y daría los nuevos parámetros del ajuste. Esta es la ventaja de construir una hoja de cálculo: basta introducir los nuevos datos, manteniendo el resto de la hoja como está, para obtener los nuevos resultados.

Existen fórmulas para el cálculo de ajustes en el caso que A o B se consideren parámetros conocidos (por ejemplo, que nuestro modelo obligue a que la recta pase por el origen, en cuyo caso A debe ser exactamente cero). Estas fórmulas se encuentran detalladas y comentadas en el apéndice 11.6.

Además de poder programar las fórmulas para la realización de ajustes por mínimos cuadrados, EXCEL® ofrece la posibilidad de utilizar la función ESTIMACION.LINEAL, la cual devuelve a partir de valores de x e v conocidos, los valores de A (corte con ordenadas), B (pendiente), sus respectivas desviaciones, la desviación de la regresión y el coeficiente de correlación R^2 . Además, ofrece otros parámetros que no son de interés para los casos que vamos a resolver en este curso.

La sintaxis de esta función es la siguiente:

ESTIMACION.LINEAL(conocido *y*;conocido *x*;constante;estadística)

Conocido x y conocido y son los valores x e y a partir de los cuales se calcula la recta y=Bx+A mediante el método de mínimos cuadrados. Constante se refiere al corte con el eje de ordenadas. Estadística devuelve los parámetros estadísticos que deseemos (desviaciones de pendiente, corte con ordenadas, coeficiente de regresión, etc). En ambos casos debemos teclear "VERDADERO". La Ayuda de EXCEL[®] nos indica con exactitud la sintaxis de todos los parámetros que podemos obtener y su descripción.

Concretamente, la matriz de resultados que nos devuelve la función ESTIMACION.LINEAL es de la siguiente forma para una recta y=A+Bx y siguiendo la nomenclatura de este texto:

В	A
$S_{\scriptscriptstyle B}$	$S_{\scriptscriptstyle A}$
R^2	S_{reg}
F	grados de
	libertad
D_y^2	D^2_{reg}

Para obtener el resultado en forma matricial es necesario seleccionar una región 2 x 5 celdas en la hoja de calculo, insertar función ESTIMACION.LINEAL(RANGO y; RANGO x; VERDADERO; VERDADERO) y, una vez rellenados los datos en la ventana de diálogo, en vez de simplemente **aceptar**, utilizar las teclas:

Los parámetros (B, A, S_B , S_A , R^2 y S_{ree}) son los más interesantes a la hora de caracterizar el ajuste realizado. Mención especial merece la F, estadístico que nos indica la validez del ajuste. Siempre que el valor de la F 106

obtenido con nuestros valores sea mayor que el valor de la F tabulado para los grados de libertad del ajuste se puede decir que el modelo utilizado, en este caso una recta, es correcto. Normalmente, siempre obtendremos valores de F muy elevados que nos indican la relación lineal de las variables x, y.

Además, el asistente para gráficos de EXCEL[®] ofrecen la posibilidad, mediante el menú específico que aparece asociado a los puntos de la gráfica, de dibujar en cualquier gráfica la recta teórica ajustada mediante la opción **Agregar línea de tendencia** y, entre las opciones, la presentación de la fórmula de la función y el coeficiente de regresión, tal como se puede observar en las figuras:

ia ta u "ycalc" A		SERIES(Pro c	tesponder con cambio b8!\$H\$4;Prob8!\$A; D n =	s Terminar re 55:\$A\$14;Pro E 10	visión b8!\$H\$5:\$H\$1 F	4;2) G	H I	J	К	L	M	N	0	P	
ncentrac 1 2 3 4 5 6 7 8 9 9 10	y = Absorbancia 2,2 3,3 3,8 5,2 6,2 6,8 8,1 9,3 9,9 10,5	x ² 1 4 9 16 25 36 49 84 81 100	y^2 4,84 10,89 14,44 27,04 38,44 45,81 86,49 98,01 112,36	xy 2,2 6,6 11,4 20,8 31,0 40,8 56,7 74,4 89,1 106,0	(X-«X*) ² 20,25 12,25 6,25 0,25 0,25 2,25 8,25 12,25 12,25 20,25 Suma 805	(y- <y>)^2 18,8356 10,4976 7,5076 1,7956 0,1156 0,0676 2,4336 7,6176 11,2896 11,2896 15,4336 Suma 76,644</y>	vcalc 2,214545 3,175758 4,136970 5,098182 6,059394 7,020606 7,981818 8,943030 9,904242 10,86545								
ma(x) ma(y) ha(x^2) ha(y^2) na(xy) B 64242	55 65,4 385 504,36 439		media x = media y= media x^2 = media y^2 = media x·y=	5,5 6,54 38,5 50,436 43,9		Ajur	ste por mínimos cua	drados Ś							
9973 500636 5742 52485	Sa^2 0,024493				Absort		4 concer	ormato de gerie o ipo de gráfico latos de grigen Igregar línea de <u>t</u> orrar	endencia						
(B) =)58163	I(A) = 0,360894	SucalcA2	t -	2,306		12 T	Err	or del ajuste							
1 2 3 4 5 6 7 8 9 10	2,214545 3,175758 4,136970 5,098182 6,059394 7,020606 7,981818 8,943030 9,904242 10,86545	0,018131 0,013042 0,003225 0,006680 0,005408 0,005408 0,006680 0,009225 0,013042 0,018131	0,310507 0,253346 0,221479 0,188471 0,188574 0,188574 0,188471 0,221479 0,221479 0,223346 0,310507	2,525053 3,439103 4,358449 5,286653 6,228968 7,190180 8,170289 9,164510 10,16759 11,17596	1,904038 2,912412 3,915490 4,909711 5,889820 6,851032 7,793347 8,721551 9,640897 10,55495	- 01 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	2 4	6 soncentración	ycałc error i error i 3 10	rup. nf. 12					
► R A	ob8 / Hoja2 / Hc Aytoformas -	ja3 / Hoja4 / H	ioja5 / Hoja6 / Hoja f_convi Capi	/ (Hojas / Ho 2 - 2 - Excel	ija9 / Hoja10 / ▲ → ☰ <mark>◯</mark> NUEV.	Hoja11 / Hoja E 🗬 💣 .	12 ∕ Hoja13 ∕ Hoja1 	+	nda Cero - Micro	sof 🔀 M	icrosoft Exc	:el - C 🦉	p106-1 - Paint	NUM	3 7 4
Nort Exhive E	abb (Hoja2 (Hc Aytoformas -) () () () () () () () () () () () () (ja3 ∠ Hoja4 ∠ E	bija5 (Hoja6 (Hoja		na 2 b019th\$5;\$H\$	Hoja11	al2 / Hoja13 / Hoja13 Bandoja de en Bandoja de en	+	nda Cero - Micro	sof 💌 M	icrosoft Exc	el - C 🦉	p106-1 - Paint Escriba una *∞ +∞ ft ff	NUM pregunta tik == < d	2) 2 - 2 -
Pi Pre	obb / Hojs2 / Hic Autoformas - Autoformas - Color	(Figst / F / Figst /	0045 L Holas L Holas ↓ 1046 L Holas L ↓ 1046 L Holas L Holas L ↓ 1046 L Holas L Holas L ↓ 1046 L Holas L Holas L Holas L ↓ 1046 L Holas L	Z / Holge Z + He Excell infino Vegtar	No ≥ 2 No ⇒ ⇒ ⇒ No ⇒ ⇒ ⇒ ⇒ No > No > No No > No > No > No > No > No >	Hogell / Hogell High Image: Comparison of the state of	H I Veale 2,214545 3,175756 4,135970 5,09164 1,135970 5,09164 9,904242 10,06545	• (Hojatš (*]) • () () () () () () () () () (nda Cero - Micro	sof 🕅 M	Incrosoft Exc	€ % 000	p106-1 - Pant Escriba una **d +*d +*d ↓	pregunta tik ⊞ + d	
Proc Image: Contract of the contrac	auto / Hojaz / Hic Autoformas - Color	(100 - 100 -	Const L Holas X Holas C Holas X Holas	$\begin{array}{c} \mbox{$\mathbb{A}$} \land $$	terminic <i>μ</i>	Holati / Holati	H I Vealc I 2,214545 3,172750 3,172750 6,069162 6,069162 6,059344 7,921616 9,44322 10,06545 10,06545 10,06545 10,06545 tendencia o regresión 7,0216	z (rejait5 (≤] () () () () () () () () () (nda Cero - Micre	sof E M	M	eel - C)	p106-1 - Pant Escriba una *% +% +% (\$\vec{k}\$) O	num © pregunta ti⊭ ⊞ + ś	
Processor Image: Second Each second Each second Each second Each second Each second Each second S	bib / Hojs2 / Hic Autoformas - Color Color C	(2009 / C + 000 / C	ouas / Holas / Holas ↓ Casa ↓ Casa	A Holges ζ His	No 2 No 2 No </td <td>Hojati (Hojati (Hojati</td> <td>Control Control C</td> <td>J pairomail pairomail pairomail pairomail</td> <td>nda Cero - Micre</td> <td>sof R M</td> <td>M</td> <td>eel - C)</td> <td>p106-1 - Pant Escriba una **0 +*0 €</td> <td>Progunta FIE - 4</td> <td></td>	Hojati (Hojati	Control C	J pairomail pairomail pairomail pairomail	nda Cero - Micre	sof R M	M	eel - C)	p106-1 - Pant Escriba una **0 +*0 €	Progunta FIE - 4	
Pice Pice Image: Second	accel = Capitudo /I Californias - Californias - <td>(B) Information (B) Information (B) Information (Contemporation (Contemporation</td> <td>Cost C + Holas C + H</td> <td>2 Λ Hoges ζ His</td> <td>terms (terms) 20 20 20</td> <td>Hojali (Hojali (Hojali</td> <td>Bandeja de en Bandeja de en Ba</td> <td>v (rejaits (* 1) rada (()) () v () () () () () () () () () (</td> <td>Inda Cero - Micro</td> <td>sof 🖂 M</td> <td>Icrosoft Exc</td> <td>et - C)</td> <td>p106-1 - Pant</td> <td>Putet pregunta tik ⊞ + d</td> <td></td>	(B) Information (B) Information (B) Information (Contemporation	Cost C + Holas C + H	2 Λ Hoges ζ His	terms (terms) 20 20 20	Hojali (Hojali	Bandeja de en Bandeja de en Ba	v (rejaits (* 1) rada (()) () v () () () () () () () () () (Inda Cero - Micro	sof 🖂 M	Icrosoft Exc	et - C)	p106-1 - Pant	Putet pregunta tik ⊞ + d	
Fi (Perc) Is	bb9 Hoja2 Hic Autoformas - - Color -	(100) (100)	cues / frojac / Hojac ↓ dia 2 (2) ↓ dia 2	2,308 2,308 2,308 2,308 2,308 2,308 2,308 2,308 2,308 2,308 2,308 2,308	elez (Holaido , A → elevisión () 24 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×	Hojeli ↓ Hoje Image: Constraint of the state of t	H H I 2,214545 3,17576 4,13970 3,17576 4,13970 3,17576 4,13970 3,17576 4,13970 1,319700 1,319700 1,319700 1,319700 1,319700 1,319700 1,31900	<pre>s / Hoparts <1]</pre>	nda Cero - Mere	sof [2] M	ICPOSOR Exc	eel - C)	p106-1 - Pant Escriba una *:0 -:0 1)€	Puter	
Fi Dero I I I </td <td>col-be / Hojsz / Ho Autoformas - Autoformas - col-be Col-be Col-be Col-be</td> <td>(100 - 100 -</td> <td>Cost Cost Cost Cost Cost Cost Cost C</td> <td>2,2505 2,25</td> <td>error Int, 1,94038 9,24 %↓ ∭ 12,25 13,25 1,97 1,97 1,97 1,95</td> <td>Poiet1 Hoge11 Hoge Image: Second Se</td> <td>Bandeja de end Bandeja de end Bandej</td> <td><pre>t / resparts <1)</pre></td> <td>Image: Market Sector Image: Market Sector</td> <td>sof [2] M</td> <td>Icrosoft Exe</td> <td>eel - C)</td> <td>p106-1 - Pant Escriba una *.%% ↓</td> <td>Progunta FIE - 4</td> <td></td>	col-be / Hojsz / Ho Autoformas - Autoformas - col-be Col-be	(100 - 100 -	Cost Cost Cost Cost Cost Cost Cost C	2,2505 2,25	error Int, 1,94038 9,24 %↓ ∭ 12,25 13,25 1,97 1,97 1,97 1,95	Poiet1 Hoge11 Hoge Image: Second Se	Bandeja de end Bandeja de end Bandej	<pre>t / resparts <1)</pre>	Image: Market Sector Image: Market Sector	sof [2] M	Icrosoft Exe	eel - C)	p106-1 - Pant Escriba una *.%% ↓	Progunta FIE - 4	

2	Microsoft E	xcel - Capitulo7I	EXCEL1														_ 8	\times
8	Archivo	Edición Ver I	nsertar Eormat	o <u>H</u> erramientas	Gráfico Ventar	na <u>2</u>									Escriba una	pregunta	67	×
	। 📂 🔜 🤅	😫 🖨 🖪 🖤	🕺 🖻 🛍 •	S - C+ -	🕘 Σ - 🔐) 24 Z4 🛍 🛛	- 2	*		~ ~	₩ <i>K</i> <u>s</u>			€ % 000 *	-8 ₊°8 ∰	信 -	🕭 • A	• •
一個	a ta ta i	a 😘 🛍 🖄) 🖷 🔂 🐄	Responder con gambio	os Ter <u>m</u> inar re	visión 🖕												
Se	erie "ycalc"	- <i>f</i> ∗	=SERIES(Pro	b8I\$H\$4;Prob8I\$A	\$5:\$A\$14;Pro	b8!\$H\$5:\$H\$14	(2)											
1	A	B	с	D	E 10	F	G	н	1	J	к	L	M	N	0	P	Q	-
2					10													-
3	Concentrac	v = Absorbancia	×^2	V^2	XV	(x-sx=)^2	(V-sva)*2	veale										- 1
5	1	2,2	1	4,84	2,2	20,25	18,8356	2,214545										
6	2	3,3	4	10,89	6,6	12,25	10,4976	3,175758										
7	3	3,8	9	14,44	11,4	6,25	7,5076	4,136970										- 1
8	4	5,2	16	27,04	20,8	2,25	1,7956	5,098182									_	- 11
10	6	6.2	25	46.24	40.8	0,25	0,1156	7 020606									-	- 11
11	7	8.1	49	65.61	56.7	2.25	2,4336	7,981818										-
12	8	9,3	64	86,49	74,4	6,25	7,6176	8,943030										
13	9	9,9	81	98,01	89,1	12,25	11,2896	9,904242										_
14	10	10,6	100	112,36	106,0	20,25	16,4836	10,86545									_	- 1
16						82.5	Agregar líne	a de tender	ncia			? >		-	-		-	-11
17	suma(x)	55		media × =	5,5		- The - 17									-		-
18	suma(y)	65,4		media y=	6,54		Tipo (opciones ; [1					
19	suma(x^2)	385		media ×^2 =	38,5		Nombre de	la linea de tei	ndencia									- 11
20	suma(y*2)	504,36		media y ² =	50,436	12	<u>A</u> utoma	ática: Lir	neal (ycalc)								_	- 11
22	suma(xy)	438		niedia x-y=	43,8	10	C Person	alizada:									-	- 11
23																		
24	В	А				e lei	Extrapolar											
25	0,961212	1,253333					Hacia dela	nte: 0	🛨 Unida	ades								
26	r						Hacia atrá:	s: lo	🔄 Unida	ades								- 11
28	0,9973					< 1			-								-	- 11
29	Sb^2	Sa^2				2			0									
30	0,000636	0,024493						ntersection =										
31	Sr^2						I Presenta	ir <u>e</u> cuacion en	el grafico									- 11
32	0,052485						I_ Presenta	ar el valor <u>R</u> cu	uadrado en el	gráfico							_	- 1
34					-		-										-	- 1
35																		
36	I(B) =	I(A) =																
37	0,058163	0,360894		t =	2,306													-
38																		-
40	×	ycalc	Sycalc*2	l(ycalc)	error sup.	error inf.										-		-
41	1	2,214545	0,018131	0,310507	2,525053	1,904038					Aceptar	Cancelar						
42	2	3,175758	0,013042	0,263346	3,439103	2,912412							-				_	- 11
43	3	4,136970	0,009225	0,221479	4,358449	3,915490	- ă		1	and the second se			-	-	-	-	-	-11
44	5	6.059394	0.005408	0,169574	6.228968	5,889820	1 5 6 -		- Andrewson and a second						-	-	-	-11
46	6	7,020606	0,005408	0,169574	7,190180	6,851032	i ŝ.	100	and the second se		ycalc							
47	7	7,981818	0.006680	0,188471	8,170289	7,793347					error s	up.						
48	8	8,943030	0,009225	0,221479	9,164510	8,721551	2 -	-			error in	if.						- 11
49	9	9,904242	0,013042	0,263346	10,16759	9,640897						_					_	- 1
51	10	10,00345	0,018131	0,310507	11,17580	10,55485	0	2	4	6 8	10	12					-	- 1
52							H		conce	ntración								
53																		
54																		
55											-					-	_	
57							-					-		-	-		-	-
50	4 5 51 Da		1-2 / Haind / H	LIF / Hairs / Hair	7 / 4-1-0 / 4-		laia11 / Maia17	/ 4-1-12 /	U-1-14 / LL	aia 15 a	1							1
1.00									појатч Д н	0,010								11
Dib	onio ▲ 13	Autoformas •	X L O E		· · · · · · · · · · · · · · · · · · ·	▲ • = = = ŧ												
List	٥ ,			,												NUM		
<i>d</i> -)	Inicio 🞯	۲	informatica-v	/f_convi 🖸 🗀 Cap	DEXCEL	C NUEVAS	CAP	🌀 Bandeja	a de entrada .	🦉 Ond	la Cero - Micros	sof 🛛 🔣 M	icrosoft Exc	el - C 🦉	p108-1 - Paint		14:	29

Los diferentes menús nos permiten dibujar la recta teórica, modificar su formato, y la inclusión en la gráfica de la ecuación de la recta y la R^2 .

7.2. Calibrados e interpolación

Como hemos dicho anteriormente, el ajuste de datos experimentales a funciones lineales es un cálculo de gran utilidad en estudios de ciencias. Veamos un ejemplo de ello mediante el ejemplo desarrollado en el apartado anterior.

A partir de un ajuste lineal de datos experimentales, que como hemos visto anteriormente se construye a partir de disoluciones de concentración conocida de un determinado compuesto coloreado, podemos determinar la concentración de dicho compuesto en una disolución de concentración desconocida interpolando el valor de la absorbancia que nos mide el colorímetro.

- 8 × Ð • 🕭 • A D 😂 🖬 🔨 📇 🖏 🖤 👗 ங 🛤 • 🛷 🗠 • • • • 🍓 🗵 🔹 🔂 👌 👬 🛍 🐼 130% 🔹 🙄 Aria xs≡≡≡≡⊠9€%∞***,%∉₽ • 10 • N 🗵 ங 🝙 🐄 🛛 🏠 🏜 🖆 🖾 🛍 fx. B n = 10 4 5 6 7 ycaic 2,214545 3,175758 4,136970 5,098182 6,059394 4,84 10,89 18,8356 10,4976 2,2 3,3 20,25 12,25 2,2 6,6 4 3,8 5,2 6,2 14,44 27,04 38,44 11,4 20,8 31,0 6,25 2,25 0,25 7,5076 1,7956 0,1156 9 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 16 25 0,0676 2,4336 7,6176 46,24 65,61 40,8 56,7 0,25 2,25 6 6,8 36 49 .020606 7,981818 8 9.3 64 86.49 74.4 6.25 8.943030 89.1 106.0 11,2896 16,4836 9,904242 10,86545 9 10 21 98,01 12,25 100 10,6 112,36 20,25 76,644 82,5 5,5 6,54 38,5 suma(x) 55 media x = suma(y) suma(x^2) media y= media x^2 = 65.4 Ajuste por mínimos cuadrado 385 504.36 suma(v^2) media v^2 = 50.436 12 suma(xy) 439 43,9 media x·y= 10 ε Absorbancia A 1,253333 0,961212 6 0,9973 4 y = Absorbancia Sa^2 0,024493 2 Sb^2 0,000636 ycald о Sr^2 0 2 4 6 8 10 12 0,052485 concentración 36 ۲ 🔹 🕨 Prob8 / Hoja2 / Hoja3 / Hoja4 / Hoja5 / Hoja6 / Hoja7 / Hoja8 / Hoja9 / Hoja10 / Hoja11 / Hoja12 / Hoja13 / Hoja14 / Hoja15 Dibuio - 🕞 Autoformas - 🚿 🔨 🗆 🔿 🔛 🥼 🔝 🔯 • 🖉 • 📥 • = = 🚍 🚍 🍘

Tenemos el ajuste anterior a partir de disoluciones de concentración conocida:

Se mide ahora la absorbancia de una disolución de concentración desconocida del compuesto que queremos cuantificar. Supongamos que el colorímetro nos indica una Absorbancia de 6.3. Podemos despejar x (concentración) de la ecuación de la recta y calcularla, puesto que conocemos A, B, y el valor de la absorbancia (y).

En la siguiente hoja se muestra el cálculo y su representación gráfica:

Esta operación se puede realizar con cualquier disolución problema del compuesto de interés en el intervalo de concentraciones estudiado. Fuera de este intervalo el cálculo significaría una extrapolación con un error excesivo.

Como se ha visto en el anterior apartado, se pueden calcular los errores cometidos en la determinación de los parámetros del ajuste y el intervalo de confianza (error superior e inferior). Se propone al alumno como ejercicio que enriquezca la hoja anterior incluyendo el cálculo de las incertidumbres del ajuste. Para ello basta aplicar las fórmulas descritas para este fin en el apartado anterior. Una alternativa, quizás más simple operativamente, es la siguiente. Partimos del ajuste y=A+Bx, donde y es la variable aleatoria y x la no aleatoria que fijamos en ciertos valores x_i para los que medimos y_{ij} (detalles en apéndices 11.5 y 11.6). A partir de la ecuación anterior obtenemos x=(y-A)/B. Cierto es que x no es aleatoria, pero si obtenemos sus valores χ_i a partir de la determinación de y_i y los parámetros ajustados A y B, tenemos que el valor obtenido χ_i sí que es aleatorio y su varianza, de acuerdo con el apéndice 11.5.1, es

$$S_{\chi_i}^2 = \left(\frac{\partial \chi}{\partial A}\right)^2 S_A^2 + \left(\frac{\partial \chi}{\partial B}\right)^2 S_B^2 + \left(\frac{\partial \chi}{\partial y}\right)^2 S_{reg}^2 = \left(\frac{A - y_i}{B^2}\right)^2 S_B^2 + \frac{S_A^2 + S_{reg}^2}{B^2}$$

Por tanto, podemos estimar $\chi_i = (y_i - A)/B$, así como su imprecisión $I(\chi_i) = t \sqrt{S_{\chi_i}^2}$ (*t* es la llamada *t* de Student, cuyo valor es aproximadamente 2 para un amplio rango de ajustes, ver tabla en apéndice 11.5).

8. Ajuste de datos experimentales a funciones no lineales

En este capítulo se aplica el programa MS EXCEL[®] al ajuste de funciones no lineales. Para ello se utiliza, en primer lugar, el ejemplo de la curva de valoración de un ácido fuerte con una base fuerte, lo que permite abordar los diferentes aspectos del proceso de ajuste. A continuación se aplica lo aprendido a diferentes problemas del ámbito de la química, en los cuales se deben ajustar datos experimentales a las funciones no lineales correspondientes.

8.1. Simulación de una curva de valoración ácido fuerte-base fuerte

Estudiemos la curva de valoración de un ácido fuerte con una base fuerte con el objetivo de determinar el punto exacto de equivalencia mediante diferentes métodos.

Consideremos como ejemplo la valoración de HCl con NaOH. En primer lugar debemos plantear las ecuaciones químicas que describen el sistema en medio acuoso:

$$HCl \to H^{+} + Cl^{-}$$

$$NaOH \to Na^{+} + OH^{-}$$

$$H_2O \rightleftharpoons OH^{-} + H^{+}$$

El balance de cargas es:

$$[H^+] + [Na^+] = [Cl^-] + [OH^-]$$

Sea Cb = concentración de base Vb = volumen de base Ca = concentración de ácido Va = volumen de ácido Kw = producto iónico del agua

Entonces,
$$[H^+] + \frac{Cb \cdot Vb}{Va + Vb} = \frac{Ca \cdot Va}{Va + Vb} + \frac{Kw}{[H^+]}$$

igualando a 0

$$[H^{+}]^{2} - M \cdot [H^{+}] - Kw = 0$$
⁽¹⁾

donde

$$M = \frac{Ca \cdot Va - Cb \cdot Vb}{Va + Vb}$$

8.1.1. Aplicación de la hoja de cálculo MS EXCEL®

Consideremos la valoración de 10 mL de HCl 0.1 M con NaOH 0.1 M. En primer lugar debemos definir las celdas que contendrán los datos conocidos. La celda B4 se define como Ca, la B5 como Va, la B6 como Cb y

la D4 como Kw. En estas celdas colocamos el valor numérico correspondiente, el cual se describe en la celda inmediatamente a la izquierda (por ejemplo la B4 tiene su descripción en la A4).

Mediante la ecuación:

$$Veq = \frac{Va \cdot Ca}{Cb}$$

se puede deducir que el volumen de equivalencia *Veq* es de 10 mL. Utilizando la ecuación (1) se puede diseñar una hoja de cálculo para la obtención del pH exacto de la disolución para volúmenes de base adicionada de 0 a 20 mL. Como se puede observar en la figura (columna B, fila 9 y siguientes), el intervalo entre volúmenes de base añadidos se ha reducido simétricamente antes y después del volumen de equivalencia con el objetivo de tener más datos en la zona del punto de inflexión:

🕅 Mi	crosoft Exce	I - EXCELCAP8	w0							_ 8 ×
	<u>Archivo E</u> dio	ción ⊻er <u>I</u> n	sertar Eormato Herramientas Datos Ventana ?					E	criba una pregunta	×
	🖻 📕 🗟	a 🖏	券 🗈 🛍 • 🝼 ∽ • ⇔ - 🥵 Σ • 🔀 ⊉↓ 🛴 🛍 🛃	135% 🔹 🐥 Arial	- 10	• N K S		€ % 000 *00	.08 🗊 🎼 🖛 🗸	🕭 • A • 🗸
1	ta ta 2	🖻 🖄 📝	💀 😰 🐄 Responder con <u>c</u> ambios Ter <u>m</u> inar revisión 🖕							
	F5 ·	▼ fx								
	Α	B	C	D	E	F	G	н	<u> </u>	J
1	Valo	ración	ácido fuerte - base fuerte							
2										
2	Dofinici	ión do var	iables y constantes							
4	Ca	= 0 1	Kw =	= 1 F -14						
5	Va :	= 10								
6	Cb =	= 0.1				l;	•			
7										
8		Vb	pH(exacto)							
9		0,000	1,00000							
10		1,000	1,087150							
11		2,000	1,176091							
12		3,000	1,268845							
13		4,000	1,367977							
14		5,000	1,477121							
15	-	6,000	1,602060							
16		7,000	1,753328							
17	-	8,000	1,954243							
18	-	9,000	2,278754							
20	-	9,500	2,591065							
20		10 00	7 00000							
22		10,00	11 091515							
23		10,20	11.387216							
24		11,00	11,677781							
25		12,00	11,958607							
26		13,00	12,115393							
27		14,00	12,221848							
28		15,00	12,301031							
29		16,00	12,363177							
30		17,00	12,413735							
31		18,00	12,455933							
32		19,00	12,491843							
33		20,00	12,522879	_						
2/	▶ Ы∖АСВА	5 / Hoja2 / Ho	j ja3 / Hoja4 / Hoja5 / Hoja6 / Hoja7 / Hoja8 / Hoja9 / Hoja10 / Ho	oja11 / Hoja12 / Hoja13	/ Hoja14 / Hoja1	•				Þ
Dibuj	io 🔹 😓 🛛 Aut	toformas 🔹 🔨	ヽ□○≅◀≎ඞ⊠ ≥ · <u>⊿</u> · ▲ · ≡ ≡ ≓	• 🖌 -						

En la celda C9 se introduce la ecuación (1) y se arrastra hasta la celda C33:

🔀 Mic	rosoft Excel - EXCELCAP8#	40			_ 8 ×
۲	<u>A</u> rchivo <u>E</u> dición ⊻er Ins	ertar <u>F</u> ormato <u>H</u> erramie	ntas Datos Ve <u>n</u> tana <u>?</u>	Escriba una pregunta	×
	ž 🖬 🗞 🎒 🖓 🖤	🐰 🖻 🛍 • 🝼 🗠 •	Cu - Solution Σ - Re 24 X↓ III III III III III - N K S E = = = E SP € % 0	00 *08 ₊08 🞼 🏣 🔛 • .	<u>ð</u> • A • .
1	ta ta 2 🔁 🔬 😒 🛛	💀 😥 🐄 Responder cor	rgambios Terminar revisión 🖕		
	F5 ▼ f×				
	A	В	C	D	
1	Valoración a				
2					
-	Definición de varia	5			
4	Ca =	0.1	Kw =	=10^(-14)	
5	Va =	10			
6	Cb =	0.1			
7					
8		Vb	pH(exacto)		
9		0	=-LOG((((Va*Ca-B9*Cb)/(Va+B9))+((((Va*Ca-B9*Cb)/(Va+B9))^2+4*Kw)^(1/2)))/2)		
10		1	=-LOG((((Va*Ca-B10*Cb)/(Va+B10))+((((Va*Ca-B10*Cb)/(Va+B10))^2+4*Kw)^(1/2)))/2)		
11		=B10+1	=-LOG((((Va*Ca-B11*Cb)/(Va+B11))+((((Va*Ca-B11*Cb)/(Va+B11))^2+4*Kw)^(1/2)))/2)		
12		=B11+1	=-LOG((((Va*Ca-B12*Cb)/(Va+B12))+((((Va*Ca-B12*Cb)/(Va+B12))^2+4*Kw)^(1/2)))/2)		
13		=B12+1	=-LOG((((Va*Ca-B13*Cb)/(Va+B13))+((((Va*Ca-B13*Cb)/(Va+B13))^2+4*Kw)^(1/2)))/2)		
14		=B13+1	=-LOG((((Va*Ca-B14*Cb)/(Va+B14))+((((Va*Ca-B14*Cb)/(Va+B14))^2+4*Kw)^(1/2)))/2)		
15		=B14+1	=-LOG((((Va*Ca-B15*Cb)/(Va+B15))+((((Va*Ca-B15*Cb)/(Va+B15))^2+4*Kw)^(1/2)))/2)		
16		=B15+1	=-LOG((((Va*Ca-B16*Cb)/(Va+B16))+((((Va*Ca-B16*Cb)/(Va+B16))^2+4*Kw)^(1/2)))/2)		
17		=B16+1	=-LOG((((Va*Ca-B17*Cb)/(Va+B17))+((((Va*Ca-B17*Cb)/(Va+B17))^2+4*Kw)^(1/2)))/2)		
18		=B17+1	=-LOG((((Va*Ca-B18*Cb)/(Va+B18))+((((Va*Ca-B18*Cb)/(Va+B18))^2+4*Kw)^(1/2)))/2)		
19		9,5	=-LOG((((Va*Ca-B19*Cb)/(Va+B19))+((((Va*Ca-B19*Cb)/(Va+B19))^2+4*Kw)^(1/2)))/2)		
20		9,75	=-LOG((((Va*Ca-B20*Cb)/(Va+B20))+((((Va*Ca-B20*Cb)/(Va+B20))^2+4*Kw)^(1/2)))/2)		
21		10	=-LOG((((Va*Ca-B21*Cb)/(Va+B21))+((((Va*Ca-B21*Cb)/(Va+B21))^2+4*Kw)^(1/2)))/2)		
22		10,25	=-LOG((((Va*Ca-B22*Cb)/(Va+B22))+((((Va*Ca-B22*Cb)/(Va+B22))^2+4*Kw)^(1/2)))/2)		
23		10,5	=-LOG((((Va*Ca-B23*Cb)/(Va+B23))+((((Va*Ca-B23*Cb)/(Va+B23))^2+4*Kw)^(1/2)))/2)		
24		11	=-LOG((((Va*Ca-B24*Cb)/(Va+B24))+((((Va*Ca-B24*Cb)/(Va+B24))^2+4*Kw)^(1/2)))/2)		
25		=B24+1	=-LOG((((Va*Ca-B25*Cb)/(Va+B25))+((((Va*Ca-B25*Cb)/(Va+B25))^2+4*Kw)^(1/2)))/2)		
26		=B25+1	=-LOG((((Va*Ca-B26*Cb)/(Va+B26))+((((Va*Ca-B26*Cb)/(Va+B26))^2+4*Kw)^(1/2)))/2)		
27		=B26+1	=-LOG((((Va*Ca-B27*Cb)/(Va+B27))+((((Va*Ca-B27*Cb)/(Va+B27))^2+4*Kw)^(1/2)))/2)		
28		=B27+1	=-LOG((((Va*Ca-B28*Cb)/(Va+B28))+((((Va*Ca-B28*Cb)/(Va+B28))^2+4*Kw)^(1/2)))/2)		
29		=B28+1	=-LOG((((Va*Ca-B29*Cb)/(Va+B29))+((((Va*Ca-B29*Cb)/(Va+B29))^2+4*Kw)^(1/2)))/2)		
30		=B29+1	=-LOG((((Va*Ca-B30*Cb)/(Va+B30))+((((Va*Ca-B30*Cb)/(Va+B30))^2+4*Kw)^(1/2)))/2)		
31		=B30+1	=-LOG((((Va*Ca-B31*Cb)/(Va+B31))+((((Va*Ca-B31*Cb)/(Va+B31))^2+4*Kw)^(1/2)))/2)		
32		=B31+1	=-LOG((((Va*Ca-B32*Cb)/(Va+B32))+((((Va*Ca-B32*Cb)/(Va+B32))^2+4*Kw)^(1/2)))/2)		
33		=832+1	=-LOG((((Va*Ca+B33*Cb)/(Va+B33))+((((Va*Ca-B33*Cb)/(Va+B33))^2+4*Kw)^(1/2)))/2)		
2 <i>1</i> 1 1	► ► ACBAS / Hoja2 / Hoj	ia3 🖌 Hoja4 🦯 Hoja5 🖊 Hoja	5 / Hoja7 / Hoja8 / Hoja9 / Hoja10 / Hoja11 / Hoja12 / Hoja13 / Hoja14 / Hoja11 / Hoja11 •		D
Di <u>b</u> ujo	o 🔹 🗟 🛛 Autoformas 🔹 🔪	🔪 🗆 🔿 🔛 🐴 🔅	狙 📓 🏖 • 🚣 • ▲ • ≡ ☴ 금 🗳 🗃 .		
Listo				NUM	

El siguiente paso consiste en la representación gráfica de la curva de valoración, tal como se muestra en la siguiente figura. Como se puede observar se ha incluido una columna con valores de n desde el 0 al 20, de modo que el volumen de la base se calcula a partir de la ecuación:

$$Vb = Veq \cdot \left(\frac{n}{10}\right)$$

Esto se lleva a cabo para obtener automáticamente gráficas centradas en el punto de equivalencia (*Vb* es siempre igual a *Veq* cuando n=10, en la fila central y, por lo tanto, en el centro del eje de abscisas de la gráfica), puesto que en los diferentes problemas a los que nos podemos enfrentar las concentraciones y los volúmenes variarán, lo que provocaría la representación de solo el principio o el final de la gráfica o la necesidad de hacer una gráfica nueva para cada problema. Asimismo se incluye una columna (columna D) para el cálculo del pH sin tener en cuenta el producto iónico del agua, obtenido a partir de las ecuaciones:

$$\left[H^{+}\right] = \frac{Va \cdot Ca - Vb \cdot Cb}{Va + Vb} \qquad (pH < 7) ; \qquad \left[H^{+}\right] = 10^{-7} M \quad (pH = 7) ;$$

$$\left[H^{+}\right] = \frac{kw}{\left[OH^{-}\right]} = \frac{kw \cdot (Va + Vb)}{Vb \cdot Cb - Va \cdot Ca} \quad (pH > 7)$$

M	1icrosoft Exc	el - EXCELCAR	P8w1										_	B ×
8	<u>A</u> rchivo <u>E</u>	dición ⊻er	Insertar Eormato Herramientas Datos '	Ve <u>n</u> tana <u>?</u>							E	scriba una pregun	ta 💌 🗕	đΧ
	😂 🔜 🐔	1 🔿 🖪 🖤	🖓 🔉 💼 💼 • 🛷 🗠 🗠 - 🔍 ዿ Σ	- 😪 21 21 🛍 🛛	🛃 100% 🔍	Arial	- 10	• N K	s = = =	- 🖽 😨 🗲	% 000 *.8	•% fi fi fi i	- 🕭 - 1	Α
1 26	a ta ta Ca	a 🖙 xa 🕻	7 🖏 🙉 💘 Responder con cambios Terr	minar revisión										
	H23	- f		•										
	A	B	C.	D	F	F	G	Н			K		М	
1	Valorac	ión ácido	fuerte - base fuerte									La la		
-	valorac	acide	o ideite - base ideite											
2	D C					4								
3	Definicion i	<u>te variables y</u> . o i	/ constantes	- 1 - 14	-	А	cido fuerte -	Base fuerte						
5	Va =	: 10		- 10-14	14 T									
6	Cb =	0.1	∨b = (n*va*ca/cb)/10		1 1									
7					12		- 18 A							
8	n	∨b (ml)	pH(exacto)	pH (aprox)	10 -		-							
9	0,000	0,0000	1,000000	1,000000										
10	1,000	1,0000	1,087150	1,087150	- - * †									_
11	2,000	2,0000	1,176091	1,176091	- ⁻ 6 -		-							_
12	3,000	3,0000	1,200045	1,268845					pH(exacto)					
14	5,000	5,0000	1 477121	1,307377	4 +		_		(xorqa) Hq					
15	6,000	6,0000	1,602060	1,602060	2 -									
16	7,000	7,0000	1,753328	1,753328	1 * *	******								_
17	8,000	8,0000	1,954243	1,954243	0+	<u>_</u>	10							
18	9,000	9,0000	2,278754	2,278754	1 .	5	mib	ase	20	25				_
19	9,500	9,5000	2,591065	2,591065	<u> </u>									
20	9,750	9,7500	2,897627	2,897627										
22	10,00	10,0000	11 0915	11 0915										
23	10,50	10,5000	11,3872	11.3872					1					_
24	11,00	11,0000	11,6778	11,6778					-					_
25	12,00	12,0000	11,9586	11,9586										
26	13,00	13,0000	12,1154	12,1154										
27	14,00	14,0000	12,2218	12,2218										
20	16,00	16,0000	12,3010	12,3010										
30	17,00	17,0000	12,3032	12,0002										
31	18,00	18,0000	12,4559	12,4559										
32	19,00	19,0000	12,4918	12,4918										
33	20,00	20,0000	12,5229	12,5229										
34														
35														
30														
38														
39														
40														_
41														
42														_
43														
44														
46														-
14 4	ACB	AS / Hoja2 /	Hoja3 / Hoja4 / Hoja5 / Hoja6 / Hoja7 / Hoj	a8 / Hoja9 / Hoja10 / I	Hoja11 🖌 Hoja1	2 / Hoja13 / Ho	ja14 / Hoja1	1						ЪГ
Dib	ujo 🕶 😓 🛛 Aj	utoformas 👻 🚿	🔪 🔪 🖸 🍋 🕋 🕼 🖉 🖉 🗸 -	🥖 - A - 🚍 🚃 👳	🗄 🔲 📻 🗸									
Liebe												1 1 1	6 III 164	

A continuación se muestra el detalle de las nuevas ecuaciones introducidas:

<u>R</u> ∄ №	licrosoft Excel - EXCELCAF	P8w1				_ 8 ×
	Archivo Edición Ver	Insertar <u>F</u> ormato <u>H</u> erra	mientas Gráfico Ve <u>n</u> tana <u>?</u>		Escriba una pregunta	
	🚅 🔲 🖷 🖾 🖤	× 🖪 🛍 • 🚿 🖌	- · · · · · · · · · · · · · · · · · · ·	I <i>X</i> S ≡ ≡ ≡ ⊟ 🖼 € %	000 *.8 .98 (EE EE 199	- <u>></u> - A -
1 36-		2 Ra Al Walkarpoorder	con cambios Tarrinar revisión			·· •
A row	a dol arófico – 🕈					
Area		P	Ċ.	D	E	_
	A Malanasián ásisla	U	Ċ	0	L	<u> </u>
1	Valoración acido					
2					r .	
3	Definición de variables y	<i>د</i>			Á	cido fuerte -
4	Ca =	0,1	Kw =	=1U^(-14)	14 -	
6	va –	0.1	$b/b = (n^{2} a^{2} c a/c b)/10$			
7	00 -	0,1	*b = (ii *a ca/cb)/10		12	
8	n	∨b (ml)	pH(exacto)	pH (aprox)		•
9	0	=(A9*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B9*Cb)/(Va+B9))+((((Va*Ca-B9*Cb)/(Va+B9))*2+4*Kw)*(1/2)))/2)	=-LOG((Va*Ca-B9*Cb)/(Va+B9))	4 ~ 1	
10	1	=(A10*Va*Ca/Cb)/10	=-LOG((((\va*Ca-B10*Cb)/(\va+B10))+((((\va*Ca-B10*Cb)/(\va+B10))*2+4*Kw)*(1/2)))/2)	=-LOG((Va*Ca-B10*Cb)/(Va+B10))	- -8+	
11	=A10+1	=(A11*Va*Ca/Cb)/10	=-LOG((((\/a*Ca-B11*Cb)/(\/a+B11))+((((\/a*Ca-B11*Cb)/(\/a+B11))^2+4*Kw)^(1/2)))/2)	=-LOG((Va*Ca-B11*Cb)/(Va+B11))	_ <u>≂</u> _	
12	=A11+1	=(A12*Va*Ca/Cb)/10	=-LOG((((\/a*Ca-B12*Cb)/(\/a+B12))+((((\/a*Ca-B12*Cb)/(\/a+B12))^2+4*Kw)^(1/2)))/2)	=-LOG((Va*Ca-B12*Cb)/(Va+B12))	_l °⊺	
13	=A12+1	=(A13*Va*Ca/Cb)/10	=-LOG((((\/a*Ca-B13*Cb)/(\/a+B13))+((((\/a*Ca-B13*Cb)/(\/a+B13))^2+4*Kw)^(1/2)))/2)	=-LOG((Va*Ca-B13*Cb)/(Va+B13))	4	
14	=A13+1	=(A14*Va*Ca/Cb)/10	=-LUG((((Va*Ca-B14*Cb)/(Va+B14))+((((Va*Ca-B14*Cb)/(Va+B14))*2+4*Kw)*(1/2)))/2)	=-LUG((Va*Ca-B14*Cb)/(Va+B14))		
15	=A14+1 =A15+1	=(A15"Va"Ca/Cb)/10 =(A16*Va*Ca/Cb)/10	=-LOG((((\a*Ca*D15*Cb)/(\a+D15))+((((\a*Ca*D15*Cb)/(\a+D15))^2+4*KW)^(1/2)))/2) =-LOG(((\a*Ca*D15*Cb)/(\a+D15))+(((\a*Ca*D15*Cb)/(\a+D15))^2+4*KW)^(1/2)))/2)	=-LOG((Va*Ca+B15*Cb)/(Va+B15)) =-LOG((Va*Ca+B16*Cb)/(Va+B16))		• • -
17	=A16+1	=(A17*Va*Ca/Ch)/10	=-LOG((((Va*Ca-B17*Ch)/(Va+B17))+((((Va*Ca-B17*Ch)/(Va+B17))*2+4*Kw)*(1/2)))/2)	=-LOG((Va*Ca-B17*Ch)/(Va+B17))	- 0 	
18	=A17+1	=(A18*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B18*Cb)/(Va+B18))+(((Va*Ca-B18*Cb)/(Va+B18))*2+4*Kw)*(1/2)))/2)	=-LOG((Va*Ca-B18*Cb)/(Va+B18))	0 5	10
19	9,5	=(A19*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B19*Cb)/(Va+B19))+((((Va*Ca-B19*Cb)/(Va+B19))*2+4*Kw)*(1/2)))/2)	=-LOG((Va*Ca-B19*Cb)/(Va+B19))	- k	mi ba
20	9,75	=(A20*Va*Ca/Cb)/10	=-LOG((((\va*Ca-B20*Cb)/(\va+B20))+((((\va*Ca-B20*Cb)/(\va+B20))^2+4*Kw)^(1/2)))/2)	=-LOG((Va*Ca-B20*Cb)/(Va+B20))		
21	10	=(A21*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B21*Cb)/(Va+B21))+((((Va*Ca-B21*Cb)/(Va+B21))*2+4*Kw)*(1/2)))/2)	7		
22	10,25	=(A22*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B22*Cb)/(Va+B22))+((((Va*Ca-B22*Cb)/(Va+B22))*2+4*Kw)*(1/2)))/2)	=14+LOG((B22*Cb-Va*Ca)/(Va+B22))		
23	10,5	=(A23^Va^Ca/Cb)/10	=-LUG((((Va*Ca-B23*Cb)/(Va+B23))+((((Va*Ca-B23*Cb)/(Va+B23))*2+4*Kw)*(1/2)))/2)	=14+LUG((B23*Cb-Va*Ca)/(Va+B23))		
24	= A74+1	=(A24 Va Ca/Cb)/10 =(A25*\/a*Ca/Cb)/10	LOG((((Va Ca-B24 CB)/(Va+B24))+((((Va Ca-B24 CB)/(Va+B24))/2+4 KW)/(1/2)))/2) LOG((((A/a*Ca-B25*Cb)/(A/a+B25))+(((A/a*Ca-B25*Cb)/(A/a+B25))/2+4*KW)/(1/2)))/2)	$=14 \pm LOG((B24 CB-Va Ca)/(Va+B24))$ =14 $\pm LOG((B25*Cb-Va*Ca)/(Va+B25))$		
26	=A25+1	=(A26*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B26*Cb)/(Va+B26))+(((Va*Ca-B26*Cb)/(Va+B26))*2+4*Kw)*(1/2)))/2)	=14+LOG((B26*Cb-Va*Ca)/(Va+B26))		
27	=A26+1	=(A27*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B27*Cb)/(Va+B27))+((((Va*Ca-B27*Cb)/(Va+B27))*2+4*Kw)*(1/2)))/2)	=14+LOG((B27*Cb-Va*Ca)/(Va+B27))		
28	=A27+1	=(A28*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B28*Cb)/(Va+B28))+((((Va*Ca-B28*Cb)/(Va+B28))*2+4*Kw)*(1/2)))/2)	=14+LOG((B28*Cb-Va*Ca)/(Va+B28))		
29	=A28+1	=(A29*Va*Ca/Cb)/10	=-LOG((((Va*Ca-B29*Cb)/(Va+B29))+((((Va*Ca-B29*Cb)/(Va+B29))*2+4*Kw)*(1/2)))/2)	=14+LOG((B29*Cb-Va*Ca)/(Va+B29))		
30	=A29+1	=(A30*Va*Ca/Cb)/10	=-LOG((((\a*Ca-B30*Cb)/(\a+B30))+((((\a*Ca-B30*Cb)/(\a+B30))^2+4*kw)^(1/2)))/2)	=14+LOG((B30*Cb-Va*Ca)/(Va+B30))		
37	=A3U+1	=(A31*Va*Ca/Cb)/10 =(A32*\/a*Ca/Cb)/10	E-LUG((((varUa-B31rUb)/(va+B31))+((((varUa-B31rUb)/(va+B31))*2+4rKw)*(1/2)))/2)	=14+LUG((B31*Cb-Va*Ca)/(Va+B31)) =14+LOG((B32*Cb-Va*Ca)/(Va+B31))		
33	=A32+1	=(A33*Va*Ca/Cb)/10	==LOO((((\a*Ca-B33*Cb))/\a+B33))+(((\a*Ca-B33*Cb))/\a+B33)\v2+4*KW)*(1/2)))/2)	=14+LOG((B33*Ch-Va*Ca)/(Va+B32))		
34			- 200 (((, 2 02 200 00)/(2 1000)) ((((2 02 00 00) 00)/(2 14 NW) (12)))/2			
35						
36						
37						
38						
39						
40						
42						
43						
44						
45						
46		une lune lune - le				
	PILALBAS (HOJA2 / I					
Dib	ujo 🔹 🞼 Autoformas 🔹 🔪		▓▐थ▕थ▏थヽヹヾ▲ヽ゠゠゠≒≒□゛゚゚゚゚゚゚゚゚゚			

Es interesante notar que la gráfica construida incluye únicamente la representación de puntos, y no su unión mediante líneas. La razón es que, puesto que el cálculo anterior pretende simular la colección de puntos VbpH que podría obtenerse experimentalmente, las líneas que unen los puntos carecen de significado real (sus valores no son resultados experimentales) y pueden conducir a interpretaciones erróneas.

Llegados a este punto nos debemos plantear cómo podemos determinar con suficiente exactitud el volumen de equivalencia a partir de datos experimentales de una valoración que, evidentemente, no coinciden exactamente con los puntos obtenidos teóricamente. En la práctica se puede calcular la primera y la segunda derivada de la curva de valoración a partir de incrementos, con el objetivo de identificar el punto de inflexión con un máximo y con el corte en abscisas, respectivamente, así como para la aplicación de diferentes métodos de cálculo del punto de equivalencia que hacen uso de derivadas. Sin embargo, la utilización de herramientas informáticas nos va a permitir derivar analíticamente la función de la valoración ajustándola a una ecuación. En un artículo del Journal of Chemical Education (N.L. Ma y C.W. Tsang, *J. Chem. Educ.* 75 (1998) 122) se propone la siguiente función para el ajuste de datos experimentales de una valoración:

$$pH = a + b \cdot (arctg(c \cdot (Vb - d)))$$
(2)

siendo *a*, *b*, *c* y *d* parámetros que modifican la función arcotangente hasta conseguir su ajuste a una curva de valoración. Es importante el papel de cada parámetro añadido a la ecuación. La inflexión de la curva ocurre en Vb=d. El parámetro *c* controla el grado de inclinación o verticalidad de la curva. Por su parte, el salto de pH viene controlado por *b*. Finalmente, *a* permite que el pH del punto de equivalencia no sea necesariamente cero.

Así pues, el problema que se nos plantea ahora es el ajuste de unos datos experimentales a la función (2). Para ello, en primer lugar debemos calcular el cuadrado de la diferencia entre cada valor experimental con el valor teórico en la función,

$(pH_experimental - pH_teórico)^2$,

que ahora mismo están muy alejados puesto que los valores iniciales de los parámetros *a*, *b*, *c* y *d* están puestos al azar, en este caso 1. En la hoja de cálculo se genera la columna correspondiente a pH teórico, donde se introduce la ecuación correspondiente, y la columna del cuadrado de la diferencia, como se observa en la siguiente figura. También se han definido las celdas a, b, cc, d correspondientes (celdas F3-F6. El programa no acepta c, éste es el motivo de usar cc). La gráfica de pH exacto y aproximado calculada antes se ha desplazado debajo de las columnas A, B, C y D. La sintaxis de la función arcotangente puede consultarse en la opción del menú principal **Insertar>Función**.

En esta ocasión, la función del ajuste se ha representado utilizando exclusivamente una línea (sin puntos), puesto que, precisamente por tratarse de una función de ajuste, pretendemos que describa el comportamiento del sistema más allá de los puntos experimentales que vamos a emplear para calcularla. No hay motivo, pues,

para otorgar mayor importancia a determinados valores Vb-pH mediante su representación con puntos.

M	icrosoft Exc	el - EXCELCAR	P8w2											_ 8 ×
	<u>A</u> rchivo <u>E</u> c	dición ⊻er	Insertar Eormato	o <u>H</u> erramientas <u>G</u> ráfico) Ve <u>n</u> tana <u>?</u>							Escriba una preg	unta 💌	_ & ×
	🧀 🔲 📾	l 🗁 🖪 🖤	- X 🖻 🛍 -	S	Σ → 🔚 실 🔬	- M -	- >> Arial	• 8 • N	K S I		₽€% 000 *	8 +98 SE SE	- 🕭 -	· A
i Mere	#a #a 12	ങ്ങം തിര	2 100 - 20	esponder con cambios T	erminar revisión									
: 000	ráfico 1	- £		cosponder con gambios 1	er <u>m</u> indi revision	•								
		· /*	0	D	F	F	G	Н	1	1	К		M	
	Valara		do fuerto	haaa fuarta								-	141	^
1	valora	cion aci	do luerte	- pase luerte										
2														
3	Definiciór	n de variable	es γ constante	<u>IS</u>	a=	1								
4	Ca =	0,1	Kw =	1E-14	b=	1								
5	va =	10			c=	1								
6	Cb =	0,1	vb = (n°va	rca/cbj/Tu	d=	1								
1		Mb (mal)	n l (overte)	pH (oprov)		nH (taáriaa)	(ol lovo ol teor/A)							
0	0.000			рп (аргох)		0.014801007		14	-					-
10	1,000	1 0000	1,000000	1,000000		0,214001037	0,010000270							-
11	2,000	2,0000	1 176091	1,007100		1 785398163	0,007030100	12	-				* * * *	• -
12	3,000	3 0000	1.268845	1,268845		2.107148718	0.7027526				** *			-
13	4,000	4,0000	1,367977	1,367977		2.249045772	0,77628256	10	-					-
14	5,000	5,0000	1,477121	1,477121		2,325817664	0,720285595							-
15	6,000	6,0000	1,602060	1,602060		2,373400767	0,594966592	8	-					
16	7,000	7,0000	1,753328	1,753328		2,405647649	0,42552136	동			+			
17	8,000	8,0000	1,954243	1,954243		2,428899272	0,225299042	6	-					
18	9,000	9,0000	2,278754	2,278754		2,446441332	0,028119175							_
19	9,500	9,5000	2,591065	2,591065		2,453687582	0,018872447	4	4					_
20	9,750	9,7500	2,897627	2,897627		2,45700432	0,194148424							
21	10,00	10,0000	7,000000	7,000000		2,460139106	20,61033694	2			• •			-
22	10,20	10,2000	11,0810	11,0810		2,403100400	79,9993373	_		•				-
20	11.00	11,0000	11,6778	11,5072		2,400313000	84 76246056	- 0	1					1 <u> </u>
25	12.00	12,0000	11,9586	11,9586		2 48013644	89 84140789		0	5	10	15	2	.0
26	13.00	13.0000	12,1154	12,1154		2.487655095	92,69334038				ml base			
27	14,00	14,0000	12,2218	12,2218		2,494024436	94,63055248							
28	15,00	15,0000	12,3010	12,3010		2,499488862	96,07021971			 pH(e) 	(acto) —— pH	l (teórico)		
29	16,00	16,0000	12,3632	12,3632		2,504228163	97,19887829							
30	17,00	17,0000	12,4137	12,4137		2,508377517	98,11609822							
31	18,00	18,0000	12,4559	12,4559		2,512040504	98,88098847							
32	19,00	19,0000	12,4918	12,4918		2,515297822	99,53145888							
33	20,00	20,0000	12,0228	12,0228		2,010213200	100,0853427							
34						SUMA=	1131,150002							
26														
37														
38														
39														
40														
41				ļ		, , , ,								
4 4	▶ N _ In	orme de respu	estas 1 ACBAS	🖌 Hoja2 🖌 Hoja3 📈 Hoja4	/ Hoja5 / Hoja6 ,	(Hoja7 / Hoja8 / Ho	oja9 🗸 Hoja10 🏑 Hoja11 🏑	Hoja12						
Dibu	jo 🕶 🕞 🛛 Al	<u>u</u> toformas 🔻 🚿		🗄 4 🗘 🔝 🔝 🖄	• 🚄 • A • =	= = = 🚺 河 ,								
Listo													NUM	

El detalle de las ecuaciones es el siguiente:

El siguiente paso consiste en encontrar los valores adecuados para los parámetros *a*, *b*, *c* y *d* para que las dos funciones se ajusten a lo largo de todo el rango de mL de base añadida en la valoración. Para ello añadimos una celda donde se suman todas las diferencias de cuadrados. Cuando este valor es 0, el ajuste entre ambas curvas es perfecto. Nosotros podemos buscar un valor mínimo de la suma de los residuos antes indicados (columna G) variando los valores de los cuatro parámetros mediante el comando **Solver** del programa MS EXCEL[®]. En la figura se puede observar el cuadro de dialogo del comando Solver (en **Herramientas>Solver**). Como se puede observar, la celda objetivo es la suma (G34) y las celdas cambiantes son F3-F6. Se marca la casilla correspondiente a buscar mínimo.

	E	F	G		Н	1		J	
			celdas can	nbiantes					
	a=	1							
-	b=	1							
-	C=								
	u–	<u>.</u>	•••	Dovápostvos de	Foluor			2121	
		nH (teórico)	(nHexn-nHteor)^2	Parametros de	Solver	(
		=a+b*(ATAN(cc*(B9-d)))	=(CQ_EQ)/2	Cel <u>d</u> a objetivo:	\$G\$34 \ 🔣		Resolv	er	_
		=a+b*(ATAN(cc*(B10-d)))	=(C10-F10)^2	Valor de la celd	a objetivo:		Corre	ur	
		=a+b*(ATAN(cc*(B11-d)))	=(C11-F11) ²	© <u>M</u> áximo		⊻alores de: 0	Cerra	" • • ·	• • •
		=a+b*(ATAN(cc*(B12-d)))	=(C12-F12)^2	Cam <u>b</u> iando las	celdas				
		=a+b*(ATAN(cc*(B13-d)))	=(C13-F13)^2	\$F\$3:\$F\$6		🔣 Estima	ar		
		=a+b*(ATAN(cc*(B14-d)))	=(C14-F14)^2	-Suietac a lac ci	quientes restriccione	.e.	Opcione	·s	
		=a+b*(ATAN(cc*(B15-d)))	=(C15-F15)^2	Sajetas a jas si	galerices reserved				
		=a+b*(ATAN(cc*(B16-d)))	=(C16-F16)^2		1	<u>A</u> grega	r		_
		=a+b*(ATAN(cc*(B17-d)))	=(C17-F17)^2		1	Cambia	r Restablece	v todo	_
		=a+b*(ATAN(cc*(B18-d)))	=(C18-F18)^2		1				
		=a+b*(ATAN(cc*(B19-d)))	=(C19-F19)*2			Elimina	ar Ayud	a	
		=a+b"(ATAN(cc"(B20-d)))	=(C20-F20)/2		}	1			
		$=a+b^{*}(ATAN(CC^{*}(B21-d)))$	-(C21-F21)'2		2 -	1	+ * ·		
		$=a+b^*(ATAN(cc^*(B23-d)))$	=(C23-F23)^2		+ *	\• • • ·			
		$=a+b^*(ATAN(cc^*(B24-d)))$	=(C24-F24)*2		0 ř	<u>+</u> .	1	1	
		=a+b*(ATAN(cc*(B25-d)))	=(C25-F25)^2		0	5	10	15	20
		=a+b*(ATAN(cc*(B26-d)))	=(C26-F26)^2			1	mi base		
		=a+b*(ATAN(cc*(B27-d)))	=(C27-F27)^2			1			
		=a+b*(ATAN(cc*(B28-d)))	=(C28-F28)^2			h pH(ex	acto) —— pH (teórico)	
		=a+b*(ATAN(cc*(B29-d)))	=(C29-F29)^2					I	
		=a+b*(ATAN(cc*(B30-d)))	=(C30-F30)*2						
		=a+b*(ATAN(cc*(B31-d)))	=(C31-F31)*2						
		-a+u*(ATAN(CC*(B32-d)))	-(C32-F32J2 =(C33-F33)2						
						celda oh	ietivo		
							J		

En **Opciones** se puede observar que se aplica el método iterativo de Newton, con un límite de 100 iteraciones y una tolerancia del 5 % (precisión 0.000001).

En estas condiciones, mediante la opción **Resolver** se consigue que la suma de los residuos se reduzca a 1,26. Si hubiéramos buscado el 0, tendríamos la limitación de la maquina y del propio ajuste entre los datos experimentales y la ecuación seleccionada. En la siguiente figura se puede observar el ajuste conseguido.

Conviene hacer aquí una consideración importante: El punto de inicio de las iteraciones para cada parámetro ha sido 1. En estas condiciones el método de Newton converge a un mínimo que permite el ajuste. Puesto

que el punto de inicio ha sido seleccionado al azar, en otros problemas puede no converger y deberemos probar otros valores de inicio.

A través del proceso anterior hemos conseguido describir la curva de valoración mediante una función, que podemos derivar analíticamente para determinar del punto de equivalencia exacto. Este procedimiento se desarrolla en el apartado <u>8.2</u>.

8.2. Cálculo del punto de equivalencia

8.2.1. Primera y segunda derivada

Gracias al ajuste de los datos experimentales a una función, podemos derivarla analíticamente para obtener el punto de equivalencia exacto, teniendo en cuenta que la primera derivada en un punto de inflexión de una función presenta un máximo y la segunda derivada es igual a 0. En las siguientes figuras se puede observar la representación gráfica de ambas derivadas y el detalle de las ecuaciones introducidas. Desafortunadamente, cuando tratamos datos experimentales, el error aleatorio intrínseco a cualquier experimento hace que estos métodos en ocasiones no nos den resultados suficientemente exactos.

🖾 Mi	rosoft Excel - EXCELCAP8w3										_ & ×
8	Archivo <u>E</u> dición ⊻er Insertar Eorma	to <u>H</u> erramientas D	Datos Ve <u>n</u> tana <u>?</u>						Escriba u	na pregunta	×
D	🛎 🖬 🔞 🚑 📐 🖤 👗 🖻 🛍	• 🛷 10 + 01 +	🙈 Σ - 🔂 👌	👬 🛍 🚯 120% 🔹 💥 Aria	d -	• 10 • N K	s = = =		000 *08 .08 1	- i= - 3	• A • .
1	ta ta 🖓 🖬 Xa 🖓 🖬 🖓 🗤	Responder con cambio	s Terminar revisión								
-	P22 * 		_	•							
	G H			К		M	N	0	P	a	-
6		Método 1ª v	2ª derivada					_			
7											
8	(pHexp-pHteor)^2	Vb (ml)	1ª derivada	2ª derivada							
9	0.173292809	0.0000	0.035129	0.000931	50 1						
10	0,11176015	1,0000	0,043361	0,001277	40 -						
11	0,063417809	2,0000	0,054864	0,001819	30		1				
12	0,028018542	3,0000	0,071629	0,002716			Л				
13	0,006294971	4,0000	0,097428	0,004313	20 -		M.				
14	0,000203979	5,0000	0,140125	0,007455	10 -						
15	0,013440721	6,0000	0,218426	0,014561	- 0-		\rightarrow	<u> </u>			
16	0,05215911	7,0000	0,386219	0,034507	-10 9	5	10(15 20			
10	0.10717396	8,0000	0,800107	0.012027	- 10						
10	0,19717500	9,0000	0.332081	6 711460	-20 -		N N				
20	0.04730614	9,5000	18 308005	38 190775	-30 -						
21	0.002064379	10 0000	26 544166	-17 854999	-40 -						
22	0.130131253	10.2500	17,760934	-34,540445			Vb(ml)				
23	0,01473366	10,5000	9,048810	-6,290704						•	
24	0,072953733	11,0000	3,070659	-0,882712		1ª deri	ivada — 2ª o	derivada			
25	0,047253332	12,0000	0,845378	-0,114207							
26	0,01889573	13,0000	0,383231	-0,034103							
27	0,004838397	14,0000	0,217149	-0,014433	Máximo prim	era derivada =	= 10				
28	0,000183315	15,0000	0,139468	-0,007402	Corte con ab	cisas segunda	a derivada = 1	0			
29	0,00109912	16,0000	0,097046	-0,004288							
30	0,005280315	17,0000	0,071389	-0,002702							
37	0.011556759	10,0000	0,054705	-0,001811							
22	0.026217929	20,0000	0,045240	0.000272							_
24	1 261416479	20,0000	0,000040	-0,000020	-						
35	1,201410478										
36											
37		-									
38											
39	T										
40											
41	÷										
42											
43											
44											-
H 4	► ► Informe de respuestas 1 \ACBA	5 / Hoja2 / Hoja3 / I	Hoja4 🖌 Hoja5 🖌 Hoj	a6 / Hoja7 / Hoja8 / Hoja9 / Hoja	a10 🖌 Hoja11 🖌 Hoj	∋12 					
Di <u>b</u> uj	o 🔹 😓 Autoformas 👻 📉 🖂 🖂 [🖴 📣 🛟 🔝 🔜	🖄 - 🚄 - A -	· = = = = 0 🖉 🗸							
Listo										NUM	
177 M											
<u>Mi</u>	Posort Excel - EXLELLAP8w3										

	Archivo Edición Ver Insertar E	ormato Herramientas Datos Venta	ana <u>?</u>			Escriba una pregu	unta 🔹 🗕 🗗 🗙
D	😂 🖬 🔩 🎒 💽 💖 👗 📭	🛍 • 🝼 Ю • О • 🍓 Σ •	🔂 👌 👬 🛍 📣 120% 🔹 💥 Arial 🔹 10 📼	N X S = = = =		00 *08 . 08 fm fm	🗉 • 🕭 • A • 📮
1 25	1 ta ta 🗷 💁 🍙 🔊 🗣 🙆	Responder con cambios Terminar	r revisión				
	P22 - fx	,					
		J	K	L		M	-
6	Método 1ª y 2ª derivada						
7							
8	Vb (ml)	1ª derivada	2ª derivada				
9	0	=b*cc/(1+(cc*(l9-d)^2))	=-(2*b*cc^3*(l9-d))/(1+(cc*(l9-d))^2)^2	50 -			
10	1	=b*cc/(1+(cc*(l10-d)^2))	=-(2*b*cc^3*(I10-d))/(1+(cc*(I10-d))^2)^2	40 -			
11	2	=b*cc/(1+(cc*(l11-d)^2))	=-(2*b*cc^3*(l11-d))/(1+(cc*(l11-d))^2)^2	20			Λ
12	3	=b*cc/(1+(cc*(l12-d)^2))	=-(2*b*cc^3*(l12-d))/(1+(cc*(l12-d))^2)^2	50			
13	4	=b*cc/(1+(cc*(l13-d)^2))	=-(2*b*cc^3*(I13-d))/(1+(cc*(I13-d))^2)^2	20 -			M V II
14	5	=b*cc/(1+(cc*(l14-d)^2))	=-(2*b*cc^3*(I14-d))/(1+(cc*(I14-d))^2)^2	10 -			
15	6	=b*cc/(1+(cc*(l15-d)^2))	=-(2*b*cc^3*(I15-d))/(1+(cc*(I15-d))^2)^2	0			
16	7	=b*cc/(1+(cc*(l16-d)^2))	=-(2*b*cc^3*(I16-d))/(1+(cc*(I16-d))^2)^2	_10.0	2 4	6	8 10
17	8	=b*cc/(1+(cc*(l17-d)^2))	=-(2*b*cc^3*(I17-d))/(1+(cc*(I17-d))^2)^2	-10		-	- Y/ I
18	9	=b*cc/(1+(cc*(l18-d)^2))	=-(2*b*cc^3*(I18-d))/(1+(cc*(I18-d))^2)^2	-20 -			}[
19	9,5	=b*cc/(1+(cc*(l19-d)^2))	=-(2*b*cc^3*(I19-d))/(1+(cc*(I19-d))^2)^2	-30 -			V
20	9,75	=b*cc/(1+(cc*(l20-d)^2))	=-(2*b*cc^3*(I20-d))/(1+(cc*(I20-d))^2)^2	-40			
21	10	=b*cc/(1+(cc*(l21-d)*2))	=-(2*b*cc^3*(l21-d))/(1+(cc*(l21-d))^2)^2				Vb(ml)
22	10,25	=D°CC/(1+(CC°(122-d)^22))	=-(2"D"CC^3"(I22-d))/(1+(CC"(I22-d))^2)/2				• 2()
23	10,5	=D*CC/(1+(CC*(123-d)*2))	=-(2"D"CC"3"(123-0))/(1+(CC"(123-0))^2)/2			1	lª derivada —
24	12	$-b^*cc/(1+(cc^*(125 d)^2))$	= (2 D CC 3 (124-0))/(1+(CC (124-0))/2)/2 = $(2^{\text{sh}}\text{cc}^{3}/(25 \text{ d}))/(1+(cc^{\text{s}}/(25 \text{ d}))/2)/2$				
20	13	$=b co((1+(cc+(126-d)^2)))$	$= (2^{\circ}b^{\circ}cc^{3}(26^{\circ}d))/(1+(cc^{\circ}(126^{\circ}d))^{2})/2$				
20	14	=b ccl(1+(cc (120-d) 2)) $=b*ccl(1+(cc*(127 d)^{2}))$	$= (2^{\text{b}} + (2$	Mávimo primora doriva	ada -		
28	15	$=b^{*}cc/(1+(cc^{*}(l28-d)^{2}))$	$= (2^{\circ}b^{\circ}cc^{\circ}3^{\circ}(128-d))/(1+(cc^{\circ}(128-d))^{\circ}2)/2$	Corte con abcisas sed	unde		
29	16	$=b^{+}cc/(1+(cc^{+}(129-d)^{+}2))$	$=-(2^{+}b^{+}cc^{+}cc^{+}(129-d))/(1+(cc^{+}(129-d))^{+}2)^{+}2$	00110 0011 0001000 0003	anac		
30	17	=b*cc/(1+(cc*(30-d)^2))	=-(2*b*cc^3*(l30-d))/(1+(cc*(l30-d))^2)^2				
31	18	=b*cc/(1+(cc*(l31-d)^2))	=-(2*b*cc^3*(l31-d))/(1+(cc*(l31-d))^2)^2				
32	19	=b*cc/(1+(cc*(l32-d)^2))	=-(2*b*cc^3*(l32-d))/(1+(cc*(l32-d))^2)^2				
33	20	=b*cc/(1+(cc*(l33-d)^2))	=-(2*b*cc^3*(I33-d))/(1+(cc*(I33-d))^2)^2				
34							
35							
36							
37	•						
- 38							
39							
40							
41							
42							
43	-						
44	-						
14 4	► ► Informe de respuestas 1 A	CBAS / Hoja2 / Hoja3 / Hoja4 / Hoja	a5 🗸 Hoja6 🗶 Hoja7 🗶 Hoja8 🗶 Hoja9 🗶 Hoja10 🗶 Hoja11 🗶 Hoja12 🚺				
Dibu	ijo 🔹 🔓 🛛 A <u>u</u> toformas 🔹 🛝 📜	○ 🛯 🐗 ۞ 🗖 🗖 🖉 • 🚄	• <u>A</u> • = = ;; [] [] .				

Listo

NUM

8.2.2. Método de la inversa de la primera derivada

A partir de la primera derivada se puede representar su inversa frente a Vb para la obtención del punto de equivalencia, que ahora encontraremos como un mínimo de la función representada:

8.3. Cromatografía gas-líquido. Ecuación de Van Deemter

Otro ámbito de la química en que resulta necesario el ajuste de datos experimentales a funciones no lineales es el de la cromatografía gas-líquido. El planteamiento de un problema típico sería el siguiente:

Se dispone de los siguientes datos experimentales de cromatografía gas-líquido:

X (ml/min)	3.4	7.1	16.1	20.0	23.1	34.4	40.0	44.7	65.9	78.9	96.8
Y (mm)	9.59	5.29	3.63	3.42	3.46	3.06	3.25	3.31	3.50	3.86	4.24

donde X representa la velocidad de flujo del gas, e Y la altura equivalente de plato teórico. Estas magnitudes vienen relacionadas mediante la ecuación de Van Deemter:

Y=AX+B/X+C

Queremos determinar A, B, y C ajustando los datos experimentales a la ecuación citada y representar los puntos experimentales y el ajuste de la ecuación.

Planteamiento:

🖾 Mi	crosoft Excel - Cap	ítulo8EXCELnuevo										_ 8 ×
📳 Archivo Edición Yer Insertar Eormato Herramientas Datos Vegtana 2 Escriba una pregunta 🔹 🕳 🛪										8 ×		
	🛎 🖬 👒 🖨 🕻	3. 🂖 🕺 🗈 🛍	3 • 🛷 🗠 • 🖂	- 🍓 x • 🔂 🛃	👬 🛍 🚯 130% 💌	Arial	▼ 10 ▼	N K S	= = 🖬 🦻 🕯	€ % 000 *08 ,08	- 🖂 🕸 📲	💩 = 📐 = 🖕
1	ta ta 🖉 🔁 🖞	a 🛛 🗣 🝙 🕅	Responder con can	nbios Terminar revisión	nu. 🗸							
	D8 🗸	fx										
	В	С	D	E	F	G	Н	I	J	K	L	N 🛋
1												
2												
3	Ecuación de	Vam Deemter				¹²⁰⁰]						
4												
5				a=	10	1000 -						
6		valores expe	rimentales	b=	10							
7				C=	10				/			
8		*	L		0.0. 10. 10.2	800 -						
9	X (mi/min)	Y (ml)	_	Y teorico	(Yteor-Yexp)^2							
10	3,4	9,59		46,94117647	1395,110384	600 -		/				
11	7,1	5,29		82,4084507	5947,255439							
12	16,1	3,63		171,621118	28221,01573	100						
13	20	3,42		210,5	42882,1264	400 -						
14	23,1	3,46		241,4329004	56631,10134							
15	34,4	3,08		354,2906977	123348,9542	200 -						
16	40	3,25		410,25	165649		Área de tra	zado				
17	44,7	3,31		457,2237136	206037,6594							
18	65,9	3,5		669,1517451	443092,2457	0 +		40 6		100	100	
19	78,9	3,86		799,1267427	632449,1921	U	20	40 8	0 00	100	120	
20	96,8	4,24		978,1033058	948409,7384			◆ Y (ml) -	 Y teórico 			
21				SUMA	2654063,399							
22												
23												
24												
25												
20												
21												
20												
30												
30												
32												
32												
34												
35												
36												<u> </u>
14 4	▶ N Hoja1 / Hot	a2 / Hoja3 /	-									
Dibui	o - 🕞 Autoforma	5• \ <u>\</u> □ C		🔊 - 🧷 - A -	. = = = 0 🧉		Let a let					
Listo					······································						NIM	

Detalle de las ecuaciones:

🖾 Mic	rosoft Excel - Capítulo8EXCELnuevo					_ 8 ×
B (yrchivo Edición Yer Insertar Eorm	nato <u>H</u> erramientas Da <u>t</u> os Ve <u>n</u> tana	2		Escriba	una pregunta 🛛 🔹 🗗 🗙
	ê 🖬 🗞 🥔 🕹 🛱	l • 🝼 κη • α - 🍓 Σ • 🔞 🤌	🗼 👬 🛍 🚯 130% 👻 🌺 Arial	▼ 10 ▼ N K S		🔃 💷 • 🙆 • 🛕 • 🖕
1	🏥 🏜 🖾 📭 🏠 🔽 🖷 😥 🔻	Responder con cambios Terminar revisió	ón 🖕			
	D8 🕶 🌆					
	В	С	D	E	F	G 🗖
1						
2						
3	Ecuación de Vam Deemter					1200 -
4						
5					a= 10	1000 -
6		valores experimentales			b= 10	1000
7					c= 10	
8						800 -
9	X (ml/min)	Y (ml)		Y teórico	(Yteor-Yexp)^2	
10	3,4	9,59		=a*B10+b/B10+cc	=(C10-E10)^2	600 -
11	7,1	5,29		=a*B11+b/B11+cc	=(C11-E11)^2	
12	16,1	3,63		=a*B12+b/B12+cc	=(C12-E12)^2	400
13	20	3,42		=a*B13+b/B13+cc	=(C13-E13)^2	400
14	23,1	3,46		=a*B14+b/B14+cc	=(C14-E14)^2	
15	34,4	3,08		=a*B15+b/B15+cc	=(C15-E15)^2	200 -
16	40	3,25		=a*B16+b/B16+cc	=(C16-E16)^2	
17	44,7	3,31		=a*B17+b/B17+cc	=(C17-E17)^2	0 —
18	65,9	3,5		=a*B18+b/B18+cc	=(C18-E18)^2	0
19	78,9	3,86		=a*B19+b/B19+cc	=(C19-E19)^2	Ŭ
20	96,8	4,24		=a*B20+b/B20+cc	=(C20-E20)^2	
21				SU	MA =SUMA(F10:F20)	
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
I 4 4	H Hoja1 / Hoja2 / Hoja3 /					
Dibujo	🔹 🗟 🛛 Aytoformas 🕶 🔪 🔌 🗔 🔿	। 🖾 🐗 🔅 😰 🖾 🖄 - 🚄 - 🛆	• = = = = • • •			
Links						A 11 16 A

Solución después de la aplicación del comando Solver:

M	icrosoft Excel - Cap	oitulo8EXCELnuevo										_ 8 ×
🗑 Archivo Edición Yer Insertar Eormato Herramientas Datos Ventana ? Escriba una pregunta 📼 🗗 🗙												
	😂 🔚 🖏 🖨 🕻	🔍 🖤 🕺 📭 🛍	l•≪ ∽ ~ ⊂	- 🝓 Σ - 🔂 👌	🕺 🛍 🚯 130% 🔹	- 🌺 Arial	• 10 •	N K S	e = 🖪 😨 🕯	€ % 000 *08 ,08	€ ≡ € ≡ -	🕭 • <u>A</u> • 📮
1	ta ta 🗷 😘 s	a 🛛 🖪 🙉 🖉	Responder con carr	bios Terminar revisiór	n							
	F22 -	f*										
	В	С	D	E	F	G	Н	1	J	K	L	N 🔺
1												
2												
3	Ecuación de	Vam Deemter				12 J						
4												
5				a=	0,02480862	10						
6		valores exper	rimentales	b=	26,80492121] "]•						
7		/		c=	1,548664895							
8						8-						
9	X (ml/min)	Y (ml)		Y teórico	(Yteor-Yexp)^2							
10	3,4	9,59		9,516814559	0,005356109							
11	7,1	5,29		5,500147112	0,044161809							
12	16,1	3,63		3,612985616	0,000289489		<			•		
13	20	3,42		3,385083356	0,001219172	4 -	.		+			
14	23,1	3,46		3,282130217	0,03163766				•			
15	34,4	3,08		3,181294249	0,010260525	2 -						
16	40	3,25		3,211132725	0,001510665							
17	44,7	3,31		3,257272876	0,00278015							
18	65,9	3,5		3,590304413	0,008154887				, ,			
19	78,9	3,86		3,845797855	0,000201701		20	40 61	J 80	100	120	
20	96,8	4,24		4,227049654	0,000167711			◆ Y (ml) -	— Y teórico			
21				SUMA	0,105739878	_						
22												
23												
24												
25												
26												
21												
20												
29												
30												
32												
33												
34												
35												<u> </u>
36												
14 4	Hoja1 Hoj	a2 / Hoja3 /					1	1				 ↓ [
Dibu	io • 🕞 🛛 Autoforma	s• \ \ DC	🛯 📶 🔅 🔃 🛛	🔊 🔊 - 🎢 - A -								
			Line of the line i		····· •							

9. Aplicación de programas de cálculo simbólico al ajuste de funciones lineales y no lineales

En este capítulo haremos uso del programa MATHEMATICA[®] para el ajuste de funciones lineales y no lineales. Al igual que en capítulos anteriores, tomaremos como ejemplo de comportamiento lineal la ley de Beer, que relaciona la concentración de un compuesto en disolución con su absorbancia. Como ejemplo de comportamiento no lineal estudiaremos diferentes curvas de valoración ácido-base, así como otros problemas de interés químico en que se deben ajustar datos experimentales a funciones no lineales.

9.1. Ajuste lineal por mínimos cuadrados. Ley de Beer.

Como se vio en el apartado 7.1, la absorbancia de una disolución guarda una relación lineal con la concentración de la especie absorbente (ley de Beer). Nuestro objetivo en este apartado es determinar la expresión particular que toma dicha relación para una especie dada, a partir de un conjunto de medidas de absorbancia obtenidas experimentalmente para distintas disoluciones patrón (de concentración conocida) de la especie en cuestión. Comencemos introduciendo en MATHEMATICA[®] el conjunto de puntos concentración-absorbancia listados en el apartado 7.1. Para ello generamos una matriz de datos, que podemos representar mediante el comando ListPlot:

```
In[1]:= ClearAll["Global`*"]
```

 $\ln[2] \coloneqq datos = \{ \{1, 2.2\}, \{2, 3.3\}, \{3, 3.8\}, \{4, 5.2\}, \{5, 6.2\}, \{6, 6.8\}, \{7, 8.1\}, \\ \{8, 9.3\}, \{9, 9.9\}, \{10, 10.6\} \};$

```
ln[3]:= p1 = ListPlot[datos, PlotStyle → PointSize[0.02],
AxesLabel → {"Concentración", "Absorbancia"}]
```


Una de las formas más simples de obtener mediante MATHEMATICA[®] la ecuación de la recta que mejor describe la relación lineal que se establece entre un conjunto de puntos es hacer uso del comando **Fit**. Este comando ofrece un ajuste por mínimos cuadrados de los puntos listados a la expresión resultante de combinar linealmente las funciones que se especifican en su argumento. Puesto que nuestro interés es obtener una relación del tipo $a \cdot 1+b \cdot x$, dichas funciones serán la función 1 y la función x. La sintaxis del comando se muestra a continuación, junto con la representación de la recta obtenida:

ln[4]:= sol = Fit[datos, {1, x}, x]

```
Out[4]= 1.25333 + 0.961212 x
```

 $ln[\delta] \coloneqq p2 = Plot[sol, \{x, 0, 10\}, AxesLabel \rightarrow \{"Concentración", "Absorbancia"\}]$

Finalmente, para visualizar la bondad del ajuste podemos representar en una misma gráfica los puntos experimentales y la recta obtenida, para lo que utilizamos el comando **Show**:

ln[6]:= Show[p1, p2]

Out[6]= - Graphics -

No cabe duda que la simplicidad del comando **Fit** representa una gran ventaja, pues no solo es capaz de realizar ajustes de datos a rectas, sino a cualquier combinación lineal de funciones. Sin embargo, dicha ventaja se pierde cuando estamos interesados en obtener información adicional sobre el ajuste. De hecho, **Fit** no ofrece información acerca de los intervalos de confianza de a y b, ni sobre el resto de parámetros estadísticos. Si tal es nuestro interés, deberemos recurrir a comandos más potentes, como los que se incluyen en el paquete **Statistics'LinearRegression'**. A continuación se ofrece un ejemplo de código MATHEMATICA[®] para llevar a cabo el ajuste anterior incluyendo el cálculo de algunos de los parámetros estadísticos de mayor interés:

In[1]:= ClearAll["Global`*"]

La columna Estimate muestra los coeficientes del ajuste, y la columna CI sus intervalos de confianza correspondientes. En el menú de ayuda de MATHEMATICA[®] puede encontrarse un listado completo de las variables estadísticas que podemos calcular mediante el comando **Regress** (Help > Help Browser > Statistics`LinearRegression`).

9.2. Simulación de una curva de valoración ácido fuerte – base fuerte

Como hemos podido comprobar en temas anteriores, la potencia y versatilidad de MATHEMATICA[®] nos permite obtener de modo sencillo la expresión que toma la concentración de protones en un problema dado, sin necesidad de recurrir a simplificaciones ni a manipulaciones algebraicas a veces tediosas. Así pues, en este caso comenzaremos planteando las ecuaciones de las constantes de equilibrio y balances correspondientes a un sistema de valoración ácido-base monoprótico general, es decir, sin considerar si el ácido o la base son fuertes o débiles:

$$K_{a} = \frac{[A^{-}] \cdot [H^{+}]}{[AH]} \qquad ; \qquad K_{b} = \frac{[B^{+}] \cdot [OH^{-}]}{[BOH]} \qquad ; \qquad K_{w} = [H^{+}] \cdot [OH^{-}]$$

Balance de masas (ácido): $C_a = [AH] + [A^-]$

Balance de masas (base): $C_b = [BOH] + [B^+]$

Balance de cargas: $[B^+] + [H^+] = [A^-] + [OH^-]$

(Fijémonos en que, puesto que introducimos dos especies distintas en la disolución, necesitamos establecer dos balances de masa, uno para el ácido y otro para la base).

A continuación, con el comando **Eliminate** de MATHEMATICA[®] obtenemos la ecuación de la concentración de protones:

Definimos seguidamente los parámetros iniciales de nuestro problema, así como las constantes de equilibrio correspondientes. Puesto que pretendemos simular una curva de valoración en que tanto el ácido como la base son fuertes, bastará con dar valores extremadamente elevados a sus constantes de equilibrio:⁷

In[3]:= ca0 = 0.1; va = 10; cb0 = 0.1; ka = 10^7; kb = 10^8; kw = 10^-14; In[4]:= veg = va * ca0 / cb0; dv = 0.1; nf = 2 * Round [veg / dv];

cahka (hkb+kw)

Como se puede observar, se han definido también los parámetros dv (diferencia entre dos valores consecutivos de V_b en que calculamos el pH de la disolución resultante) y nf (número de puntos (V_b, pH) con que simulamos la curva de valoración)⁸. Este último parámetro se ha calculado como el doble del número de puntos necesarios para alcanzar el punto de equivalencia. De este modo conseguiremos, al igual que en el apartado <u>8.1</u>, que la gráfica obtenida quede centrada de forma automática en el punto de inflexión.

El paso siguiente consiste en obtener, para cada adición sucesiva de dv mL de base, el pH de la disolución resultante. Para ello, tal como hemos hecho en capítulos anteriores, empleamos el comando **Solve** de MATHEMATICA[®], eligiendo entre las distintas soluciones la única con sentido químico. Sin embargo, este proceso debe repetirse para cada uno de los valores que toma V_b (unos 200 en este caso), lo que hace inviable el método. Para superar este escollo haremos uso de una de las herramientas más potentes y usadas en programación: el bucle. Un bucle es una estructura de código informático que permite repetir una determinada secuencia de operaciones tantas veces como sea necesario. En nuestro caso, dicha secuencia es la obtención del pH para un determinado volumen de base V_b añadido a la disolución, y nf es el número de veces que debemos completar la secuencia.

Un comando MATHEMATICA[®] que permite generar bucles es el comando For (ver apéndice <u>11.10</u>). Su sintaxis consta de dos partes diferenciadas: La segunda de ellas es la secuencia a repetir, mientras que la primera establece el número de veces que dicha secuencia va a repetirse. Para ello se define un contador i mediante el primer valor que éste va a tomar (0 en nuestro caso), seguido de la condición que debe cumplirse para que la secuencia se repita una vez más ($i \le nf$ en nuestro caso) y del incremento que i sufre entre dos secuencias consecutivas:

⁷ En tratamientos analíticos suele considerarse la disociación completa de los ácidos o bases fuertes, lo que corresponde a asignar un valor infinito a las respectivas constantes de equilibrio. No obstante, puesto que infinito no es un número, MATHEMATICA[®] no puede calcular con él. Así pues, aproximamos el infinito mediante un valor finito muy grande.

⁸ Para definir nf (que debe ser un número entero) hemos hecho uso del comando **Round**, que nos proporciona el entero más cercano a su argumento (véase el apéndice 11.10).

Cuando una determinada secuencia se completa, i aumenta en una unidad (i++ ó i+=1), MATHEMATICA[®] comprueba si $i \le nf$ y, si es así, procede a repetir la secuencia una vez más. El bucle finaliza cuando la condición $i \le nf$ deja de cumplirse.

Así pues, el bucle a emplear en nuestro caso es el siguiente:

```
In[6]:= lista = {};
In[6]:= For[i = 0, i ≤ nf, i++,
    vb = dv * i; ca = ca0 * va / (va + vb); cb = vb * cb0 / (va + vb);
    sol = Solve[eq1, h];
    ph = -Log[10, sol[[4, 1, 2]]];
    lista = AppendTo[lista, {vb, ph}];];
```

Previamente al comando **For** hemos definido una matriz vacía llamada lista, en la que vamos incorporando los distintos puntos calculados de la gráfica {vb,ph} (uno por secuencia) mediante el comando **AppendTo** (ver apéndice <u>11.10</u>). Es importante notar que cada vez que i cambia también lo hace vb y, por tanto, en cada secuencia se calcula el pH para un valor de V_b distinto.

Para obtener la curva de valoración correspondiente basta representar los puntos almacenados en la lista. Para ello utilizamos el comando **ListPlot**:

Llegados a este punto nos planteamos, al igual que en el apartado <u>8.1</u>, el ajuste de los puntos obtenidos a una ecuación analítica, en este caso una función arcotangente. El comando **FindFit** nos ofrece esta opción:

```
ln[8]:= ajuste = FindFit[lista, a + b * ArcTan[c * (x - d)], \{a, b, c, d\}, x]
Out[8]= {a \rightarrow 6.88262, b \rightarrow 3.49374, c \rightarrow 8.84331, d \rightarrow 9.99423}
```

Mediante este comando obtenemos los valores a, b, c, d que minimizan la suma de los cuadrados de la diferencia entre los puntos de la lista y la función arcotangente (método de mínimos cuadrados), procedimiento análogo al empleado en la hoja de cálculo EXCEL[®] del apartado <u>8.1</u>. Podemos representar a continuación la función ajustada mediante el comando **Plot**, para lo que definimos previamente dicha función:

```
h[0]:= a = ajuste[[1, 2]]; b = ajuste[[2, 2]]; c = ajuste[[3, 2]]; d = ajuste[[4, 2]];
h[10]:= fun[x_] = a + b * ArcTan[c * (x - d)];
h[11]:= p2 = Plot[fun[x], {x, 0, 20}, AxesLabel + {"Vb (mL)", "pH"}]
pH
12
10
8
6
4
2
4
2
4
5
10
15
20
Vb (mL)
```


Es importante fijarse en la sintaxis empleada en la definición de la función fun. Para más detalles acerca de la definición de funciones en MATHEMATICA[®], consúltese el apéndice <u>11.10</u>.

Finalmente, la representación conjunta de las dos curvas obtenidas nos da idea de la bondad del ajuste en las proximidades del punto de equivalencia:

9.3. Cálculo del punto de equivalencia

Llegados a este punto ya podemos proceder a la determinación de los puntos de equivalencia con mayor exactitud haciendo uso de la función analítica fun[x], a través de su derivada primera, su derivada segunda y la inversa de su derivada primera. El comando MATHEMATICA[®] para el cálculo de derivadas analíticas es **D**, y su sintaxis es la que se muestra a continuación:

 $\begin{aligned} &\ln[13] \coloneqq dlf[x_] = D[fun[x], x]; \\ &d2f[x_] = D[fun[x], \{x, 2\}]; \end{aligned}$

Out[15]= - Graphics -

Como vemos, la representación en el intervalo $\{x, 0, 20\}$ no permite observar con claridad el comportamiento de las derivadas, lo que se debe al carácter extraordinariamente abrupto que éstas presentan en las cercanías del punto de equivalencia. Sin embargo, vemos que la segunda derivada (línea roja) corta al eje de abscisas en V_b \approx 10 mL, por lo que podríamos repetir la representación en un intervalo más estrecho en torno a este valor:

```
In[16]:= Plot[{d1f[x], d2f[x]}, {x, 9, 11}, PlotStyle → {RGBColor[0, 0, 1], RGBColor[1, 0, 0]},
AxesLabel → {"Vb (mL)", "d1f, d2f"}]
```


Out[16]= - Graphics -

En este punto, la representación de la inversa de la derivada primera resulta trivial:

Los métodos gráficos anteriores nos permiten determinar de forma aproximada el punto de equivalencia de la valoración. No obstante, podemos obtener el punto de equivalencia con mayor precisión de forma numérica, para lo que basta determinar el punto de corte de la derivada segunda con el eje de abscisas:⁹

ln[18]:= veq = Solve[d2f[x] == 0, x]Out[18]= {{x \rightarrow 9.99423}}

9.4. Valoración de ácidos polipróticos

La obtención de curvas de valoración de ácidos polipróticos puede resultar muy tediosa si queremos hacer uso de hojas de cálculo, dada la mayor complejidad de las ecuaciones a implementar. Sin embargo, esto no representa un escollo considerable para MATHEMATICA[®], que podemos utilizar en este caso con poco esfuerzo adicional por nuestra parte.

En este apartado simularemos la curva experimental de valoración de un ácido triprótico H_3A (como puede ser el ácido fosfórico) con una base fuerte BOH (por ejemplo NaOH). Para ello comenzaremos planteando, al igual que en <u>9.2</u>, las ecuaciones de las constantes de equilibrio y los balances correspondientes:

$$K_{a1} = \frac{[H_2A^{-}] \cdot [H^{+}]}{[H_3A]} ; \qquad K_{a2} = \frac{[HA^{2^{-}}] \cdot [H^{+}]}{[H_2A^{-}]} ; \qquad K_{a3} = \frac{[A^{3^{-}}] \cdot [H^{+}]}{[HA^{2^{-}}]}$$
$$K_b = \frac{[B^{+}] \cdot [OH^{-}]}{[BOH]}$$
$$K_w = [H^{+}] \cdot [OH^{-}]$$

Balance de masas (ácido): $C_a = [H_3A] + [H_2A^-] + [HA^{2-}] + [A^{3-}]$

⁹ El estudio analítico del problema permite determinar con facilidad que el volumen de equivalencia es en este caso 10 mL. La desviación respecto a este valor es consecuencia del error intrínseco del ajuste. No obstante, a efectos prácticos no existe diferencia entre el valor teórico y el calculado a través del ajuste.

Balance de masas (base): $C_b = [BOH] + [B^+]$

Balance de cargas: $[B^+] + [H^+] = [H_2A^-] + 2 \cdot [HA^{2-}] + 3 \cdot [A^{3-}] + [OH^-]$

A continuación obtenemos la ecuación de la concentración de protones, asignamos los valores de los parámetros que definen el sistema y calculamos el pH de la disolución resultante para cada una de las nf adiciones sucesivas de base, utilizando el mismo procedimiento que en el apartado 9.2:

```
In[1]:= ClearAll["Global`*"]
In[2]:= eq1 = Eliminate[{ka1 == h2a * h / h3a, ka2 == ha * h / h2a, ka3 == a * h / ha, kb == b * oh / boh,
          kw == h * oh, ca == h3a + h2a + ha + a, cb == boh + b, b + h == h2a + 2 * ha + 3 * a + oh},
         {h3a, h2a, ha, a, boh, b, oh}];
ln[3]:= ca0 = 0.1; va = 10; cb0 = 0.1;
     ka1 = 7.5 * 10^ -3; ka2 = 6.2 * 10^ -8; ka3 = 3.6 * 10^ -13; kb = 10^8;
     kw = 10^{-14};
ln[6]:= veq = va * ca0 / cb0; dv = 0.1; nf = 3 * Round [veq / dv];
ln[6]:= lista = {};
\ln[7] := For[i = 0, i \le nf, i++,
        vb = dv * i; ca = ca0 * va / (va + vb); cb = vb * cb0 / (va + vb);
        sol = Solve[eq1, h];
        ph = -Log[10, sol[[6, 1, 2]]];
        lista = AppendTo[lista, {vb, ph}];];
ln[8]:= p1 = ListPlot[lista, AxesLabel → {"Vb (mL)", "pH"}]
    pН
   12
   10
    8
    6
    4
    2
                                                        Vb (mL)
                             15
                                    20
             5
                    10
                                             25
                                                     30
```

Puesto que tratamos con un ácido triprótico, la curva de valoración debería presentar tres puntos de equivalencia. En esta ocasión, el tercero de estos puntos no da lugar a un salto apreciable de pH, debido al valor extraordinariamente bajo de K_{a3} .

Out[8]= - Graphics -

A la vista de la representación observamos que la curva de valoración se asemeja a la superposición de dos funciones arcotangente. Por tanto, para obtener el ajuste de los puntos experimentales simulados a una función analítica consideraremos la función suma de dos arcotangentes independientes:

```
\ln[0] = ajuste = FindFit[lista, a + b * ArcTan[c * (x - d)] + e * ArcTan[f * (x - g)],
          {a, b, c, d, e, f, g}, x];
ln[10]:= a = ajuste[[1, 2]]; b = ajuste[[2, 2]]; c = ajuste[[3, 2]]; d = ajuste[[4, 2]];
      e = ajuste[[5, 2]]; f = ajuste[[6, 2]];
      g = ajuste[[7, 2]];
\ln[11] = fun[x] = a + b * ArcTan[c * (x - d)] + e * ArcTan[f * (x - g)];
       p2 = Plot[fun[x], \{x, 0, 30\}, AxesLabel \rightarrow \{"Vb (mL)", "pH"\}]
     pН
   12
   10
    8
    6
     4
    2
                                                           Vb (mL)
              5
                      10
                              15
                                      20
                                               25
                                                       30
Out[11]= - Graphics -
In[12]:= Show[p1, p2]
     pН
    12
    10
     8
     6
     4
     2
                                                                 Vb (mL)
               5
                        10
                                 15
                                          20
                                                   25
                                                             30
```

```
Out[12]= - Graphics -
```

Siguiendo el procedimiento empleado en <u>9.3</u> determinamos a continuación gráficamente los puntos de equivalencia haciendo uso de la función ajustada y de sus derivadas:

```
 \ln[13]:= dlf[x_] = D[fun[x], x]; \\ d2f[x_] = D[fun[x], \{x, 2\}];
```

```
In[16]:= Plot[{d1f[x], d2f[x]}, {x, 0, 30}, PlotStyle → {RGBColor[0, 0, 1], RGBColor[1, 0, 0]},
AxesLabel → {"Vb (mL)", "d1f,d2f"}]
```


Out[15]= - Graphics -

Finalmente, para obtener los puntos de equivalencia de forma numérica determinamos los puntos de corte de la derivada segunda con el eje de abscisas:

 $\ln[16]:= \text{ veq} = \text{Solve}[d2f[x] == 0, x]$ $\text{Out}[16]= \{ \{x \rightarrow 9.96243\}, \{x \rightarrow 15.3636\}, \\ \{x \rightarrow 16.5869 - 8.52513 i\}, \{x \rightarrow 16.5869 + 8.52513 i\}, \{x \rightarrow 19.9782\} \}$

de donde obtenemos, por comparación con la derivada primera, $V_{eq1} = 9.96$ mL y $V_{eq2} = 19.98$ mL.

Podemos por último determinar el pH de la disolución resultante para cada uno de los volúmenes de equivalencia sin más que sustituir en la función ajustada:

In[17]:= ph1 = fun[veq[[1, 1, 2]]]
Out[17]= 4.6564
In[18]:= ph2 = fun[veq[[5, 1, 2]]]
Out[18]= 9.64633

9.5. Valoraciones de combinaciones de ácidos y bases fuertes y débiles

Nuestro propósito en este apartado es la simulación de las curvas de valoración correspondientes a los sistemas ácido débil – base fuerte, ácido fuerte – base débil y ácido débil – base débil, así como la obtención de los respectivos puntos de equivalencia. En el apartado 9.2 se planteó el problema correspondiente a un sistema de valoración ácido-base monoprótico general, es decir, sin considerar si el ácido o la base son fuertes o débiles. Por tanto, el código MATHEMATICA[®] allí empleado nos sirve para cualquiera de las combinaciones ácido fuerte/débil – base fuerte/débil sin más que adecuar convenientemente el valor de las constantes de equilibrio correspondientes.

9.5.1. Ácido débil – base fuerte

En este caso asignamos un valor estándar a la constante de equilibrio del ácido (del mismo orden que la del ácido acético), mientras que escogemos un valor muy elevado para la constante de la base. Así pues, la curva de valoración correspondiente puede obtenerse mediante el siguiente código:

Out[6]= - Graphics -

A la vista de la representación observamos que, al contrario de lo que ocurría en el sistema ácido fuerte – base fuerte (apartado 9.2), la curva de valoración a volúmenes bajos se aleja del perfil de un arcotangente. La siguiente figura muestra la superposición de la curva de valoración obtenida (en azul) con la correspondiente a un sistema ácido fuerte – base fuerte con las mismas concentraciones iniciales de ácido y de base (en rojo):

Como puede apreciarse, ambas curvas coinciden más allá del punto de equivalencia, pero son considerablemente distintas por debajo de éste. Este fenómeno es debido al efecto tampón generado por la coexistencia en disolución de las especies protonada y desprotonada del ácido, que provoca una disminución en la amplitud del salto de pH producido en las proximidades del punto de equivalencia. Como consecuencia, el punto de inflexión de la curva (coincidente con el punto de equivalencia) se desplaza a pH mayores que 7, que es el pH esperable cuando tanto el ácido como la base son fuertes. Comprobaremos a continuación este efecto, determinando el volumen de equivalencia y su valor de pH asociado mediante los métodos ya conocidos.

Aunque, como hemos dicho, el perfil de la curva de valoración obtenida se aleja del de un arcotangente a valores bajos de V_b , éste se mantiene en el intervalo $V_b = [5, 15]$, por lo que podríamos utilizar para el ajuste únicamente los puntos { V_b , pH} de este intervalo. Así pues, a partir de lista generamos una nueva matriz (lista2) que contiene exclusivamente los puntos de este intervalo, para lo que podemos hacer uso del comando **Take**:¹⁰

ln[7]= lista2 = Take[lista, {nf / 4, 3 * nf / 4}];

La representación de esta nueva lista muestra ya un comportamiento similar a un arcotangente,

 $^{^{10}}$ En este comando se especifica entre llaves las posiciones del primer y último elemento de lista que pretendemos extraer. Puesto que el número total de puntos en lista es nf, y al último punto le corresponde un volumen V_b=20 mL, la posición correspondiente a V_b=5 mL será nf/4, mientras que la de 15 mL será 3*nf/4.

 $\ln[8]:= p1 = ListPlot[lista2, AxesLabel \rightarrow {"Vb (mL)", "pH"}]$

por lo que a partir de este punto procedemos de igual modo que en apartados anteriores:

```
ln[9]:= ajuste = FindFit[lista2, a + b * ArcTan[c * (x - d)], {a, b, c, d}, x];
h[10]:= a = ajuste[[1, 2]]; b = ajuste[[2, 2]]; c = ajuste[[3, 2]]; d = ajuste[[4, 2]];
\ln[11] = fun[x_] = a + b * ArcTan[c * (x - d)];
       p2 = Plot[fun[x], \{x, 5, 15\}]
      12
       11
       10
        9
        8
        7
                           10
                                     12
                                              14
                  8
Out[12]= - Graphics -
In[13]:= Show[p1, p2]
       рH
      12
      11
      10
       9
       8
       7
       6
                                            - Vb (mL)
                8
                       10
                               12
                                       14
Out[13]= - Graphics -
```

```
Out[16]= - Graphics -
```

Finalmente, calculamos numéricamente el volumen de equivalencia y el pH correspondiente empleando la función ajustada:

```
ln[17]:= veq = Solve[d2f[x] == 0, x]
Out[17]= {{x \rightarrow 9.98825}}
ln[18]:= fun[veq[[1, 1, 2]]]
Out[18]= 8.7488
```

Comprobamos, pues, que el pH en el punto de equivalencia es mayor que 7, como se esperaba del análisis gráfico.

```
9.5.2. Ácido fuerte - base débil
```

En esta ocasión empleamos el mismo código que en apartado anterior, intercambiando las constantes de equilibrio del ácido y la base:

En este caso, la comparación de la curva obtenida (azul) con la correspondiente al sistema ácido fuerte – base fuerte (rojo) nos muestra un efecto similar al del apartado <u>9.5.1</u>, aunque la desviación de ambas curvas se produce ahora más allá del punto de equivalencia, es decir, a valores de pH altos:

La disminución en la amplitud del salto de pH se produce ahora de tal modo que el pH del punto de equivalencia de desplaza a valores ácidos. Comprobémoslo numéricamente:¹¹

```
ln[7]:= ajuste = FindFit[lista, a + b * ArcTan[c * (x - d)], {a, b, c, d}, x];
ln[8]:= a = ajuste[[1, 2]]; b = ajuste[[2, 2]]; c = ajuste[[3, 2]]; d = ajuste[[4, 2]];
```

¹¹ En el caso que nos ocupa la curva no se desvía del perfil arcotangente, por lo que no será necesario aplicar la estrategia del apartado anterior. Incluimos en el ajuste todos los puntos de lista.


```
ln[16]:= fun[veq[[1, 1, 2]]]
```

Out[16]= 5.07871

```
9.5.3. Ácido débil - base débil
```

Simulamos la curva de valoración del mismo modo que en las secciones anteriores, asignando esta vez constantes de equilibrio bajas tanto para el ácido como para la base:

```
In[1]:= ClearAll["Global`*"]
\ln[2] = eq1 = Eliminate[\{ka == a * h / ah, kb == b * oh / boh, kw == h * oh, ca == ah + a, cb == boh + b, a == bbh + b, a == bh + b, a == bbh
                                            b+h == a + oh}, {ah, a, boh, b, oh}];
\ln[3] = ca0 = 0.1; va = 10; cb0 = 0.1; ka = 10^{-4}; kb = 10^{-5}; kw = 10^{-14};
                        veq = va * ca0 / cb0; dv = 0.1; nf = 2 * Round [veq / dv];
                       lista = {};
\ln[6]:= For[i = 0, i \le nf, i++,
                                  vb = dv * i; ca = ca0 * va / (va + vb); cb = vb * cb0 / (va + vb);
                                 sol = Solve[eq1, h];
                                 ph = -Log[10, sol[[4, 1, 2]]];
                                 lista = AppendTo[lista, {vb, ph}];];
   ln[6]:= ListPlot[lista, AxesLabel → {"Vb (mL)", "pH"}]
              рH
                                                                                                                                              91
            8
            7
            6
            5
                                                                                                                                                                                                                                      Vb (mL)
                                                                                                                   10
                                                                                                                                                                     15
                                                                                                                                                                                                                       20
                                                                   5
```


La comparación de esta curva con la correspondiente al sistema ácido fuerte – base fuerte muestra que las dos curvas se desvían una de la otra a ambos lados del punto de equivalencia, como resultado de la superposición de los efectos evidenciados en los apartados 9.5.1 y 9.5.2:

En este caso, el pH en el punto de equivalencia dependerá de la fuerza relativa del ácido frente a la base. Como en el ejemplo hemos supuesto que $K_a > K_b$, se espera un desplazamiento del punto de equivalencia hacia valores de pH menores que 7. Para comprobarlo procedemos de igual forma que en 9.5.1, seleccionando los puntos comprendidos entre $V_b = 5$ mL y $V_b = 15$ mL para llevar a buen término el ajuste a una función arcotangente:

ln[7]= lista2 = Take[lista, {nf / 4, 3 * nf / 4}];

Out[8]= - Graphics -

ln[0]= ajuste = FindFit[lista2, a + b * ArcTan[c * (x - d)], {a, b, c, d}, x];

h[10]:= a = ajuste[[1, 2]]; b = ajuste[[2, 2]]; c = ajuste[[3, 2]]; d = ajuste[[4, 2]];

141


```
Out[12]= - Graphics -
```

```
In[13]:= Show[p1, p2]
```



```
Out[13]= - Graphics -
```

$$\label{eq:linear} \begin{split} &\ln[14] \coloneqq dlf[x_{-}] = D[fun[x], x]; \\ & d2f[x_{-}] = D[fun[x], \{x, 2\}]; \\ & Plot[\{dlf[x], d2f[x]\}, \{x, 5, 15\}, PlotStyle \rightarrow \{RGBColor[0, 0, 1], RGBColor[1, 0, 0]\}, \\ & AxesLabel \rightarrow \{"Vb \ (mL)", "dlf, d2f"\}] \end{split}$$


```
\ln[18] = fun[veq[[1, 1, 2]]]
```

Out[18]= 6.41077

Tal como se predijo, el pH obtenido es menor que 7, como resultado de la mayor constante de disociación del ácido frente a la base.

Estos ejemplos ponen de manifiesto que el pH en el punto final de una valoración ácido – base (punto de equivalencia) es función de la fortaleza relativa entre el ácido y la base. Únicamente cuando ambos tengan idénticas constantes de disociación, el pH del punto final de la valoración será exactamente igual a 7.

9.6. Cromatografía gas-líquido. Ecuación de Van Deemter

En el apartado <u>8.3</u> se planteó el problema de un ajuste no lineal mediante el comando **Solver** de EXCEL[®]. Por su parte, MATHEMATICA[®] permite llevar a cabo regresiones no lineales, si bien para ello debe cargarse previamente en memoria el paquete adecuado. Se ofrece a continuación un ejemplo de código MATHEMATICA[®] para llevar a cabo el ajuste de los datos experimentales listados en el apartado <u>8.3</u> a la expresión de Van Deemter.

```
In[1]:= ClearAll["Global`*"]
In[2]:= << Statistics`NonlinearFit`</pre>
\ln[3] = datos = \{\{3.4, 9.59\}, \{7.1, 5.29\}, \{16.1, 3.63\}, \{20, 3.42\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{23.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{33.1, 3.46\}, \{3
                       \{34.4, 3.06\}, \{40, 3.25\}, \{44.7, 3.31\}, \{65.9, 3.5\}, \{78.9, 3.86\},
                       {96.8, 4.24}, {115.4, 4.62}, {120, 4.67}};
 In[4]:= regress = NonlinearRegress[datos, a * x + b / x + d, x, {{a, 1}, {b, 1}, {d, 12.5}},
                     RegressionReport → {ParameterCITable, SinglePredictionCITable}]
Out[4]= { ParameterCITable →
                                                                            Asymptotic SE
                                       Estimate
                                                                                                                                    CT
                                                                            0.000966832
                                       0.0243586
                                                                                                                                   {0.0222043, 0.0265128}
                     а
                                       26.7279
                                                                                0.487412
                                                                                                                                    {25.6418, 27.8139}
                     b
                                       1.56807
                                                                                0.075572
                                                                                                                                    {1.39969, 1.73646}
                     d
                  SinglePredictionCITable \rightarrow
                                                       Predicted
                                                                                                Asymptotic SE
                                                                                                                                                        CI
                     Observed
                     9.59
                                                       9.51203
                                                                                                                                                       {9.18728, 9.83678}
                                                                                                0.145749
                     5.29
                                                       5.50551
                                                                                                0.116516
                                                                                                                                                       {5.24589, 5.76512}
                     3.63
                                                         3.62036
                                                                                                0.115086
                                                                                                                                                        {3.36394, 3.87679}
                                                                                                                                                         {3.13531, 3.64797}
                     3.42
                                                         3.39164
                                                                                                 0.115042
                     3.46
                                                         3.28781
                                                                                                 0.114852
                                                                                                                                                         {3.0319, 3.54371}
                                                                                                                                                        {2.92986, 3.43611}
                     3.06
                                                           3.18298
                                                                                                   0.113603
                                                                                                   0.112935
                                                                                                                                                        {2.95898, 3.46225}
                     3.25
                                                          3.21061
                                                                                                   0.11244
                                                                                                                                                        {3.00431, 3.50537}
                     3.31
                                                         3.25484
                     3.5
                                                         3.57889
                                                                                                 0.111625
                                                                                                                                                        {3.33017, 3.8276}
                     3.86
                                                        3.82872
                                                                                                   0.112601
                                                                                                                                                         {3.57783, 4.07961}
                                                                                                                                                         {3.94373, 4.46047}
                                                                                                   0.115956
                     4.24
                                                        4.2021
                                                                                                                                                          {4.33924, 4.88209}
                     4.62
                                                            4.61067
                                                                                                   0.121818
                                                                                                    0.123613
                                                                                                                                                         {4.43841, 4.98926}
                     4.67
                                                           4.71384
```

La representación del ajuste y de los intervalos de imprecisión puede obtenerse como sigue:

```
ln[6]:= predicted = { } ; lower = { } ; upper = { } ;
     For[i = 1, i ≤ Length[regress[[2, 2, 1]]], i++,
       predicted = AppendTo[predicted, {datos[[i, 1]], regress[[2, 2, 1, i, 2]]}];
       lower = AppendTo[lower, {datos[[i, 1]], regress[[2, 2, 1, i, 4, 1]]}];
       upper = AppendTo[upper, {datos[[i, 1]], regress[[2, 2, 1, i, 4, 2]]}];];
In[7]:= << Graphics `MultipleListPlot`</pre>
In[8]:= MultipleListPlot[datos, predicted, lower, upper,
       SymbolShape + {PlotSymbol[Diamond], None, None, None},
       PlotJoined → {False, True, True, True},
       PlotStyle \rightarrow \{Automatic, Automatic, Dashing[\{0.025, 0.025\}], Dashing[\{0.025, 0.025\}]\},\
       PlotLegend → {"observed", "predicted", "lower", "upper"}]
                                                                    observed
                                                                    predicted
                                                                    lower

    upper

              20
                               60
                                        80
                                               100
                                                        120
```

Out[8]= - Graphics -

Cabe mencionar que, aunque la expresión empleada para realizar el ajuste es una combinación lineal de funciones de base, el comando **NonlinearRegress** es capaz de ajustar datos experimentales a expresiones no lineales en sus parámetros.

10. Problemas para trabajo autónomo

Como se indica en el prólogo, este texto ha sido escrito como material de apoyo de la asignatura introductoria al uso de las *Nuevas tecnologías de la información y la computación* que aparece en primer curso del grado en Química. Dicho grado ha sido diseñado en base a créditos ECTS, los cuales incluyen, además de trabajo presencial (que se correspondería más o menos con el material desarrollado en los capítulos anteriores), trabajo no presencial. Cada tema de la asignatura se debe completar con la resolución de ejercicios fuertemente conectados con los desarrollados presencialmente, que deben resolver los estudiantes por su cuenta, con el apoyo de tutorías donde podrán comentar con el profesor las dificultades encontradas y se realizará la corrección. Además, a lo largo del curso, cada estudiante realizará, en equipo con un compañero/a, un trabajo donde resolverá un problema completo, cuyo desarrollo incluirá una primera etapa de búsqueda en la web, siguiendo las indicaciones del capítulo 1, que contextualizará el problema y se encontrará, si fuese necesaria, información para su resolución práctica. En una segunda etapa se realizará la elaboración y diseño del trabajo a desarrollar, incluyendo su resolución mediante la aplicación de los programas MS EXCEL[®] y MATHEMATICA[®] estudiados a lo largo del curso. En una tercera etapa se escribirá una memoria que, eventualmente, podría ser presentada oralmente. En el presente capítulo se incluye una lista de problemas enunciados que pueden servir de base para este tipo de trabajo.

10.1. Cálculo de la capacidad calorífica del aluminio a 298K usando el modelo de Debye

Hacia 1912 Peter Debye desarrolló un modelo para la estimación de la contribución de las vibraciones de los átomos en la red de un sólido a la capacidad calorífica molar de éste. Mediante consideraciones de Termodinámica Estadística, obtuvo la siguiente expresión para capacidad calorífica molar,

$$c_{v} = 9N_{A}k_{B}\frac{1}{x_{0}^{3}}\int_{0}^{x_{0}}\frac{x^{4}e^{x}}{(e^{x}-1)^{2}}dx,$$

donde c_v es la capacidad calorífica molar, N_A el número de Avogadro, k_B la constante de Boltzmann, x es un parámetro adimensional que se integra desde cero hasta $x_0 = T_D / T$, siendo T la temperatura absoluta y T_D la llamada temperatura de Debye, que para el caso del aluminio toma un valor de 398K.

Se propone estimar la capacidad calorífica molar del aluminio mediante integración numérica de la ecuación anterior. Se deben realizar la integración usando el método de los trapecios y el de Montecarlo, programando tanto con MS EXCEL[®] como con MATHEMATICA[®]. A efectos de integración de Montecarlo, el número aleatorio se puede obtener con MS EXCEL[®] mediante la orden **ALEATORIO()** y, cuando usemos MATHEMATICA[®], mediante el comando **Random[]**.

La imprecisión del cálculo integral con Montecarlo se puede evaluar repitiendo el proceso k veces. Entonces se asigna la media de las capacidades calculadas como valor propuesto para dicha capacidad calorífica y se

estima la correspondiente imprecisión como el doble de la raíz cuadrada de la desviación cuadrática de la muestra formada por los *k* valores calculados.

Se debe hacer un estudio del diferente grado de precisión que se consigue al aumentar el numero de evaluaciones de la función (número de intervalos más uno en el método de los trapecios y numero de evaluaciones en Montecarlo). También se debe comparar uno y otro método cuando el número de evaluaciones de la función es reducido o considerable. Finalmente, podemos comparar con mejoras del método de Montecarlo, como por ejemplo con el método de QuasiMontecarlo (algoritmo de Halton-Hammersly-Wozniakowski) que se encuentra implementado en MATHEMATICA[®], así como con mejoras del método de los trapecios, mediante las integraciones de Newton-Cotes, asimismo implementadas en MATHEMATICA[®]. En las capturas de imagen siguientes vemos un cálculo Montecarlo simple, sin estimación de error, realizado con MS EXCEL[®] y MATHEMATICA[®].

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Microsoft Excel	MCals							
NA C D E F G G 1 3 3 Kg= 1,38E-23 T= 298 4 1 1 1,33557047 1		n in hearts Cau	B. J	I - 22 21 21 11 43 20	on 🗇 .			Ciota da pagora	
k K F G G 1 NA= $6,02E+23$ Tp= 398 xo= $1,33557047$ 3 kg= $1,38E-23$ T= 298 1 1 4					Arid +	10 + H A S III II	■田 � < × = 1	1.1 9 9 0	• 4 • .
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	E10015 ·	6							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		A	В	С	D	E	F	G	-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	0000							
3 kg= 1,38E-23 T= 298 4	2		N _A =	6,02E+23	T _D =	398	×0=	1,33557047	
4 N x f(x) 6 1 1,32231902 1,51456691 7 2 1,02570447 0,96448877 8 3 0,65331787 0,66553099 9 4 0,01238051 0,00015328 10 5 0,33433828 0,11074661 11 6 0,98629724 0,89761591 12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 99999 0,18777328 0,02808194 10005 10000 1,22528057 1,32678576 cy 10006 0,54202972 22,75 10007	3		k ₈ =	1,38E-23	T=	298			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	4								
6 1 1,32231902 1,51456691 7 2 1,02570447 0,96448877 8 3 0,85331787 0,68553099 9 4 0,01238051 0,00015328 10 5 0,33433828 0,11074661 11 6 0,98629724 0,89761591 12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,8869686 0,75542378 10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10006	5		N	x	f(x)				
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	6		1	1,32231902	1,51456691				
8 3 0,85331787 0,68553099 9 4 0,01238051 0,00015328 10 5 0,33433828 0,11074661 11 6 0,98629724 0,88761591 12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,06502002 2,5201E-05 10004 9999 0,16777328 0,0288194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	7		2	1,02570447	0,96448877				
9 4 0.01238051 0.00015328 10 5 0.33433828 0.11074661 11 6 0.98629724 0.89761591 12 7 1.15037637 1.18659647 13 8 0.53798018 0.28254208 10000 9995 0.89869686 0.75542378 10001 9996 0.93446382 0.81236057 10002 9997 0.94674314 0.83227001 10003 9998 0.00502002 2,5201E-05 10004 9999 0.18777328 0.02088194 10005 10000 1,22528057 1,32678576 cv 10006 0.54202972 22,75 10007	8		3	0,85331787	0,68553099				
10 5 0,33433828 0,11074661 11 6 0,98629724 0,89761591 12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,94674314 0,83227001 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cy 10006 0,54202972 22,75	9		4	0,01238051	0,00015328				
11 6 0,98629724 0,88761591 12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10		5	0,33433828	0,11074661				
12 7 1,15037637 1,18659647 13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	11		6	0,98629724	0,89761591				
13 8 0,53798018 0,28254208 10000 9995 0,89869686 0,75542378 10001 9996 0,93445382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,0288194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	12		7	1,15037637	1,18659647				
10000 9995 0,89869686 0,75542378 2 10001 9996 0,93446382 0,81236057 2 10002 9997 0,94674314 0,83227001 2 10003 9998 0,00502002 2,5201E-05 2 10004 9999 0,16777328 0,02808194 2 10005 10000 1,22528057 1,32678576 Cv 10006 0,54202972 22,75 2	13		8	0,53798018	0,28254208				-
10001 9996 0,93446382 0,81236057 10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 99999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10000		9995	0,89869686	0,75542378				-
10002 9997 0,94674314 0,83227001 10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10001		9996	0,93446382	0,81236057				
10003 9998 0,00502002 2,5201E-05 10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10002		9997	0,94674314	0,83227001				
10004 9999 0,16777328 0,02808194 10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10003		9998	0,00502002	2,5201E-05				
10005 10000 1,22528057 1,32678576 cv 10006 0,54202972 22,75 10007	10004		9999	0,16777328	0,02808194				
10006 0,54202972 22,75 10007	10005		10000	1,22528057	1,32678576	Cv			
10007	10006				0,54202972	22,75			
	10007								
	10008	(Hain? / Hain? /							1

```
(* Metodo MC*)
 (* Temperatura absoluta (K):= ta ; Temperatura Debye (K):= td *)
ta = 298; td = 398;
Print["La temperatura absoluta es ", ta, " K, La temperatura Debye
                                                                                  .
  td, " K"];
(* límites de integración (a,b) *)
a = 0;
b = td/ta;
(*Constantes *)
nav = 6.023 * 10<sup>23</sup>; boltz = 1.381 * 10<sup>-23</sup>; coe = 9 * nav * boltz / b<sup>3</sup>;
np = 10000; int = 0;
For[i = 1, i <= np, i++,</pre>
         x = Random[] * (b - a) + a;
         y = ((x^4) \star Exp[x]) / (Exp[x] - 1)^2;
         int = int + y;];
int = int / np * (b - a) ;
Print["La capacidad calorífica evaluada con Monte Carlo : ",
  N[int * coe, 4]];
 La temperatura absoluta es 298 K, La temperatura Debye
                                                                   398 K
La capacidad calorífica evaluada con Monte Carlo : 22.7908
```

100% + 4

10.2. Raíces de una función. El método de la bisección.

A veces, el método de Newton puede presentar una convergencia lenta. Incluso puede divergir, por ejemplo si la raíz se encuentra cerca de un punto de inflexión. En tales casos, el llamado método de la bisección es una alternativa segura, aunque relativamente costosa si se quiere una alta precisión en el resultado. Este método hace uso del teorema de Bolzano para funciones continuas. Dicho teorema afirma, como se muestra en la figura, que si tenemos una función continua que en los extremos de un intervalo tiene signos distintos, entonces debe haber un punto interior del intervalo donde la función se anula.

Con este teorema en mente, la forma de buscar la raíz de función podría ser la siguiente: en primer lugar dibujamos la función para tener una idea de por dónde buscar la raíz. A partir del la gráfica tomamos las abscisas (x_a, x_b) a la izquierda y derecha de la raíz y calculamos el valor de la función en dichas abscisas, las cuales deben tener signo distinto. Sin detrimento de generalidad, supongamos que hemos encontrado que $f(x_a) > 0$, y que por tanto $f(x_b) < 0$ (la alternativa contraria se resolvería de modo similar). Llamamos $x_m = (x_a + x_b)/2$ al punto medio del intervalo y calculamos $f(x_m)$. Entonces, si resulta que $f(x_m) < 0$ definimos un nuevo intervalo (x_a, x_m) de longitud la mitad del inicial y con la misma propiedad que la función tiene signos distintos en sus extremos (si $f(x_m) > 0$, el intervalo que escogemos es (x_m, x_b) , que tendría esta misma propiedad). A partir de este nuevo intervalo reiteramos el procedimiento hasta que la longitud del intervalo se haya reducido por debajo de la precisión que requerimos para el valor de la raíz. Finalizado el proceso, tomamos el punto medio del intervalo como valor propuesto para la raíz, y la longitud del intervalo como su imprecisión.

Como ejercicio se propone resolver, usando el método de la bisección, el mismo problema del equilibrio en fase gas que en el capítulo 4 fue resuelto con el método de Newton y que corresponde al equilibrio $A + B \leftrightarrow C + 2D$ con constante de equilibrio

$$Kp = \frac{(Pc+x) \cdot (Pd+2x)^2}{(Pa-x) \cdot (Pb-x)},$$

donde P_a , P_b , P_c y P_d representan las presiones parciales iniciales y x la extensión en que la reacción ha avanzado. Nos encontramos pues ante un polinomio,

$$P(x) = 4x^{3} + \left[4 \cdot (P_{c} + P_{d}) - K_{p}\right] \cdot x^{2} + \left[4 \cdot P_{d} \cdot P_{c} + P_{d}^{2} + K_{p}(P_{a} + P_{b})\right] \cdot x + (P_{c} \cdot P_{d}^{2} - K_{p} \cdot P_{a} \cdot P_{b}),$$

del que debemos encontrar sus raíces. En la figura siguiente se han considerado las siguientes condiciones iniciales: $P_a=1$, $P_b=2$, $P_c=1$, $P_d=0$ at., y se ha tomado una constante $K_p=1$. Representamos primero la gráfica:

Y después el proceso iterativo de la bisección:

Microsoft	t Excel - bi	secoleals							_#×
a Brotero	Edain	Be poerter Bornato (Berani	entas Detos Vegtana 2	Adde FOF			botev	va pregunta	-#×
U UP M	10.2	GFLS V A HE IST V	**************************************	+ + + =	√. wi = 10 =	***			Δ
たがい									0.000
037	•	A =(837+C37)/2	<u> </u>	D	E	E	C	11	-
24	A	D	C	U	E	F	6	п	
34	-	~~~	vh	v	f/va)	f(vb)	f(v)		
55	-	Xd	XU	×	i(xa)	1(XD)	1(X)		
36		0,0000	0,5000	0,2500	-2,0000	0,7500	-1,0000		
37		0,2500	0,5000	0,3750	-1,0000	0,7500	-0,2422		
38		0,3750	0,5000	0,4375	-0,2422	0,7500	0,2217		
39		0,5000	0,4375	0,4688	0,7500	0,2217	0,4774		
40		0,4375	0,4688	0,4531	0,2217	0,4774	0,3475		
41		0,4688	0,4531	0,4609	0,4774	0,3475	0,4119		
42		0,4531	0,4609	0,4570	0,3475	0,4119	0,3796		
43		0,4609	0,4570	0,4590	0,4119	0,3796	0,3957		
44		0,4570	0,4590	0,4580	0,3796	0,3957	0,3876		
45		0,4590	0,4580	0,4585	0,3957	0,3876	0,3917		
46		0,4580	0,4585	0,4583	0,3876	0,3917	0,3897		
47		0,4585	0,4583	0,4584	0,3917	0,3897	0,3907		
48		0,4583	0,4584	0,4583	0,3897	0,3907	0,3902		
49		0,4584	0,4583	0,4583	0,3907	0,3902	0,3904		
50		0,4583	0,4583	0,4583	0,3902	0,3904	0,3903		
51		0,4583	0,4583	0,4583	0,3904	0,3903	0,3904		
52		0,4583	0,4583	0,4583	0,3903	0,3904	0,3903		
53		0,4583	0,4583	0,4583	0,3904	0,3903	0,3903		
54		0,4583	0,4583	0,4583	0,3903	0,3903	0,3903		
55									_
• • • H\	Hoja1 /				14				١Ē

10.3. Perturbaciones del equilibrio químico mediante pequeñas adiciones másicas

En el apartado <u>5.3</u> analizamos la respuesta de un sistema cerrado en equilibrio químico a perturbaciones externas. En particular, estudiamos una mezcla reactiva de gases ideales, fijando nuestra atención en el desplazamiento del grado de avance de la reacción química en equilibrio al producirse una perturbación externa. Vimos que el comportamiento del sistema quedaba cualitativamente reflejado en el principio de Le Chatelier. En el presente apartado se analizará la extensión de este principio a sistemas abiertos, que podemos enunciar del siguiente modo:

Si tenemos un sistema en equilibrio químico y producimos una perturbación que rompe dicho equilibrio, se generan procesos espontáneos en la dirección que tiende a restablecer el equilibrio del sistema.

Para abordar este estudio se propone partir de la ecuación termodinámica que rige el cambio de energía libre ΔG de reacción cuando mezclamos, a temperatura constante, ciertas cantidades iniciales de gases ideales y dejamos que el sistema evolucione hasta alcanzar el equilibrio. Dicha expresión es la siguiente:

$$\Delta G = RT \ln \frac{Q_p}{K_p},$$

donde K_p es la constante de equilibrio y Q_p tiene la misma expresión que K_p de cociente de productos de presiones parciales elevadas a los correspondientes coeficientes estequiométricos, pero mientras K_p incluye las presiones en el punto de equilibrio Q_p incluye las presiones iniciales de la mezcla reactiva.

A pesar de su aparente similitud, estas dos magnitudes son profundamente diferentes. Así, mientras que K_p es la constante de equilibrio y por tanto sólo depende de la temperatura, Q_p no es más que un cociente de productos de presiones parciales iniciales, y depende del valor de cada una de dichas presiones parciales iniciales que hemos escogido para provocar la reacción.

Cuando preparamos una mezcla reactiva de gases ideales, si escogemos las presiones parciales que corresponden al equilibrio, entonces Q_p coincide con K_p , ΔG es cero y el sistema no evoluciona. Si a continuación perturbamos el sistema, sin variar la temperatura, mediante la adición de una pequeña cantidad de uno de los reactivos o productos, tenemos que K_p (que sólo depende de la temperatura) permanece invariable, mientras que alteramos el valor de Q_p y rompemos el equilibrio. Como respuesta a la perturbación, el sistema reacciona para variar las presiones parciales hasta reencontrar el equilibrio, que a esta temperatura está definido por K_p . Supongamos que adicionamos un reactivo. Si con dicha adición hacemos crecer el denominador de Q_p resulta que $Q_p < K_p$, por lo que el sistema evolucionará hacia la derecha (hacia productos) con objeto de aumentar el valor de Q_p hasta hacerlo coincidir con K_p .

situación donde $Q_p < K_p$, la ecuación que rige el cambio de energía libre ΔG de reacción nos indica que ΔG < 0, por eso el proceso de formación de productos es un proceso espontáneo.

Si adicionamos un producto y con dicha adición hacemos crecer el numerador de Q_p , resulta que $Q_p > K_p$, por lo que el sistema evolucionará hacia la izquierda (hacia reactivos) con objeto de disminuir el valor de Q_p hasta hacerlo coincidir con K_p . Desde el punto de vista de la energía libre, puesto que tenemos una situación donde $Q_p > K_p$, la ecuación que rige el cambio de energía libre ΔG de reacción nos indica que $\Delta G > 0$, por eso el proceso de formación de productos no es espontáneo, y por esta misma razón la reacción avanza espontáneamente en sentido contrario, esto es, en la dirección de formación de reactivos.

En los párrafos anteriores se ha tenido especial cuidado en no afirmar que la adición de un reactivo/producto comporta necesariamente una disminución/aumento de Q_p . Ello es cierto si tal adición se realiza a temperatura, volumen y número de moles de las otras especies presentes en el reactor constantes, pero no necesariamente si en lugar de fijar el volumen fijamos la presión total.

En efecto, puesto que $p_i V = n_i RT$, concluimos que:

$$Q_p = Q_n \left(\frac{RT}{V}\right)^{\Delta \nu},$$

donde Q_n es una expresión como Q_p , donde escribimos moles n_i en lugar de presiones parciales p_i .

Si ahora fijamos la temperatura T y el volumen V, tenemos que aumentos/disminuciones de Q_n implican necesariamente aumentos/disminuciones de Q_p .

Sin embargo, desde $p_i = x_i P = \frac{n_i}{N} P$, donde *N* es el número total de moles, tenemos que:

$$Q_p = Q_n \left(\frac{P}{N}\right)^{\Delta \nu}$$

Si mantenemos la presión total *P* constante y aumentamos los moles de un producto, Q_n aumenta, pues hacemos crecer su numerador. No obstante, el término $(P/N)^{Av}$ puede llegar a disminuir con tal intensidad que haga que Q_p disminuya. Veámoslo en un ejemplo numérico: Imaginemos una reacción en la que el coeficiente estequiométrico del producto A es $v_A = 1$ y en el que la variación de coeficientes de productos menos reactivos sea $\Delta v = 2$. Supongamos una situación de referencia donde $n_A^{(1)} = 1$, $N^{(1)} = 2$, que adicionamos una mol de producto A y, por tanto, que pasamos a otra situación definida por $n_A^{(2)} = 2$, $N^{(2)} = 3$. En la primera tenemos $Q_n^{(1)}$ y en la segunda $Q_n^{(2)}$.

Veamos que la adición de producto A hace, obviamente, crecer la Q_n . En efecto, el cociente:

$$\frac{Q_n^{(2)}}{Q_n^{(1)}} = \left(\frac{n_A^{(2)}}{n_A^{(1)}}\right)^{\mathbf{v}_A} = \left(\frac{2}{1}\right)^1 = 2$$

es mayor que la unidad.

Calculemos ahora el cociente entre las Q_p :

$$\frac{Q_p^{(2)}}{Q_p^{(1)}} = \frac{Q_n^{(2)}}{Q_n^{(1)}} \left(\frac{N^{(1)}}{N^{(2)}}\right)^{\Delta \nu} = 2\left(\frac{2}{3}\right)^2 = \frac{8}{9} < 1$$

Vemos pues que, para esta estequiometría y condiciones, un aumento de Q_n ha implicado una disminución de Q_p .

De manera análoga, la adición de un gas inerte a temperatura constante, puede alterar las presiones parciales si mantenemos constante la presión, pero no si consideramos constante el volumen, por tanto, en el primer caso supone una perturbación del equilibrio y en el segundo no.¹²

El trabajo completo que se propone en este apartado se debería comenzar mediante una búsqueda de información en la web sobre los fundamentos termodinámicos que rigen las reacciones químicas y, en particular, de la ecuación termodinámica, mencionada más arriba, que rige el cambio de energía libre ΔG de reacción cuando mezclamos cantidades iniciales de gases ideales y dejamos que el sistema evolucione hasta alcanzar el equilibrio a temperatura constante. En el estudio concreto que se propone, para conocer el sentido del desplazamiento se sugiere calcular el número de moles de cada componente antes y después de la perturbación.

En el ejemplo siguiente fijamos la cantidad de moles de todos los gases añadidos, excepto del producto A, cuya cantidad se elige de modo que la reacción avance o retroceda (como nos indica el signo del grado de avance de la reacción).

```
In[1]:= Off[General::spell, General::spell1];
In[2]:= ClearAll["Global`*"];
In[3]:= na = na0 + eps;
    nb = nb0 + eps;
    nc = nc0 - eps;
    nt = na + nb + nc + nin;
```

entonces no afectamos las presiones parciales de los gases reactivos, $p_i V = n_i RT$, y por tanto no afectamos el equilibrio.

G J. Planelles / R. Serrano / J. L. Movilla - ISBN: 978-84-693-0995-7

¹² Si mantenemos la presión total constante y añadimos un inerte, aumentamos el numero total de moles, variamos las fracciones molares x_i de los gases que intervienen en la reacción y por tanto sus presiones parciales: $p_i = x_i P$. Si mantenemos fijo el volumen,

```
\ln[7] = a1 = -0.1; b1 = 0.5; c1 = -0.001; d1 = -0.002; e1 = -0.000001; r = 0.082;
         deltaG0 = a1 + b1 *t + c1 *t * Log[t] + d1 *t<sup>2</sup> + e1/t;
         kp = Exp[-deltaG0 / (r * t)];
\ln[10]:= aux = Solve[kp == \frac{na \ nb}{nc} \ \frac{p}{nt}, eps]; epsp2 = aux[[2, 1, 2]];
\ln[11] = epsp = epsp2 /. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5\}
Out[11]= 0.0659705
ln[12]:= Print["na = ",
          na /. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\},\
                 "; nb = ",
          nb/. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\},\
                 "; nc = ",
          nc/. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\},\
                "; nin = ",
          nin /. \{na0 \rightarrow 1, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\}
         na = 1.06597; nb = 1.26597; nc = 0.43403; nin = 1.5
 \ln[13] = epsp = epsp2 / . \{na0 \rightarrow 1.4, nb0 \rightarrow 1.2, nc0 -> 0.5, nin -> 1.5, t -> 300, p \rightarrow 5\}
Out[13]= -0.000656903
In[14]:= Print["na = ",
          na /. \{na0 \rightarrow 1.4, nb0 \rightarrow 1.2, nc0 -> 0.5, nin -> 1.5, t -> 300, p \rightarrow 5, eps -> epsp\},\
                 "; nb = ",
          nb/. \{na0 \rightarrow 1.4, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\},\
                 "; nc = ",
          nc/. \{na0 \rightarrow 1.4, nb0 \rightarrow 1.2, nc0 \rightarrow 0.5, nin \rightarrow 1.5, t \rightarrow 300, p \rightarrow 5, eps \rightarrow epsp\},\
                "; nin = ",
          nin /. \{na0 \rightarrow 1.4, nb0 \rightarrow 1.2, nc0 -> 0.5, nin -> 1.5, t -> 300, p \rightarrow 5, eps -> epsp\}
         na = 1.39934; nb = 1.19934; nc = 0.500657; nin = 1.5
```

Se debe hacer un estudio en que las adiciones de moles a temperatura constante, incluida la adición del inerte, se realicen a presión o a volumen constante. Para acabar se propone abordar y discutir el problema que se plantea a continuación.

CUESTIÓN.- Demostrar que para una reacción en fase gaseosa ideal:

$$\left(\frac{\partial \ln Q_x}{\partial n_j}\right)_{P,T, n_{i\neq j}} = \frac{v_j - x_j \Delta v}{n_j}$$

donde Q_x es el cociente de productos de fracciones molares iniciales.

Como aplicación de la ecuación anterior, indicar, para la reacción $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$, las condiciones en que la adición de una pequeña cantidad de $N_2(g)$, a presión total y temperatura constante, desplazará el equilibrio para producir más $N_2(g)$.

Daremos algunas indicaciones para la resolución de esta cuestión. En primer lugar se debe comprobar que, en condiciones de presión y temperatura constante, tenemos que:

$$\frac{Q_p}{K_p} = \frac{Q_x}{K_x}$$

Esto nos permite reescribir la ecuación termodinámica que rige el cambio de energía libre ΔG de reacción en términos de fracciones molares,

$$\Delta G = RT \ln \frac{Q_x}{K_x}$$

En segundo lugar se debe comprobar que K_x únicamente depende de la temperatura y la presión total, por lo que su derivada parcial respecto el número de moles n_j cuando la temperatura, presión y moles del resto de compuestos permanecen constantes es cero.

Como se ha discutido más arriba, no es éste el caso de Q_x . Podemos comprobar mediante derivación directa de su expresión que:

$$\left(\frac{\partial \ln Q_x}{\partial n_j}\right)_{P,T, n_{i\neq j}} = \frac{\nu_j - x_j \Delta \nu}{n_j}$$

Para ello basta escribir las fracciones molares x_i que aparecen en la fórmula de Q_j en términos de moles, $x_i = n_i / N$, donde *N* es el numero de moles total, y derivar teniendo en cuenta que la derivada parcial de *N* respecto n_i vale la unidad.

Podría pensarse que esta misma expresión se obtendría para la derivada del logaritmo de K_x . Es cierto, solo que las fracciones molares y numero de moles son tales que la hacen cero en equilibrio, esto es, cuando $Q_x = K_x$.

El resto de la cuestión requiere un razonamiento similar al llevado a cabo con anterioridad. En equilibrio, $Q_x = K_x$ y por tanto $\Delta G = 0$. Si la perturbación aumenta Q_x , se cumplirá que $Q_x > K_x$ y consiguientemente $\Delta G > 0$. Por tanto, el equilibrio se desplazará hacia la izquierda disminuyendo Q_x hasta que coincida con K_x . En cambio, si la perturbación disminuye Q_x se cumplirá que $Q_x < K_x$ y $\Delta G < 0$. Por tanto ahora el equilibrio se desplazará hacia que su valor coincida con K_x .

Es interesante comprobar en la reacción de síntesis de amoniaco mencionada más arriba que, de acuerdo con lo que predice la fórmula anterior y mostramos mediante el código siguiente, si la fracción molar de $N_2(g)$ es menor que 0.5, una pequeña adición de nitrógeno, a P y T constante, desplaza el equilibrio a la izquierda, aumentando más aun su fracción molar. Lo comprobamos a la temperatura de 450°C donde la constante de equilibrio vale $K_p = 4.356 \cdot 10^{-5}$ atm⁻², para una presión total de una atmósfera:

```
in[1]:= Off[General::spell, General::spell1];
ln[2]:= ClearAll["Global`*"];
ln[3]:= (*
        n10 = moles inciales de N2;
        n20 = moles inciales de H2;
        n30 = moles inciales de NH3;
        nt0 = moles iniciales totals
        *)
       (*
        suponemos P=1, i.e. Kp = Kx
      *)
\ln[4] = n10 = 1; n20 = 1; n30 = 1; nt0 = n10 + n20 + n30;
      aux = Solve \left[4.356\,10^{-5} = \frac{\left(\frac{nl0+\mu}{nt0+2\,\mu}\right)\left(\frac{n20+3\,\mu}{nt0+2\,\mu}\right)^3}{\left(\frac{n30-2\,\mu}{1+2}\right)^2}, x]; del = aux [[4, 1, 2]];
      n1 = n10 + del; n2 = n20 + 3 del; n3 = n30 - 2 del; nt = n1 + n2 + n3;
      x1 = \frac{n1}{nt}; x2 = \frac{n2}{nt}; x3 = \frac{n3}{nt};
      Print["moles:
                           N2 = ", n1, "; H2 = ", n2, "; NH3 = ", n3]
      Print["fracciones molares: N2 = ", x1, "; H2 = ", x2, "; NH3 = ",
        x3]
                N2 = 0.699081; H2 = 0.0972415; NH3 = 1.60184
      moles:
      fracciones molares: N2 = 0.291507; H2 = 0.0405484; NH3 = 0.667945
\ln[10] = n10 = 1.1; n20 = 1; n30 = 1; nt0 = n10 + n20 + n30;
       aux = Solve [4.356\,10^{-5} = \frac{\left(\frac{nl0+\kappa}{nt0+2\kappa}\right)\left(\frac{n20+3\kappa}{nt0+2\kappa}\right)^3}{\left(\frac{n30-2\kappa}{nt0+2\kappa}\right)^2}, x]; del = aux [[4, 1, 2]];
       n1 = n10 + del; n2 = n20 + 3 del; n3 = n30 - 2 del; nt = n1 + n2 + n3;
       x1 = \frac{n1}{nt}; x2 = \frac{n2}{nt}; x3 = \frac{n3}{nt};
                            N2 = ", n1, "; H2 = ", n2, "; NH3 = ", n3]
       Print["moles:
       Print["fracciones molares: N2 = ", x1, "; H2 = ", x2, "; NH3 = ",
        x3]
       moles:
                   N2 = 0.798536; H2 = 0.0956081; NH3 = 1.60293
       fracciones molares: N2 = 0.319789; H2 = 0.0382881; NH3 = 0.641923
```

Debe pues tomarse el principio de Le Chatelier con cierto cuidado. El sentido de una reacción química, a P y T constantes, viene determinada por la variación de energía libre. Una vez alcanzado el equilibrio, éste es estable. Si lo perturbamos, el sistema responderá intentando minimizar de nuevo su energía libre evolucionando hasta alcanzar un nuevo equilibrio. Precisamente esto, y únicamente esto, es lo que dice el principio de Le Chatelier.

10.4. Simulación de un espectro de bandas Lorentzianas superpuestas

Los espectros presentan con frecuencia bandas complejas de absorción que resultan del solapamiento de varias bandas simples. La razón reside en el hecho de que la anchura de estas bandas simples es mayor que la separación entre ellas, lo que impide que sean instrumentalmente separables. Y es que, en el mejor de los casos, una transición espectroscópica real dista mucho de ser una línea a una determinada frecuencia, debido a la llamada *anchura natural de la banda* que es consecuencia del principio de indeterminación energíatiempo de Heisenberg. La mecánica cuántica nos muestra que en lugar de una línea, la señal espectroscópica tiene forma acampanada. Más concretamente, de campana de Lorentz (o curva Lorentziana) centrada en una posición de frecuencia, con una anchura y altura dada, y cuya forma concreta viene dada por la expresión,

$$A = \frac{A_M}{1 + 4 \frac{(v - v_0)^2}{A v^2}}$$

donde A_M es la altura máxima, v_0 la posición de frecuencia donde se centra la Lorentziana y Δv la anchura de banda a mitad de altura. En la figura mostramos diversas Lorentzianas de diferente altura y anchura.

En el presente apartado simularemos un espectro como superposición de transiciones, cada una de las cuales originando una señal Lorentziana de altura y anchura determinada. Concretamente, supondremos que hay tres señales, con las características que indica la tabla siguiente,

	Banda 1	Banda 2	Banda 3
A_M	1,12	0,15	0,87
Δv	32	60,3	41,2
v ₀	392	458	519

En las capturas de pantalla siguiente vemos la parte alta de la hoja donde están los datos y calculamos la suma de señales, el espectro resultante y las Lorentzianas que lo componen.

Microsol	t Excel-bandasads Edición Yer Inserts	er Eormato Herramientas C	iatos Vegtana <u>?</u> Adolge PDF				Escriba una pregunta	- 8 ×
D 📽 🖬	198 90 2	¥ 10 18 • 4 10 • 0	·· 🍓 z · 🗟 🏄 👬	200% • [7] _ Arial	• 10 • W X §	■■■田 � € %	∞ *3 *3 GE GE •	<u>.</u>
	В	С	D	E	F	G	Н	-
1								
2		Simulación	de un espectro	de absorción	suma de ba	ndas		
3		Cintaldolori	de un copecto		ounia de ba	lado		
4								
5								
6				A- AM	r			
7		Fórmula de	la lorentziana:	$A = \frac{1}{(v - v)}$	$-\nu_{0})^{2}$			
8				1+4	+07			
9					<i>v</i> -			
10								
11			Banda 1	Banda 2	Banda 3			
12		A _M	1,12	0,15	0,87			
13		Δν	32	60,3	41,2			
14		Vn	392	458	519			
15		-						
16		ν	Abs Banda 1	Abs Banda 2	Abs Banda 3	Abs total		
17		300	3,E-02	5,E-03	8,E-03	5,E-02		
18		310	4,E-02	6,E-03	8,E-03	6,E-02		
19		320	5,E-02	7,E-03	9,E-03	7,E-02		
20		330	7,E-02	8,E-03	1,E-02	9,E-02		
21		340	1,E-01	9,E-03	1,E-02	1,E-01		
າາ		350	1 = 01	1 = 02	1 = 02	2 ⊑ ∩1		
NH 4 P P	Gráfico8 Hoja1 / Gráf	ico9 / Gráfico10 / Hoja2 / Hoja	b3/ />>_ ∦_A_= = = ⇒					

| Digujo + 😓 | Autoformas + 🔪 📜 🔿 🔛 🐴 🔅 🔝 🖄 🖄 - 💆 - 📥 - ≡ 📰 🚍 😭 ... Listo

Una vez escrita la hoja de cálculo que reproduce este espectro, se propone la búsqueda en la web de información sobre el tema, así como de algún espectro tabulado, por ejemplo de MNR, con objeto de proceder a su reconstrucción gráfica.

10.5. Deconvolución de un espectro como suma de bandas Gaussianas superpuestas

Comentábamos en el apartado anterior que los espectros presentan bandas complejas de absorción que resultan del solapamiento de bandas simples que se superponen, y que cada banda simple, incluso en el caso ideal de ausencia de perturbaciones externas, lejos de ser una línea espectroscópica, tiene forma acampanada. Concretamente es una curva Lorentziana centrada en una posición de frecuencia, con una anchura y altura dada. A parte de la anchura natural de la banda, que deriva del principio de Heisenberg, hay otros factores que pueden contribuir a que la señal espectroscópica se ensanche aún más. Entre otros factores podemos nombrar el efecto Doppler, debido al distinto estado de movimiento de las moléculas que absorben, los efectos de presión y de saturación, etc. Estos efectos adicionales y perturbaciones pueden llegar a ensanchar e incluso deformar la señal. Así, en muestras gaseosas, incluso a baja presión y siendo iluminadas con radiaciones poco intensas, la agitación térmica hace que el efecto Doppler ensanche y deforme las bandas correspondientes hasta darles un aspecto de bandas tipo Gauss, con un decaimiento más pronunciado que las curvas Lorentzianas. La curva de Gauss viene dada por la expresión,

$$A = A_M \cdot Exp\left[-\frac{(\nu - \nu_0)^2}{\sigma^2}\right]$$

donde A_M es la altura máxima, ν_0 la posición de frecuencia donde se centra la curva y σ^2 la desviación cuadrática. En la figura mostramos el diferente decaimiento de dos curvas similares, una de cada tipo.

Se propone como ejercicio que se tomen los valores que se han obtenido en el apartado anterior como si fueran los datos de un espectro experimental y que se deconvolucione dicho espectro como suma de señales gaussianas. Para llevar a cabo esta operación, lo primero que tenemos que hacer es observar el espectro y determinar visualmente cuantos picos intervienen. Por tanto, procederemos a representar gráficamente el espectro.

El examen de la figura nos indica la existencia de dos picos fuertes, más uno pequeño entre 440-480 nm que impide que la señal decaiga hacia un valor nulo de absorbancia en esta región. Utilizaremos la macro **Solver** del MS EXCEL[®] para ajustar este espectro experimental. A la vista de esta figura, podemos tomar los siguientes valores iniciales para el ajuste (en realidad se podrían tomar valores mejores. Estos valores ponen de relieve el proceso de ajuste de la macro):

	Banda 1	Banda 2	Banda 3
A_M	1	1	1
σ	30	30	30
ν_0	390	460	520

Los valores óptimos a que llega el Solver son los siguientes:

	Banda 1	Banda 2	Banda 3
A _m	1,056517568	0,305176649	0,833859255
σ	23,80715356	31,37039406	30,83943184
$\nu_{\rm M}$	391,5043001	452,1182771	519,2774831

En la figura mostramos la curva experimental y el ajuste,

Una vez escrita la hoja de cálculo que reproduce el ajuste de este espectro, se propone la búsqueda en la web de información sobre el tema, así como de algún espectro experimental que se debe descomponer como suma de curvas de Gauss o de Lorentz, y discutir la bondad del ajuste obtenido con uno u otro tipo de curvas en función de las características del espectro ajustado (alta o baja temperatura, estado gas o líquido, y demás factores que aconsejen optar por uno u otro tipo de curva para la transición espectroscópica).

10.6. La orden Solve de MATHEMATICA[®] en ejemplos de aplicación química

10.6.1. Ajuste de ecuaciones redox

Considerad la reacción $MnO_4K + Cl_2Fe + ClH \rightleftharpoons Cl_2Mn + Cl_3Fe + ClK + H_2O$. Estableced un balance de materia para cada uno de los siete elementos que intervienen y ajustad la reacción anterior, usando **Solve**. Tomad valor unidad para el coeficiente de uno de los compuestos. Si las soluciones encontradas no son enteras, tomad valor uno como coeficiente del compuesto cuyo coeficiente es el menor y repetid el proceso.

10.6.2. Equilibrios simultáneos: quemando carbón con vapor de agua a altas temperaturas

Consideremos que añadimos un exceso de carbón (grafito) dentro de un cilindro cerrado donde hay un mol de vapor de agua, ambos compuestos con una temperatura inicial de 1000K. El cilindro está provisto con émbolo y pistón que permiten variar el volumen, y está sumergido en un baño isotermo a la temperatura de 1000K, de manera que se extrae el calor de reacción y se mantiene constante la temperatura del cilindro. El émbolo móvil permite fijar la presión total a 1 atmósfera. Se producen tres reacciones químicas simultáneas:

$$C(s) + 2H_2O(g) \stackrel{\text{\tiny def}}{\longleftarrow} CO_2(g) + 2H_2(g)$$
$$C(s) + CO_2(g) \stackrel{\text{\tiny def}}{\longleftarrow} 2CO(g)$$
$$C(s) + 2H_2(g) \stackrel{\text{\tiny def}}{\longleftarrow} CH_4(g)$$

A esta temperatura, las constantes de equilibrio en función de las presiones parciales son respectivamente 3.31 atm, $1.7 \text{ atm} \text{ y } 0.093 \text{ atm}^{-1}$. Se deben calcular las presiones parciales de todos los gases en equilibrio.

Éste es un típico problema de *n* ecuaciones con *n* incógnitas que se resuelve fácilmente con la orden **Solve** o **NSolve** de MATHEMATICA[®], una vez establecidas las ecuaciones. Se recomienda, dado que simplifica el álgebra, que se expresen los moles de los distintos compuestos en función de los distintos grados de avances de cada una de las reacciones. Se advierte que, a pesar que tenemos datos de constantes K_p (constantes en términos de presiones parciales) se escriban las presiones parciales en términos de la presión total y el número de moles, porque a lo largo de la reacción puede haber variación del volumen, de modo que el cambio de presiones parciales no se deba únicamente a la variación de moles, sino también a la del volumen que se requiere para fijar la presión total a una atmósfera. Finalmente se debe tener presente que, a la hora de escoger la solución con *sentido físico*, los grados de avance de todas las reacciones han de ser positivos, pues en el instante inicial se introducen sólo los reactivos de la primera de las tres reacciones en cadena. También debemos despreciar soluciones que den presiones parciales negativas, etc. Debe tenerse presente que sólo una de las soluciones puede tener sentido físico. Con los datos del problema, las soluciones son:

```
Print["ph2o=", (1 - 2 e1) / n,
    ", pco2= ", (e1 - e2) / n,
    ", ph2= ", 2 (e1 - e3) / n,
    ", pco= ", 2 e2 / n,
    ", pch4= ", e3 / n,
    ", P =", ((1 - 2 e1) + (e1 - e2) + 2 (e1 - e3) + 2 e2 + e3) / n ]
ph2o=0.0715601, pco2= 0.0762868, ph2= 0.471368, pco= 0.360122, pch4= 0.0206635, P =1.
```

Una vez encontradas las soluciones de este ejercicio académico, seria un buen trabajo adicional la búsqueda, en la web, de información sobre un problema real de reacciones complejas, junto con datos y constantes de equilibrio que permita resolverlo.

10.7. Series espectroscópicas del átomo de hidrógeno

En 1885, Balmer descubrió, de forma empírica, una ley matemática a la que se ajustan las longitudes de onda de las distintas líneas espectrales correspondientes al espectro de emisión del átomo de hidrógeno. Dicha fórmula es la siguiente:

$$\overline{\mathbf{v}} = \frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2 - n_2^2} \right),$$

donde \overline{v} representa el número de ondas y se suele expresar en cm⁻¹; λ representa la longitud de onda que podemos expresar en nm (1 cm = 10⁷ nm); R_H =109677,6 cm⁻¹ es la constante de *Rydberg*; n_I = 1, 2, 3,... es un número cuántico (n_I = 1, para todas las líneas de la serie Lyman; n_I = 2, para todas las líneas de la serie Balmer; n_I = 3, para la serie Paschen, etc.); finalmente $n_2 = n_I + 1$, para la primera línea de cada serie; $n_I + i$, para la *i*-ésima línea de cada serie.

Se propone calcular las diez primeras líneas de la serie Lyman, correspondientes a las diez primeras transiciones desde una órbita excitada hasta la primera; las diez primeras líneas de la serie Balmer y las correspondientes a la serie Parchen. Se debe prestar especial cuidado al formato y obtener un cuadro como el que aquí se adjunta:

Finalmente, se debe representar el espectro de emisión del átomo de hidrógeno para la series de Lyman, Balmer y Paschen. Para ello, puede crearse una nueva columna en la que se indique una intensidad constante para todas las transiciones. Si se realiza una representación XY (dispersión) en la que se representa la intensidad frente a λ , se incluyen barras de error en la Y, se eliminan los puntos y se adapta el formato de manera conveniente, se obtiene un gráfico como el siguiente:

10.8. Variación del potencial de electrodo con el pH

Recordemos que una pila o celda electroquímica consta en general de dos *semiceldas o electrodos*. En uno, llamada *cátodo*, se produce una reacción de reducción y en el otro (*ánodo*) una de oxidación. Los electrones que se liberan en un electrodo se pueden hacer circular por un conductor para que lleguen al otro. Si en el conductor se interpone una bombilla, ésta se ilumina. Para que el circuito quede convenientemente cerrado hay que comunicar ambos electrodos, normalmente con un *puente salino*.¹³

Mediante un voltímetro podemos medir la diferencia de potencial entre los dos electrodos, pero nunca podemos medir potenciales absolutos (de hecho, ni siquiera tiene sentido hablar de potenciales absolutos). Por este motivo, cuando se habla del potencial de electrodo en realidad uno se refiere a la diferencia de potencial entre este electrodo y el electrodo estándar de hidrógeno cuando se unen formando una pila, como por ejemplo se muestra en la figura anterior para el caso del electrodo Zn^{+2}/Zn^{0} .

El valor del potencial de electrodo depende de la temperatura, la naturaleza química de las especies que lo forman y de su concentración. La *ecuación de Nernst* proporciona el potencial en función de estas variables. Cuando la concentración (o más propiamente la *actividad*) de todas las especies electroactivas es la unidad, el potencial de la pila se llama *potencial normal* y se suele representar por la letra E⁰. Así, en el caso de la figura anterior, si la concentración de Zn⁺² es 1M, el potencial que se mide respecto del electrodo estándar de hidrógeno es el potencial normal de reducción $E_{Zn^{+2}/Zn}^0$. Cuando la concentración es distinta de 1M, la ecuación de Nernst nos proporciona el potencial que se mediría en dicha pila,

$$E_{Zn^{+2}/Zn} = E_{Zn^{+2}/Zn}^{0} + \frac{RT}{nF} Log(Zn^{+2}),$$

puesto que la actividad del sólido es la unidad, n es el número de electrones intercambiados en el proceso redox y el término RT/F toma un valor de 0.059 a 25°C.

¹³ Un *puente salino* es un tubo en forma de U lleno de un gel que contiene una disolución saturada de una sal que no interviene en la reacción de la pila y que permite mantener la electro-neutralidad cuando transcurre la reacción redox.

En la presente sección se propone calcular y representar el potencial del par Fe^{+3}/Fe^{+2} en disolución acuosa para valores del pH desde pH=0 hasta pH=14. Debe tenerse en cuenta que si el pH se hace básico, tanto el Fe⁺³ como el Fe⁺² precipitan sus respectivos hidróxidos, cuyos productos de solubilidad Kps son 10⁻³⁸ y 10⁻¹⁵, respectivamente. El potencial normal de reducción del par Fe⁺³/Fe⁺² es 0.76 V. No es preciso recordar que el producto iónico del agua es 10⁻¹⁴. Considérese que a pH=0, en que ninguna de las dos especies del par precipita, la concentración de (Fe⁺²) es 0.667M y la de (Fe⁺³) 1M. Se usaran ambos programas, el MS EXCEL[®] y el MATHEMATICA[®].

Con estos datos, el resultado que debería obtenerse puede verse en la figura siguiente.

El trabajo completo que se propone en este apartado se debería comenzar mediante una búsqueda de información en la web sobre las reacciones redox, las pilas electroquímicas, el potencial de electrodo, etc. que fundamente el procedimiento seguido, así como localizar algún caso de interés práctico en que sean útiles diagramas como el construido.

10.9. Cinética enzimática. Ecuación de Michaelis-Menten

El mecanismo de Michaelis-Menten se acepta como modelo para la mayoría de reacciones catalizadas por enzimas. Aunque, como parte de la tarea asociada a este apartado, se propone la búsqueda de información sobre cinética enzimática y el trabajo de Michaelis-Menten, expondremos brevemente este mecanismo. Llamemos *E* al enzima, *S* al sustrato y *P* al producto de reacción. Parece inmediato escribir la ecuación química en la forma: $E + S \rightarrow P + E$. Sin embargo, parece ser que el mecanismo es un poco más complejo:

 $E + S \rightleftharpoons (ES) \rightarrow P + E$

Es decir, hay un primer equilibrio entre reactivos (enzima y sustrato) y un complejo intermedio enzimasustrato, inestable y por tanto de pequeña concentración. Éste bien revierte a reactivos, bien rinde productos y regenera el catalizador de manera irreversible. Suponemos pues que la pequeña concentración de complejo permanece estacionaria a lo largo de la reacción. Esto es, su concentración no varía con el tiempo,

$$\frac{d[ES]}{dt} = 0 = k_1[E][S] - k_{-1}[ES] - k_2[ES],$$

donde las constantes k_1, k_2 corresponden a reacción en sentido izquierda-derecha y k_{-1} a reacción en sentido inverso. Con el balance material, $[E_0] = [E] + [ES]$, que no dice más que el enzima inicial se reparte entre enzima libre y acomplejado, podemos sustituir la concentración [E], generalmente desconocida, en términos de $[E_0]$ y [ES] en la ecuación anterior, pudiendo obtener finalmente la concentración desconocida [ES] en términos de las concentraciones conocidas de sustrato [S] y la inicial $[E_0]$ de enzima:

$$[ES] = \frac{k_1[E_0] \cdot [S]}{k_{-1} + k_2 + k_1[S]},$$

Puesto que la velocidad de formación de producto es, de acuerdo con este mecanismo, únicamente consecuencia de la destrucción irreversible del complejo dando productos, podemos escribir

$$V = -\frac{d[S]}{dt} = k_2 [ES] = \frac{k_1 k_2 [E_0] \cdot [S]}{k_{-1} + k_2 + k_1 [S]} = \frac{k_2 [E_0] \cdot [S]}{K_M + [S]},$$

donde $K_M = \frac{k_{-1} + k_2}{k_1}$ es la llamada constante de Michaelis-Menten.

Si la concentración de sustrato es pequeña frente a la constante de Michaelis-Menten, podemos aproximar $K_M + [S]$ por K_M en el denominador y, en consecuencia, la reacción parece ser de primer orden respecto de la concentración [S] de sustrato. En el caso contrario donde $K_M + [S] \approx [S]$, la reacción muestra orden cero respecto dicha concentración. La velocidad de reacción como función de la concentración de sustrato es una función creciente que presenta un límite asintótico,

$$V_{Max} = \lim_{[S] \to \infty} \frac{k_2 [E_0] \cdot [S]}{K_M + [S]} = \frac{k_2 [E_0] \cdot [S]}{K_M + [S]} = k_2 [E_0]$$

Por tanto, podemos reescribir la velocidad de reacción en la forma:

$$V = \frac{V_{Max}[S]}{K_M + [S]}.$$

Tal y como esta escrita esta ecuación no permite un ajuste lineal. Sin embargo, podemos linealizarla si tomamos como variable la inversa de la concentración de sustrato y como función la inversa de la velocidad:

$$\frac{1}{V} = \frac{1}{V_{Max}} + \frac{K_M}{V_{Max}} \frac{1}{[S]}$$

Se propone la realización de una hoja de cálculo donde se usen ambas ecuaciones para obtener las constantes K_M y V_{Max} . Es decir, se realice un ajuste lineal y otro no lineal (por ejemplo usando la macro Solver) y se comparen los resultados obtenidos con uno y otro ajuste.

En el ejercicio propuesto se toman la siguiente tabla de datos supuestamente experimentales:

Datos Ex	perimentales
[S]	V
0,1	3,33
0,2	5
0,5	7,14
0,8	8
1	8,33
2	9,09

Con estos datos se obtiene el siguiente ajuste no lineal:

y el siguiente ajuste lineal:

🔀 Mic	rosoft Ex	cel - ajust_KM.xls										_ 8 ×
: <u>B</u>	Bitxer Ed	jció ⊻isualització In:	serció Format Eines	<u>G</u> ràfic Fi <u>n</u> estra <u>Aj</u> uda							Escriviu una preg	gunta ESP 🔹 🗗 🗙
	i 🖬 🖬 🖬		🕰 🎗 🖻 🛍 = 🐗	/ η • (= • 🐘 Σ	- ≙↓ X↓ 🏨 🛷	· 🕜 🗸 💷	*	<u>→</u> N K <u>S</u>	『言言聞』 嗯 % 0	0 *8 \$8 律 律 田	• 🌺 • <u>A</u> • 💂	
Area	de traçat Δ	• / <u>*</u>	С	D	F	F	G	Н			К	
32		D	0	5	L	•			•	Ŭ	· · ·	
33												
34												
35		ļ.	JUSTE LINE	4L								
36												~
37								0.1 -		_	_	
38		Datos Exp	erimentales	Modelo	Lineal	0,02002697	0,0999804	6 ^{0,4}	= 0.02002697x + 0.0	= 19998046		
39		[S]	V	1/[S]	1/V	8,3021E-06	3,8913E-0	5 _{0.3} - '	R ² = 0.999999	31	-	
40		0,1	3,33	10	0,3003003	0,99999931	6,7855E-0	5	·			
41		0,2	5	5	0,2	5819103,69		4 0.2	_	A		
42		0,5	7,14	2	0,140056022				All and a second			
43		0,8	8	1,25	0,125			0,1 -				
44		1	8,33	1	0,120048019	V _{MAX}	10,00					
45		2	9,09	0,5	0,110011001	K _M	0,20	0	2,5	5 7,5	10	
46												J
47												
48												
49												
50												
51												
52												
53												
54												
56												
57												<u> </u>
14 4	► > H\Hoj	a1 / Hoja2 / Hoja3 /						11				
Dibuic	<- 🎝 F	ormes automàtiques *	\ <u>\</u> D O 🖻 4	1 🗘 🛛 🖾 I 🍐 • 🚄	·▲·≡≡ ≓ ∎							
A punt												
樻 Ini	cio 🛛 🕑	ම, 🔤 🛃 🧶	😻 Descargas	😻 Universitat Jau	me I 🗀 tema9	C P6_ajust	_KM 🔛 Te	ma9.doc - Microso	🔆 Mathematica 5.0 - [r	Microsoft Excel - a	🕖 🔊 🕵 🗞 🖏	🗞 👷 🔣 🗶 18:21

Una vez encontradas las soluciones de este ejercicio académico, se propone como trabajo adicional la búsqueda en la web de información sobre un problema real de reacción enzimática y la comparación del ajuste encontrado en la bibliografía con el ajuste realizado con la hoja de cálculo construida.

10.10. Desintegración radiactiva

Muchos procesos de desintegración nuclear siguen una cinética de reacciones consecutivas de primer orden en las que un isótopo original produce un isótopo descendiente radiactivo, que también se desintegra. Un ejemplo seria la serie de desintegraciones ${}^{210}_{83}Bi \rightarrow {}^{210}_{84}Po \rightarrow {}^{206}_{82}Pb$ que representan los últimos dos pasos de la serie de desintegración radiactiva que empieza con el ${}^{238}_{92}U$ y acaba con el isótopo no radiactivo del *Pb*. Las vidas medias de una y otra desintegración son 5.01 y 128.4 días, respectivamente.

Si esquematizamos el proceso como $A \xrightarrow{k_1} B \xrightarrow{k_2} C$ y consideramos cinéticas de primer orden, o sea, velocidades directamente proporcionales a las concentraciones de reactante, tenemos las siguientes leyes de velocidad:

$$-\frac{d[A]}{dt} = k_1[A] \; ; \qquad \frac{d[B]}{dt} = k_1[A] - k_2[B] \; ; \qquad \frac{dC}{dt} = k_2[B]$$

La primera ecuación conduce a una ley exponencial, $[A] = [A]_0 e^{-k_1 \cdot t}$, que sustituida en la segunda ecuación diferencial permite integrarla fácilmente, dando lugar a

$$[B] = \frac{k_1[A]_0}{k_2 - k_1} (e^{-k_1 \cdot t} - e^{-k_2 \cdot t})$$

y como $[C] = [A]_0 - [A] - [B]$, es inmediato que

$$[C] = [A]_0 \left(1 - \frac{k_2 e^{-k_1 \cdot t}}{k_2 - k_1} + \frac{k_1 e^{-k_2 \cdot t}}{k_2 - k_1} \right)$$

Otras reacciones más complejas pueden llegar a no tener solución analítica en términos de funciones elementales.

Se propone el siguiente ejercicio: Considerad el proceso $A \rightarrow B \rightarrow C$ con unas constantes cinéticas $k_1 = 1 s^{-1} y k_2 = 0.5 s^{-1}$, unas concentraciones iniciales $[A]_0 = 1M$, $[B]_0 = [C]_0 = 0 y$ proceded a integrar numéricamente con MATHEMATICA[®] (usando la orden **NDSolve**), desde un tiempo inicial $t_0 = 0$ hasta uno final $t_f = 10 s$. Se deben representar las concentraciones de los tres compuestos frente al tiempo. Debe comprobarse que la solución obtenida coincide con las expresiones analíticas deducidas anteriormente. La solución que se debería obtener se muestra en la figura:

Una vez resuelto este ejercicio académico, se propone abordar la serie ${}^{210}_{83}Bi \rightarrow {}^{210}_{84}Po \rightarrow {}^{206}_{82}Pb$, u otras similares, que deben ser encontradas tras la correspondiente búsqueda en la web.

10.11. Cambios de estado: calor vs. temperatura

	С	$_{\rm p}$ H ₂ O (s)	$c_p H_2 O(l)$				
T(K	.)	c _p (cal /gr K)	T(K)	$c_p (cal/gr K)$			
270,	,8	0,5018	273	1,00738			
268,	,1	0,4932	293	0,99883			
262	2	0,4861	313	0,99804			
252,	,2	0,4668	333	0,99943			
242,	,4	0,4488	353	1,00229			
234.	7	0,4346	383	1,00697			

Se dispone de los siguientes datos para las capacidades caloríficas del agua sólida y líquida,

Para el agua gas encontramos en la literatura la siguiente expresión para su capacidad calorífica molar a presión constante,

$$c_p = a + bT + dT^2$$
 cal/mol K

donde a = 7.256, b = 0.002298 y d = 0.000000283. Los calores latentes de fusión y vaporización, a las temperaturas de 273K y 373K son, respectivamente, 79.78 y 539.55 cal/gr.

Se propone la construcción de una hoja de cálculo donde, en primer lugar, se ajusten las capacidades caloríficas del agua sólida y liquida a sendos polinomios, como se muestra en las figuras, de donde se han eliminado los ajustes obtenidos.

A partir de el polinomio del enunciado para el agua gas y los dos polinomios que se han ajustado para el agua sólida y líquida, más los datos de calores de fusión y vaporización, se debe calcular el calor (en calorías) que absorbe un gramo de agua que está inicialmente sólida a -50°C, hasta llegar a 200°C en estado de vapor. Debe representarse calor absorbido en función de la temperatura Q(T), por una parte, y variación de la temperatura con el calor absorbido T(Q), por otra. Se debe discutir y justificar la potencia refrigerante del agua en los diferentes rangos de temperatura.

Los resultados que se deben obtener vienen graficados a continuación.

Como parte del trabajo propuesto se deberá buscar información sobre el agua coma agente refrigerante y comparar su poder refrigerante con el de otras substancias, en distintos rangos de temperatura. Es especialmente interesante la respuesta térmica en los cambios de fase. De hecho, uno de los experimentos sencillos que se pueden proponer para verlo consiste en tomar una hoja de papel y doblarla formando una caja abierta por arriba, en la que se pone un poco de agua. A continuación se pone la caja de papel sobre un mechero encendido y vemos que no se prende... hasta que se acaba el agua de dentro de la caja, momento en que se produce la combustión súbita de la caja de papel.

10.12. Ley de Fick

Las disoluciones en equilibrio presentan una concentración uniforme. Si externamente provocamos un gradiente de concentraciones (como por ejemplo añadiendo cierto volumen de disolvente o de soluto sobre la superficie de la disolución) creamos un desequilibrio y el sistema responde contra él produciendo un flujo *J* de soluto desde zonas de mayor a zonas de menor concentración. Dicho flujo es más grande cuanto más grande es el gradiente de concentración provocado externamente. Podemos hacer el siguiente experimento sencillo para poder observar la existencia del flujo, e incluso el hecho que este es mayor cuanto mayor es el gradiente. Tomamos un vaso de agua. Con un cuentagotas introducimos súbitamente un pequeño chorro de una disolución fuertemente coloreada, por ejemplo de disolución violeta de KMnO₄, y observamos después cómo se difunde el color violeta a través del agua. Dejamos el vaso quieto y, después de un rato, vemos que una disolución uniforme de color rosado llena el vaso. Para ver que a mayor gradiente mayor flujo, tomamos

dos vasos de agua y dos cuentagotas, uno con disolución concentrada de KMnO₄, de color violeta intenso, y otra con disolución diluida de este mismo compuesto, de color rosado. Introducimos simultáneamente en ambos vasos, con sendos cuentagotas, cantidades similares de una y otra disolución y observamos la diferencia de velocidad con que el color morado se difunde en el agua.

La ley que gobierna esta difusión se conoce como primera ley de Fick. Esta ley es simplemente la plasmación matemática de la proporcionalidad entre flujo y gradiente de concentración. En el caso sencillo de la difusión en una dirección, que llamamos *z*, la primera ley de Fick toma la forma,

$$J = -D\frac{dc}{dz}$$

donde J es el flujo, en unidades mol/m²s, o sea, moles por unidad de superficie en la unidad de tiempo, D es la constante de proporcionalidad que se denomina coeficiente de difusión, y la derivada de la concentración respecto de la coordenada z es lo que antes hemos llamado gradiente de concentración. La fórmula incluye un signo negativo para indicar que el flujo va contra gradiente, es decir, los moles de soluto se mueven desde las zonas de mayor concentración a las zonas de menor concentración, intentando igualar las concentraciones en todo el vaso.

En general, mientras se produce la difusión, las concentraciones en las diferentes regiones van cambiando. Esto es, la concentración es también una función del tiempo. La ley que indica la manera en que varía la concentración con el tiempo se conoce como segunda ley de Fick. De acuerdo con ella, la derivada de la concentración con respecto al tiempo es igual al producto del coeficiente de difusión por la derivada segunda de la concentración en la dirección del flujo.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2}$$

La segunda ley de Fick de la difusión es una especie de ecuación de balance para la materia que fluye. No es necesario demostrar que Entrada – Salida + Generación = Acumulación, pero si darle una forma matemática. A tal objeto consideremos, come se ve en la figura, el volumen diferencial dV que hay entre dos áreas Aiguales separadas una distancia diferencial dz.

Si consideramos que no hay fuentes y sumideros dentro de dV, desaparece el término Generación del balance y queda sólo Entrada – Salida = Acumulación. Identificamos "Acumulación" con la variación temporal de concentración y "Salida – Entrada" con la variación espacial de flujo:

$$-\frac{\partial J}{\partial z} = \frac{\partial c}{\partial t}$$

Si sustituimos aquí la primera ley de Fick, obtenemos la segunda. En caso de haber fuentes y/o sumideros distribuidos en el volumen, la segunda ley de Fick debe incluir un término adicional g(z) de Generación.

$$\frac{\partial c}{\partial t} = D \frac{\partial^2 c}{\partial z^2} + g(z)$$

Finalmente, en régimen estacionario, la concentración no varia con el tiempo y la Generación se compensa con la diferencia Entrada – Salida. Haciendo cero la derivada temporal de la concentración en la fórmula anterior obtenemos:

$$\frac{\partial^2 c}{\partial z^2} = -\frac{1}{D}g(z)$$

Se propone como ejercicio la integración numérica de esta última ecuación diferencial en una hoja de cálculo. Para proceder a integrar numéricamente las diferenciales éstas se reemplazan por incrementos finitos. Así,

$$\frac{dc}{dz} \approx \frac{c(z + \Delta z/2) - c(z - \Delta z/2)}{\Delta z}$$

Reiterando el proceso obtenemos la aproximación a la segunda derivada,

$$\frac{d^2c}{dz^2} \approx \frac{\frac{dc(z + \Delta z/2)}{dz} - \frac{dc(z - \Delta z/2)}{dz}}{\Delta z} \approx \frac{c(z + \Delta z) - 2c(z) + c(z - \Delta z)}{\Delta z^2}$$

Substituyendo estas aproximaciones en la segunda ley de Fick estacionaria, y llamando $g_i = g(z)$, $c_i = c(z)$, $c_{i+1} = c(z + \Delta z)$ y $c_{i-1} = c(z - \Delta z)$, obtenemos,

$$c_{i+1} - 2c_i + c_{i-1} = -\frac{\Delta z^2}{D}g_i \implies c_i = \frac{1}{2}(c_{i+1} + c_{i-1}) + \frac{\Delta z^2}{2D}g_i$$

Para integrar necesitamos conocer condiciones de contorno. Consideremos por ejemplo que c(z=0)=10 y c(z=10)=1, que hay difusión estacionaria (con D = 1/2) a lo largo de una cañería de longitud 10 en la que existe un sumidero en z = 2, G(2) = -3 (lo que significa que $g(2) = -3/\Delta z$), y una potente fuente en

z = 6, G(6) = 8 (i.e., $g(6) = 8/\Delta z$).¹⁴ Lo que debemos determinar es la concentración en función de la posición z en la cañería, sabiendo el valor de concentración en ambos extremos. Establecemos el paso de integración Δz y construimos tres columnas z_i , g_i , c_i a intervalos Δz . La primera y segunda columna las conocemos. En particular la segunda es cero en todos los puntos excepto los de coordenada 2 y 6, donde están el sumidero y la fuente. De la tercera columna sólo conocemos el primer y el último valor, el resto de valores c_i los calculamos con la fórmula iterativa que hemos deducido.

Para evitar que la hoja de cálculo dé error debido a referencias circulares en las fórmulas, desactivaremos el cálculo automático en la hoja de cálculo y activaremos el iterativo. Para ello seleccionaremos "Opciones" del menú "Herramientas" y allí seleccionamos la pestaña "Cálculo" y, en el cuadro que se descubre al seleccionar la pestaña "Calculo", escogemos "cálculo manual" e "iteración". Una vez construida la hoja de cálculo procedemos a realizar el cálculo (tecla F9) y a representar el perfil de concentraciones frente a la coordenada *z*.

Con los datos del problema el perfil resultante viene dado en la figura adjunta.

Una vez resuelto este ejercicio en la hoja de cálculo, podemos resolverlo de nuevo con MATHEMATICA[®] (usando la orden NDSolve).

10.13. Simulación de un espectro de microondas

El espectro electromagnético cubre longitudes de onda muy variadas. Para su estudio, el espectro se divide en segmentos o bandas, aunque esta división es inexacta. Se denomina microondas a las ondas electromagnéticas definidas en un rango de frecuencias longitudes de onda entre 30 *cm* y 1 *mm*, lo que corresponde a un rango de frecuencias de entre 1 *GHz* y 300 *GHz*. El rango de energía que esto comporta es

¹⁴ Nótese que g(z) es en realidad una densidad, $g(z) = G \cdot \delta(z - z_0)$, y que su correcta discretización es $g(z \neq z_0) = 0$; $g(z = z_0) = G / \Delta z$, donde Δz es el paso de la discretización.

del orden de las diferencias energéticas entre niveles rotacionales moleculares, por eso se dice que las microondas activan la rotación molecular.

Una de las aplicaciones más conocidas de las microondas es el horno microondas, que usa un magnetrón para producir ondas a una frecuencia de aproximadamente 2,45 *GHz*. Estas ondas hacen rotar las moléculas de agua, lo cual genera calor. Debido a que la mayor parte de los alimentos contienen un importante porcentaje de agua, pueden ser fácilmente cocinados de esta manera. Sin embargo, esta radiación no es suficientemente energética para activar la vibración de la red cristalina que constituye el plato (la diferencia de niveles vibracionales se corresponde con la región infrarroja del espectro, más energética que la región de microondas). En consecuencia, conseguimos calentar la comida pero no el plato que la contiene, al que sólo le llega energía de modo indirecto, en forma de calor, desde el alimento caliente.

En telecomunicaciones, las microondas son usadas en programas informativos de televisión para transmitir una señal desde una localización remota a una estación de televisión mediante una camioneta especialmente equipada. Protocolos inalámbricos LAN, tales como Bluetooth también usan microondas. La televisión por cable y el acceso a Internet vía cable coaxial, así como algunas redes de telefonía celular usan algunas de las más bajas frecuencias de microondas.

Volviendo sobre el problema de la rotación molecular, recordaremos que la mecánica cuántica indica que no todas las energías son posibles en un sistema sino que, por lo general, sólo existen una serie de niveles de energía discretos (cuantización de la energía). En particular, los niveles de energía rotacional de una molécula lineal vienen dados en términos de un número cuántico *J*, que puede tomar el valor cero o cualquier valor entero positivo,

$$E(J) = hcB J(J+1)$$

donde h es la constante de Plank, c la velocidad de la luz y B una constante llamada constante rotacional.

La radiación electromagnética esta compuesta por partículas de luz, llamadas fotones, que al ser absorbidos por las moléculas les transfieren su energía, lo que provoca una transición a un estado energético superior. Pero no todos los estados excitados son accesibles cuando se absorbe un fotón. También la mecánica cuántica nos proporciona la respuesta, a través de las llamadas reglas de selección, que para el caso de la rotación en moléculas lineales indica que sólo son posibles transiciones desde un estado, definido por el número cuántico *J*, a otro cuyo número cuántico difiera de éste en una unidad, o sea, sólo son posibles transiciones entre estados energéticamente vecinos.

Debemos indicar que la transición espectroscópica no es una línea a una determinada frecuencia sino una especie de campana. Ello es debido a la existencia de la llamada *anchura natural de la banda* que es consecuencia del principio de indeterminación energía-tiempo de Heisenberg. De nuevo, la mecánica cuántica nos da la respuesta sobre la forma que tiene la señal del espectro. Concretamente, es una campana o

curva Lorentziana centrada en una posición de frecuencia, con una anchura y altura dada, que viene determinada por la expresión

$$A = \frac{A_M}{1 + 4 \frac{(v - v_0)^2}{\Delta v^2}} ,$$

donde A_M es la altura máxima, v_0 la posición de frecuencia donde se centra la Lorentziana y Δv la anchura de banda a mitad de altura.

Finalmente, debemos recordar que cuando realizamos un espectro no tenemos una molécula, sino una colectividad de moléculas y que no todas ellas están en el mismo estado energético J, sino que se distribuyen entre los distintos niveles, de manera que la población o numero de moléculas n(J) en cada nivel energético J viene determinado por una fórmula estadística en la que interviene la temperatura:

$$n(J) = (2J+1)e^{-hcBJ(J+1)/kT}$$

donde *J* es el número cuántico, *h* es la constante de Plank, *c* la velocidad de la luz, *B* la constante rotacional, k la constante de Boltzman y *T* la temperatura absoluta.

Con toda esta información se pretende que se simule un espectro de microondas de una molécula lineal. Si tomamos $hcB = 8 \cdot 10^{-23}$ julios, T = 298K, una anchura $\Delta v^2 = 0.25$ cm⁻², y, para simplificar, se identifica A_M con n(J), el resultado que se debería obtener se muestra en la figura adjunta.

10.14. Cálculo del pH de disoluciones de varias concentraciones de cualquier ácido

En este apartado se propone, como trabajo de aprendizaje autónomo, mejorar las hojas diseñadas en el capítulo 4 para el cálculo del pH de disoluciones. Rescatemos la hoja diseñada en el apartado 4.3 para el cálculo del pH de un ácido débil monoprótico:

El cálculo del pH exacto se realiza cambiando manualmente el valor de la concentración, y el resultado debe copiarse también manualmente en la casilla correspondiente de la columna D.

Lo primero que vamos a hacer para mejorarla es eliminar todo aquello que resulte superfluo en una hoja que vayamos a utilizar en el estudio o en el trabajo a modo de software, que en este caso nos calcula el pH de diferentes ácidos a diferentes concentraciones.

En la figura siguiente se presenta un posible formato, de una infinidad de posibilidades, donde podemos ver las constantes que necesitamos para desarrollar las fórmulas necesarias (y que renombramos como ka y kw), así como los valores de pH exacto para el rango de concentraciones entre 10⁻¹ y 10⁻¹⁴ M. Es importante notar que los nuevos nombres de las constantes mencionadas sirven para todo el libro, y no únicamente para la hoja en que están definidos.

El diseño del libro debe ser capaz de recalcular los valores de pH que se presentan en la hoja al cambiar la constante Ka según el ácido del que se trate.

Ki ►	licrosoft Excel - C	apitulo9.6EXCEL0											_ 8 ×
	<u>A</u> rchivo <u>E</u> dición	⊻er <u>I</u> nsertar <u>F</u> ormato	<u>H</u> erramientas Da <u>t</u> os	Ve <u>n</u> tana <u>?</u>							Escriba una pre	egunta 💌	- 8 ×
	൙ 🖬 👒 🥔	🖪 🖤 🐰 🖻 🛍 • •	್ 🎦 🗸 ೧೯೭೬ 🝓		🗼 🛍 🐼 95% 🔹 🕻	×	• N K	s 🗏 🗐 🗄		€ % 000 *00	.º8 t≣ t≣	- 💁 -	A
1	1 ta ta 🛛 🗞	🚈 🖸 ங 🝙 🐶 Re:	sponder con <u>c</u> ambios T	er <u>m</u> inar revisión									
L	.ínea 18 🛛 👻	fx											
1	A	В	C	D	E	F	G	н		J	К	L	-
-	CALCU							ÓTICO	10				
2	CALCUI			JONES	DE ACIDO.	S DEBILES M	UNOPH	Uncc	15				
4													
5	Ka =	1,5E-05			Nombrar como la secona de la	(a y Kw ;sirve para tod	o el libro!						
6	Kw =	1E-14	0										
7													
8					0	n I (ava ata)							
9													_
10					1,E-01	2,9146139							_
11					1,E-02	3,4203639							
12					1,E-03	3,9385326							
13					1,E-04	4,4955357							
14					1,E-05	5,1635167							
15					1.E-06	6,0218642							
16					1.E-07	6,7930775							
17					1 F-08	6 9784452							
19					1 E-09	6 9978430							
10					1 E 10	6 0007843							
19					1 = 11	6,0000794							
20					1,E-11	6,9999764							
21					1,E-12	0,9999978							
22					1,E-13	6,9999998							
23					1,E-14	7,0000000							
24										-		-	
26													
28													
29													
31													
32													
33										-			
35													
36													
38													-
14 4	▶ H\Hoja1 (H	ioja2 / Hoja3 /				<u>'</u>	 ▲					<u> </u>	
Dib	ujo 🕶 🗟 🛛 Aytoform	mas • 🔪 🔌 🗖 🔿 🚔	4 🗘 🕅 🔜 🔌	• 🔟 • A • 🗄	= = =								
Listo												NUM	

Para conseguirlo debemos calcular mediante el método de Newton el valor del pH exacto para la primera concentración considerada: 10⁻¹ M. Este cálculo se puede realizar en la misma hoja y después camuflarlo (cambiando el color de letra a blanco, ocultando, etc.) o en una hoja diferente, a gusto del programador. En este ejemplo vamos a calcularlo en otras hojas, de manera que no se vea en la hoja principal más que lo que le interesa al posible usuario.

B	Microsoft Exce	l - Capitulo9.6E	XCEL1													_ _ _ / ×
	Archivo Edic	ión ⊻er Inse	rtar <u>E</u> ormato	Herramientas	Datos Ventan	a <u>2</u>								Escriba una p	regunta ·	×
	🛩 🖬 🖏	i 🖓 🗟 🖉	X 🗈 🛍 • 🤉	🔨 KD + C4	- 🤹 E - 😭		🕕 🚜 100%	🗸 👻 Arial		• 10 • N	<u>K</u> <u>S</u> ≡ =	= = 🖬 👒	€ % 000	*08 ,08 €≣ €	🗏 🗄 • 🖄	• <u>A</u> • .
2	a ta ta 🖂	🔁 🚈 💆 🖡	🖥 😥 🐄 Re	sponder con <u>c</u> am	bios Ter <u>m</u> inar re	evisión										
_	112	- fx														
	A	В	С	D	E	F	G	Н	1	J	K	L	M	N	0	
1	CONCENTR.	ACIÓN	0,1	•			no nor	mbrar :utiliza	rC\$1 pa	ra poder ar	rastrar las f	fórmulas				
2																
3		×	P(x)	P`(x)	$h=-P(x)/P^{(x)}$		pH=	2,91461385								
4	_	0,0015	1,1587E-09	5,295E-06	0.00021884											
5	_	0,00128116	2.0574E-10	3,4626E-06	-5,942E-05											
6		0,00122174	1,3413E-11	3,0146E-06	-4,4496E-06											
-		0,00121729	7,2772E-14	2,9819E-06	-2,4404E-08											
8		0,00121727	2,1839E-18	2,9817E-06	-7,3242E-13											
9	-	0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
10	-	0,00121727	-1,017E-25	2,9817E-06	3,4106E-20						_					
10		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20				-	-						
12		0,00121727	-1,017E-25	2,9017E-06	3,4106E-20				L							
13		0,00121727	-1,017E-25	2,9017E-06	3,4106E-20											
14		0,00121727	-1,017E-25	2,9017E-06	3,4106E-20											
16		0.00121727	1.017E-25	2,9817E-06	3,4106E-20											
17		0.00121727	-1.017E-25	2,9817E-06	3,4106E-20											
18		0.00121727	-1.017E-25	2,9817E-06	3,4106E-20											
19	-	0.00121727	-1.017E-25	2,9817E-06	3,4106E-20											
20		0.00121727	-1.017E-25	2,9817E-06	3,4106E-20											
21		0.00121727	-1.017E-25	2 9817E-06	3 4106E-20											
22		0.00121727	-1.017E-25	2.9817E-06	3.4106E-20											
23		0.00121727	-1.017E-25	2.9817E-06	3.4106E-20											
24		0.00121727	-1.017E-25	2.9817E-06	3.4106E-20											
25		0,00121727	-1.017E-25	2,9817E-06	3,4106E-20											
26		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
27		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
28		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
29		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
30		0,00121727	-1,017E-25	2,9817E-06	3,4106E-20											
31																
32																
33																
34																
35																
36																
37																
38																
39																
40																
41																
42																
43																
44											-					
40		-								-	-			-		
40		-									-			-		+
47		11-1-0 (12-2								1.1					-	
		AHOJAZ (Hoja		41.000.000.0	a 25 <i>4</i>	<u>م</u> = =										

Como se puede observar en la figura, no se debe nombrar como Co la celda de la concentración (C1), puesto que debemos calcular simultáneamente 14 valores de pH para 14 concentraciones iniciales diferentes. Usaremos C\$1, nomenclatura que fija el numero de la celda cuando arrastramos fórmulas con esa expresión, recurso de EXCEL[®] que es muy útil en estos casos. Puesto que hemos observado que 0.0015 converge a todas las soluciones en el problema del apartado <u>4.3</u>, lo mantendremos en el diseño de esta hoja, aunque puede cambiarse si la experiencia nos muestra que para algunas constantes de disociación no converge. En todo caso, aunque en este ejemplo sólo se ha arrastrado 26 filas la estructura de cálculo de la solución para poder mostrar el diseño en una figura adecuadamente, sería recomendable elevar el número de filas arrastradas.

Para que el pH exacto calculado en la celda H3 correspondiente a la concentración 10⁻¹ aparezca en la celda F10 de la **Hoja 1**, se debe teclear en ella la fórmula

=Hoja2!H3

que significa que en la celda de destino aparecerá el valor sito en la celda H3 de la **Hoja 2**. También se puede teclear simplemente el signo "=" en la celda F10 de la **Hoja 1**, hacer clic en la celda H3 de la **Hoja 2** y oprimir ENTER en el teclado, el efecto es el mismo.

K∄ ►	1icrosoft Excel - Ca	pitulo9.6EXCEL1										1	_ <u>8</u> ×
8	<u>A</u> rchivo <u>E</u> dición	<u>V</u> er <u>I</u> nsertar <u>E</u> ormato	Herramientas Datos	Ve <u>n</u> tana <u>7</u>							Escriba una pre	gunta 💌	- 8 ×
	😂 🖬 🖏 🗁	🖪 🖤 🕺 🖻 🛍 • 🚿	🍾 いょいょ 🥵	Σ - 🔀 🤶	🕺 📶 🛷 95% 🔹 🚆	Arial • 10	• N K	<u>s</u> = = = :	🗏 🖭 😵 4	€ % 000 *08	•°8 €≡ €≡	- 🖄 • 🖄 •	<u>A</u> • .
1	a ta ta 🖂 😘	🛍 🛛 🖳 😥 🗮 🚱	onder con <u>c</u> ambios T	erminar revisió	n								
	K13 -	fx -	-	-	_	_	-						
1	A	В	С	D	E	F	G	H		J	ĸ	L	
-	CALCU						NOPE	ÓTICO	20				
2	CALCOL												
4													
5	Ka =	1,5E-05	4		Nombrar como K	(a ;sirve para todo el libi	ro!						
6	Kw =	1E-14					Apare	ece automá	ticamente	el valor de l	a hoja 2 (C	o=0,1)	
7							Form	ula =Hoja2	нз				
0					Co	nH (exacto)							
9													
10													
11					1,E-02	3,4203639							
12					1,E-03	3,9385326							
13					1,E-04	4,4955357							
14					1,E-05	5,1635167							
15					1,E-06	6,0218642							
16					1,E-07	6,7930775							
17					1,E-08	6,9784452							
18					1,E-09	6,9978430							
19					1.E-10	6,9997843							
20					1 F-11	6 9999784							
21					1 F-12	6,9999978							
22					1 F-13	6,9999998							
22					1,E 14	7,0000000							
23					1,L-14	7,0000000							
25													
26													
28													
30													
31													
32													
34													
35													
37													
38						1.7							
• • 	Hoja1 / H			<i>M</i> A									
DIP	ujo 🕶 🗟 🛛 Autoforn	nas • < 💘 🗆 O 🖾 .	an 🖓 🕅 🔤 🗠	• <u>- /</u> • A	· = = = • • • •								
A continuación se copia y pega la Hoja 2 en la 3, se sustituye la concentración por 0,01 y se repite la operación anterior en la Hoja 1, esta vez en la celda F11, donde aparecerá el valor de la celda H3 de la **Hoja 3**.

La operación se deberá repetir 14 veces, lo cual no es un trabajo demasiado arduo puesto que se trata de Copiar/Pegar/Marcar/ENTER, y sólo es necesario hacerlo una vez. Cuando el libro esta acabado ya no es necesario repetirlo nunca más.

Sirva este ejemplo como modelo para diseño de una hoja que, como mínimo, sea capaz de calcular los pHs de disoluciones de diferentes concentraciones de cualquier ácido débil. A partir de aquí es posible incluir otros cálculos de pH o lo que la imaginación del programador decida. Será necesario mejorar el libro utilizando las opciones de bloqueo de celdas, seguridad, contraseñas, etc., lo que elevaría el nivel del trabajo.

10.15. Cálculo de interpolaciones a partir de cualquier calibrado

En el capítulo 7 hemos aprendido a programar una hoja para el ajuste por mínimos cuadrados de una recta a partir de datos experimentales, y a interpolar concentraciones a partir de absorbancias de disoluciones problema. Sin embargo, es una hoja que no se puede presentar para el uso de alguien que no la haya diseñado o esté familiarizado con ella. No es "amistosa" con alguien que la vea por primera vez. Además no es capaz de interpolar más de un valor, y normalmente nos encontraremos con más de una disolución problema.

La hoja que vamos a diseñar en este apartado debe acercarse lo más posible a una hoja "profesional" que se pudiera ofrecer a cualquier estudiante de ciencias para el cálculo de interpolaciones a partir de ajustes, fundamentalmente determinación de concentraciones a partir de calibrados.

A continuación se presenta un ejemplo que puede servir de modelo y principio para el diseño de una hoja de cálculo que pudiera incluirse en un paquete de software comercial.

A primera vista se puede observar, en primer lugar, la existencia de una clave que nos indica dónde debemos introducir los datos y las celdas que no se pueden modificar (esto es evidentemente mejorable).

Las fórmulas para el cálculo se han "escondido" fuera del campo principal, ya que no es necesario verlas ni modificarlas. Las fórmulas se pueden "esconder" de diferentes formas, bloquearlas, etc.

En la figura siguiente se presenta el lugar donde están las fórmulas.

Si vemos las fórmulas introducidas también podemos aprender algunas funciones interesantes:

En la columna K no aparecen mensajes de error aunque las casillas a partir de J14 estén vacías, gracias a la función **ESERROR()** asociada a la función SI. Existen muchas funciones de este tipo que nos ayudarán a profesionalizar la hoja.

También debemos tener en cuenta que el archivo o la hoja se pueden proteger mediante contraseña y otros detalles que la pueden mejorar.

Así pues, se propone el diseño de un software lo más profesional posible a través del problema planteado. Un reto al alumno donde puede utilizar toda su imaginación, conocimiento y capacidad de aprendizaje autónomo.

11. Apéndices

En este capítulo se incluye una serie de introducciones a conceptos básicos que el estudiante puede completar, bien acudiendo a textos especializados, bien mediante una adecuada búsqueda en Internet, siguiendo las indicaciones del primer capítulo.

11.1. La serie de Taylor

Es bien conocido que alterando los coeficientes a,b,c,... del polinomio $P(x)=a+bx+cx^2+...$ se pueden obtener curvas de cualquier forma deseada. Así podemos comprobar que variando el parámetro *a* subimos/bajamos la curva; cambiando el signo de *b* podemos cambiar la pendiente, esto es, hacemos que la curva sea creciente o decreciente; cambiando el signo de *c* pasamos de curva cóncava a convexa, etc. Resulta instructivo constatar estas comprobaciones con ayuda de cualquiera de los dos programas MS EXCEL[®] y MATHEMATICA[®] que se han utilizado a lo largo del libro.

En la figura se ha representado, junto a la función exponencial $f(x) = e^x$ (línea gruesa negra), una serie de polinomios:

$$P_1(x) = 1 + x$$
 (línea azul) $P_2(x) = 1 + x + \frac{x^2}{2}$ (línea verde) $P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$ (línea roja),

que progresivamente se van acercando a la función. Esto nos hace pensar que, mediante una apropiada selección del número de monomios y de sus respectivos coeficientes, podremos construir polinomios cuyo grafo sea una curva *suave* que tenga la forma que se desee. Por *suave* entendemos que sea una curva continua, sin picos ni cambios bruscos de pendiente. En lenguaje matemático, las curvas *suaves* no son más que los grafos de funciones que admiten múltiples derivadas, y la serie de Taylor no es más que un procedimiento cuantitativo para obtener el polinomio cuyo grafo sea la curva *suave* deseada. Más

concretamente, persigue como objetivo la obtención de un polinomio que se aproxime, tanto como se desee, a una cuerva *suave* dada, esto es, a una función f(x) dada que sea continua y múltiplemente derivable.

Para lo que sigue será conveniente reescribir el polinomio en la forma $P(x)=a+b(x-x_0)+c(x-x_0)^2+...$, de manera que cuando la variable independiente tome el valor x_0 el polinomio tome el valor a. Debemos darnos cuenta que la reescritura que hemos hecho del polinomio equivale a escribir el valor del parámetro a de otro modo. En efecto, $P(x)=(a-bx_0+cx_0^2+...)+bx+cx^2+...=a'+bx+cx^2+...$, donde $a'=a-bx_0+cx_0^2+...$ De manera similar, nos convendrá reescribir el resto de parámetros de modo que el polinomio tome la apariencia siguiente:

$$P(x) = a + b(x - x_0) + c \frac{(x - x_0)^2}{2!} + d \frac{(x - x_0)^3}{3!} + \dots$$

Y queremos que este polinomio sea igual a una función f(x) dada, f(x)=P(x). Queda pues por determinar la fórmula de los coeficientes *a,b,c,...* en términos de la función f(x) que queremos aproximar. Con esta finalidad, calculamos el polinomio para el valor x_0 de la variable independiente, y puesto que función y polinomio debe igualarse tenemos que:

$$f(x_0) = a + b(x_0 - x_0) + c \frac{(x_0 - x_0)^2}{2!} + d \frac{(x_0 - x_0)^3}{3!} + \dots = a$$

Hemos obtenido de este modo la fórmula del parámetro *a* que, como hemos visto, no es más que el valor de la función f(x) en el punto x_0 .

Para obtener el resto de parámetros debemos darnos cuenta que el procedimiento usado ha funcionado porque todos los coeficientes, excepto el parámetro *a*, van multiplicados por las sucesivas potencias de $(x-x_0)$, términos que se anulan cuando la variable independiente toma el valor x_0 . Por tanto, para obtener el parámetro *b* nos interesaría una nueva ecuación en la que *b* tome el rol que antes tomaba *a*, *c* el rol de *b*, y así sucesivamente. Esta nueva ecuación puede conseguirse simplemente derivando. En efecto, si derivamos el polinomio obtenemos,

$$P(x)' = b + c(x - x_0) + d \frac{(x - x_0)^2}{2!} + \dots,$$

y, como queremos que función y polinomio sean iguales, deberán, en particular, tener idénticas derivadas en x_0 , lo que nos proporciona directamente la fórmula del parámetro *b*, esta vez en términos de la derivada de la función en x_0 :

$$f(x_0)' = b + c(x_0 - x_0) + d \frac{(x_0 - x_0)^2}{2!} + \dots = b$$

Siguiendo con este procedimiento podemos calcular el resto de parámetros. Derivando de nuevo y particularizando el valor $x = x_0$ obtenemos la formula para *c*:

$$f(x_0)'' = c + d(x_0 - x_0) + \dots = c$$

Repitiendo el procedimiento obtenemos la serie (infinita) de coeficientes y, con ellos, la llamada serie de Taylor, que no es más que un polinomio cuyos parámetros son las sucesivas derivadas de una función en un punto x_0 dado. A este punto x_0 se le conoce con el nombre de *origen* del desarrollo.

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2!} + f'''(x_0)\frac{(x - x_0)^3}{3!} + \dots$$

11.2. La serie de Taylor truncada: error de truncación

Es obvio que uno no puede escribir ni calcular infinitos términos, pero no es menos cierto que el procedimiento anterior nos ha evidenciado que, en general, para obtener la función exacta hace falta un polinomio con infinitos monomios. Ahora bien, como en física y en química la máxima precisión alcanzable siempre supone un número finito de decimales, no es necesario obtener un polinomio que sea igual a la función, sino que sea igual con una cierta precisión.

Seria interesante determinar la precisión con que una serie truncada de Taylor nos aproxima la función en un punto dado. Tomemos por ejemplo la serie truncada en la primera derivada y llamemos *resto* R(x) al valor que debemos sumarle al polinomio truncado para que nos dé el valor exacto de la función en el punto x. Escribimos pues

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + R(x).$$

Nos preguntamos el valor que toma el resto. Desde la ecuación anterior obtenemos

$$R(x) = f(x) - f(x_0) - f'(x_0)(x - x_0).$$

Los dos primeros términos de la parte derecha pueden fundirse en uno solo si consideramos la identidad

$$\int_{x_0}^x f'(x) \, dx = f(x) - f(x_0) \, .$$

Más aun, los tres términos pueden fundirse en uno solo si consideremos la identidad análoga siguiente:

$$\int_{x_0}^{x} \left(\int_{x_0}^{x} f''(x) \, dx \right) dx = \int_{x_0}^{x} \left[f'(x) - f'(x_0) \right] dx = \left[f(x) - f(x_0) \right] - f'(x_0) (x - x_0)$$

Así pues, de manera formal, podemos escribir el resto como una integral que implica derivadas de la función a aproximar,

$$R(x) = \int_{x_0}^x \left(\int_{x_0}^x f^{\prime\prime}(x) \, dx \right) dx$$

Por otra parte, el teorema del valor medio nos asegura, como visualizamos en la figura siguiente, que existe un rectángulo con base idéntica al intervalo de integración que tiene el mismo área que la integral definida (área bajo la curva), siendo que la altura de este rectángulo debe coincidir con el valor de la función $f(\xi)$ en algún punto ξ de dicho intervalo.

Podemos escribir pues que: $\int_{x_0}^x f(x) dx = f(\xi)(x - x_0) ; x_0 < \xi < x$

Este resultado llevado a la segunda identidad permite reescribir que,

$$\int_{x_0}^{x} \int_{x_0}^{x} f''(x) dx dx = \int_{x_0}^{x} f''(\xi) (x - x_0) dx = f''(\xi) \int_{x_0}^{x} (x - x_0) dx = f''(\xi) \frac{(x - x_0)^2}{2}$$

Por tanto podemos escribir el resto en la forma $R(x) = f''(\xi) \frac{(x-x_0)^2}{2}$, y la serie de Taylor:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(\xi) \frac{(x - x_0)^2}{2}$$

De manera análoga, si truncamos la serie de Taylor en la segunda derivada y repetimos un procedimiento análogo obtenemos un resto R(x) dado por la fórmula:

$$R(x) = f'''(\xi) \frac{(x - x_0)^3}{3!}$$

y, por tanto, la serie siguiente:

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)\frac{(x - x_0)^2}{2} + f'''(\xi)\frac{(x - x_0)^3}{3!}$$

Por inducción obtenemos la expresión general:

$$f(x) = \sum_{i=0}^{n} f^{(i)}(x_0) \frac{(x - x_0)^i}{i!} + f^{(n+1)}(\xi) \frac{(x - x_0)^{n+1}}{(n+1)!}; x_0 < \xi < x$$

11.3. Raíces de una función

Discutiremos brevemente aquí el método iterativo simple y el de Newton-Raphson, dos de los más utilizados entre los muchos métodos que existen para encontrar las raíces de una función f(x).

11.3.1. El método iterativo simple

El método iterativo simple se basa en escribir la ecuación f(x) = 0 como x = g(x). Esto es siempre posible, pues podemos sumar x a ambos miembros de la ecuación f(x) = 0 obteniendo la identidad x = x + f(x). Si llamamos g(x) = x + f(x) encontramos la ecuación buscada x = g(x). La filosofía del método es que la ecuación x = g(x), que sólo se cumple para las raíces α de la función f(x), nos sirva para definir la serie $x_{i+1}=g(x_i)$, partiendo de un punto inicial x_0 , que converge a la raíz buscada.

La figura muestra el proceso. Puesto que la raíz viene dada por la condición x = g(x), ésta se encontrará en el punto de corte de la función y = x (diagonal) y la función y = g(x). Queremos encontrar este punto de corte partiendo de un valor inicial x_0 en el eje de abscisas. Para ello trazamos la vertical hasta encontrar la función, que allí vale $g(x_0)$, puesto que si x_0 fuese la solución encontraríamos el punto de corte buscado. En general, no se da el caso y $g(x_0)$ no coincide con x_0 , sino que toma otro valor que llamaremos x_1 y usaremos como nuevo valor inicial. Gráficamente significa trazar una horizontal desde la función hasta la diagonal. El corte horizontal – diagonal tiene precisamente abscisa x_1 . Iterar significa repetir el proceso a partir de la nueva abscisa. Esto es, trazamos una vertical hasta encontrar la función, que allí vale $g(x_1)$, y que como vemos en la

figura, no es la solución. Por este motivo, como hemos hecho antes, trazamos una horizontal hasta interceptar la diagonal en un punto de abscisa x_2 que, aun no siendo la solución, está más cerca. Continuamos la iteración hasta que abscisa x_i y función $g(x_i)$ difieran menos que la precisión requerida $|x_i - g(x_i)| < \varepsilon$.

Pero el método no siempre funciona. En la figura anterior visualizamos una iteración divergente. Esto es, aquella que en lugar de acercarse a la raíz α , se aleja de ella. La contemplación de ambas graficas nos da la clave para entender el motivo: cuando la raíz se encuentra en una región donde la pendiente de la función supera la pendiente de la diagonal (que vale la unidad) el proceso ha divergido, mientras que en el primer caso, donde la pendiente de la función era menor que uno, se ha convergido.

Podemos fundamentar esta observación mediante un pequeño razonamiento algebraico. Decimos que la serie converge si las raíces aproximadas consecutivas se aproximan, esto es si:

$$|x_{i+2} - x_{i+1}| < |x_{i+1} - x_i|$$

Puesto que $x_{i+1}=g(x_i)$, podemos reescribir esta desigualdad en la forma,

$$|g(x_{i+1}) - g(x_i)| < |x_{i+1} - x_i| \Rightarrow \frac{|g(x_{i+1}) - g(x_i)|}{|x_{i+1} - x_i|} \approx |g'(x_i)| < 1$$

Donde hemos sustituido el cociente del incremento Δg de la función y Δx de la variable por la derivada, que no es más que el límite de éste cuando Δx tiende a cero (de ahí el signo de aproximadamente igual en la ecuación anterior). Con todo ello demostramos que la condición de convergencia queda supeditada a que en la región de la raíz buscada el módulo de la derivada de $g(x_i)$ sea menor que la unidad. Cuando esto no suceda el método no será útil y deberemos acudir a un método alternativo como el de Newton-Raphson que seguidamente pasamos a describir.

11.3.2. El método de Newton-Raphson

Para realizar la búsqueda de la raíz de una función en el método de Newton-Raphson, en adelante método de Newton, además de valores de la función, se toman valores de la derivada. La derivada nos da una idea de lo rápidamente que crece/decrece una función, y es la clave de la mayor rapidez de convergencia de este segundo método. La idea básica del método de Newton es la siguiente: se comienza con un valor inicial, razonablemente cercano a la raíz buscada, entonces se reemplaza la función por su recta tangente en ese punto, se iguala a cero y se despeja (fácilmente, por ser una ecuación lineal). Este cero será, generalmente, una aproximación mejor a la raíz de la función. Luego se aplican tantas iteraciones como se deseen.

En la gráfica superior se ha representado un par de etapas del método: partiendo de x_0 trazamos una vertical hasta encontrar la función. Allí trazamos la tangente y nos movemos a lo largo de ella hasta llegar al eje de abscisas en un punto que etiquetamos como x_1 . Repetimos el proceso: partiendo ahora de x_1 trazamos una vertical hasta encontrar la función. Allí trazamos la tangente y nos movemos a lo largo de ella hasta llegar al eje de eje de abscisas en un nuevo punto que etiquetamos como x_2 . Y así sucesivamente hasta encontrar, con la precisión deseada, la raíz α buscada.

Desde un punto de vista algebraico, el procedimiento se fundamenta en la expansión de la función en serie Taylor truncada en el término de primera derivada. En efecto: Llamemos x_0 al valor inicial, α a la raíz buscada, y Δ a su diferencia, $\Delta = \alpha - x_0$. Desarrollamos la función f(x) en serie de Taylor tomando x_0 como *origen* del desarrollo y particularizamos la serie para un valor $\alpha = \Delta + x_0$, punto en el cual la función es cero por ser α una de sus raíces. Tenemos pues,

$$f(\alpha) = f(x_0 + \Delta) \approx f(x_0) + f'(x_0) \Delta \Longrightarrow \Delta \approx -\frac{f(x_0)}{f'(x_0)}$$

Si tomamos el valor aproximado obtenido para Δ i lo sumamos a x_0 , en vez de obtener la raíz exacta α obtenemos la aproximación $x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$. Y, a partir de aquí el método se itera hasta encontrar la exactitud deseada.

A la vista de la figura anterior, la pendiente de la primera recta tangente la podemos calcular como el cociente entre la altura $f(x_0)$ y la base $(x_0 - x_1)$ del triangulo rectángulo que allí se observa. Dicha pendiente es también, por definición, la derivada $f'(x_0)$ de la función en x_0 , o sea,

$$f'(x_0) = \frac{f(x_0)}{(x_0 - x_1)} \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)},$$

que es precisamente la expresión encontrada anteriormente mediante álgebra. Con esto queda justificado el procedimiento de Newton y mostrado gráficamente su proceso iterativo. En resumen, partimos de un valor inicial x_0 para el que calculamos la función $f(x_0)$ y la derivada $f'(x_0)$. A partir de estos dos valores calculamos el paso Δ que posteriormente sumamos a x_0 para obtener x_1 , valor en el que de nuevo calculamos la función $f(x_1)$ y la derivada $f'(x_1)$. A partir de estos dos valores obtenemos el nuevo paso que sumado a x_1 nos proporcionan x_2 , y así sucesivamente hasta convergencia, esto es, hasta que el paso Δ obtenido sea menor que la precisión requerida.

Aunque más robusto, al igual que el método iterativo simple, el método de Newton también puede encontrar situaciones en que no es posible la convergencia. En efecto, si la función presenta una derivada nula, puesto que ésta entra en el denominador del cociente que define el paso Δ , éste se hace infinito, lo que nos aleja de cualquier posible raíz.

11.3.3. Rapidez de convergencia del método iterativo simple y del de Newton-Raphson

Hemos indicado más arriba que el hecho que en el método de Newton se haga uso de las derivadas mientras que en el iterativo simple no, nos presagiaba una mejor convergencia para el primero. Con objeto de mostrarlo consideramos un punto intermedio en la convergencia del método iterativo simple, que viene definido por la ecuación $x_{i+1} = x_i + f(x_i) = g(x_i)$, y en el de Newton que viene dado por $x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} = g(x_i)$. Escribamos $x_i = \alpha + \varepsilon_i$, donde ε_i representa el error que se arrastra en la *i*-ésima iteración. Desarrollamos la función g en serie de Taylor tomando α como origen,

$$x_{i+1} = \alpha + \varepsilon_{i+1} = g(x_i) = g(\alpha + \varepsilon_i) = \alpha + \varepsilon_i g'(\alpha) + \frac{1}{2}\varepsilon_i^2 g''(\alpha) + \dots$$

Deducimos pues que:

 $\varepsilon_{i+1} = \varepsilon_i g'(\alpha) + \frac{1}{2}\varepsilon_i^2 g''(\alpha) + \dots$

Recordemos que en el método iterativo simple definíamos g(x) = x + f(x), por tanto $g'(\alpha) = 1 + f'(\alpha)$ mientras que en Newton $g(x) = x - \frac{f(x)}{f'(x)}$ y por tanto $g'(\alpha) = 1 - \frac{f'(\alpha)^2 - f''(\alpha)f(\alpha)}{f'(\alpha)^2} = \frac{f''(\alpha)f(\alpha)}{f'(\alpha)^2}$. Ahora bien, puesto que $f(\alpha) = 0$ por ser α raíz de f(x) y también $f'(\alpha) \neq 0$ (pues de otra forma no es posible la convergencia del método Newton), concluimos que en el caso del método de Newton $g'(\alpha) = 0$. En otras palabras, que mientras en el método iterativo simple $\varepsilon_{i+1} = \varepsilon_i g'(\alpha) + O(\varepsilon_i^2)$, en el método de Newton $\varepsilon_{i+1} = \frac{1}{2}\varepsilon_i^2 g''(\alpha) + O(\varepsilon_i^3)$. O, dicho de otro modo, que mientras que en el método iterativo simple el error en cada etapa es proporcional al error en la etapa previa, en el método de Newton el error en cada etapa es proporcional al cuadrado del error de la etapa previa. Puesto que ε_i les un número pequeño, su cuadrado lo es mucho más, cosa que permite entender porqué, en general, el número de etapas necesarias para conseguir una precisión con el método de Newton es mucho menor que con el método iterativo simple.

11.4. Integración numérica: calculando el área bajo una curva

Se sabe que muchas funciones, incluso con aspecto *inofensivo* tales como $f(x) = e^{-x^2}$, $f(x) = sin(x^2)$, no admiten una primitiva expresable en términos de funciones elementales. Otras veces sucede que no disponemos de una expresión explícita para f(x), sino sólo una tabla de valores. En estos casos es necesario recurrir a métodos de cálculo aproximado de su integral definida, esto es, de cálculo aproximado del área que hay debajo de la curva que representa dicha función.

El teorema del valor medio mencionado en 11.2 nos dice que el área bajo la curva puede calcularse, de manera exacta, como el área de un rectángulo cuya base es el intervalo de integración (x_0, x) y cuya altura $f(\xi)$ es el valor de la función en algún punto interior, $\xi \in (x_0, x)$. Este teorema nos orienta para encontrar el más simple entre los métodos de integración: el método de los rectángulos.

El método de los rectángulos consiste en sustituir el área que hay debajo de la curva en el intervalo (x_0, x) por N subáreas donde cada subárea se asemeja a un rectángulo elemental de base $h=(x-x_0)/N$ y altura igual al valor de la función en el centro cada uno de los N intervalos. Si en lugar de tomar el centro del intervalo, se conociese y, por tanto, se tomase un valor ξ_i de acuerdo con el teorema del valor medio, la integración seria

exacta. Como los valores ξ_i que determinan las alturas $f(\xi_i)$ que hacen que el área de cada rectángulo sea exactamente igual a la superficie de las pequeñas subáreas son desconocidos, se toma como altura aproximada el valor de la función en el centro del rectángulo. Cuanto más pequeña sea la base *h* de los rectángulos, tanto mejor será la aproximación realizada.

Desde un punto de vista algebraico, hemos de sumar rectángulos. El *i*-ésimo rectángulo tiene una altura igual al valor de la función en el centro de su base $f(x_0+(i-1/2) h)$ y, al igual que todos los demás, una base h. La integral, es decir el área, será pues,

$$I = h \sum_{i=1}^{N} f[x_0 + (i - 1/2) h]$$

Otro método, uno de los más antiguos junto con el anterior de los rectángulos, que sirvió de base para desarrollar las integrales, es el método de los trapecios (ver figura adjunta). Como en el caso anterior, se divide el intervalo de integración en subintervalos iguales. Entonces la función se sustituye por una poligonal que tiene en común con la función inicial los extremos de los subintervalos. Cuantos más trapecios se coloquen más precisa será la aproximación y más pequeña será la base inferior de cada uno de ellos, que tenderá a cero.

Lo que hacemos es sumar el área de los trapecios, todos de la misma base *h*. El área de cada trapecio (ver la inserción de la figura) es la del rectángulo $h \cdot y_1$, más la del triángulo superior $h \cdot (y_0 - y_1)/2$, es decir $A = h \cdot (y_0 + y_1)/2$. Por tanto, la suma del área de dos trapecios contiguos es $A = h \cdot (y_0 + 2y_1 + y_2)/2$. Si hay N trapecios que sumar, puesto que las alturas y_i son los valores de la función en x_i , obtenemos:

$$A = \frac{h}{2} [f(x_0) + 2 \sum_{1}^{N-1} f(x_i) + f(x_N)].$$

Si reflexionamos sobre los dos métodos presentados nos damos cuenta que ambos dividen el intervalo de integración en subintervalos idénticos y, mientras que en la regla del rectángulo la función se sustituye en cada subintervalo por una función constante (polinomio de grado cero), en el de los trapecios se sustituye por una función afin (es decir, un polinomio de grado 1). Esto nos sugiere una generalización mediante el uso de polinomios de segundo orden (que da lugar a la llamada regla de Simpson) o de orden superior (formulas de Newton-Cotes). Si se permite variar los intervalos entre los puntos de interpolación, se encuentra otro grupo de fórmulas de integración, llamadas fórmulas de integración gaussianas. Una regla de integración gaussiana es típicamente más precisa que una regla de Newton-Cotes que requiera el mismo número de evaluaciones del integrando. No vamos en entrar a detallar estos otros métodos, aunque antes de acabar queremos mencionar un último tipo de integración a la que se recurre en caso de integrales múltiples de más de cuatro o cinco variables, en la que los métodos tradicionales se hacen computacionalmente prohibitivos. Es la llamada integración de Montecarlo, que se basa en una aproximación probabilística. En el caso de una dimensión, en el método Montecarlo se sustituye el área bajo la función por un rectángulo, de la misma base, cuya altura se calcula mediante la siguiente aproximación estadística:

Llamamos (x_0, x_f) al intervalo de integración y *H* a la altura de un rectángulo que contiene la función, esto es, cuya altura es mayor que altura máxima f_M de la función en dicho intervalo: $H > f_M$. Generamos números aleatorios r_i en el intervalo (0,1). Por ejemplo, con MATHEMATICA[®] usaríamos la orden **Random**[]. A partir de r_i generamos $x_r = x_0 + (x_f - x_0) r_i$ que, por su definición, pertenecen al intervalo de integración, $x_r \in (x_0, x_f)$; A partir de r_j generamos $y_r = H \cdot r_j$ distribuido entre cero y *H*. Si resulta que $y_r < f(x_r)$, entonces incrementamos el valor de un contador *m* que hemos inicializado a cero. En caso contrario, no lo incrementamos. Repetimos esta operación *N* veces y calculamos el factor de probabilidad p=m/N, que indica la fracción de veces que ha resultado y_r menor que $f(x_r)$. En la grafica superior mostramos los puntos y_r calculados para cada valor aleatorio x_r junto a la función $f(x_r)$. El factor de probabilidad p representa el número de puntos bajo la curva dividido por el número total de puntos. Debido al carácter aleatorio del proceso, si *N* es suficientemente grande, la densidad de puntos es homogénea y la fracción *p* de puntos bajo la curva coincide con la fracción de área bajo la curva. Por ello, tomamos como altura *h* del rectángulo cuya área es igual al área buscada mediante $h=p \cdot H$ y la integral la aproximamos por: $I = p \cdot H \cdot (x_f - x_0)$.

Otra alternativa más simple consiste generar la muestra de *N* valores $x_r = x_0 + (x_r - x_0) r_i$, calcular para cada uno de ellos el valor de la función $f(x_r)$ y considerar que la suma de valores de la función dividido por *N* es una buena aproximación al valor medio de la función en este intervalo y por tanto la integral se calcula simplemente como el producto de esta altura media por la base:

$$I = \frac{x_f - x_0}{N} \sum_{i=1}^{N} f(x_0 + (x_f - x_0)r_i).$$

En este caso, la imprecisión de la integral se calcula a partir de la imprecisión de la media calculada, la cual viene a ser el doble de su varianza.

11.5. Ajustes lineales de dos parámetros

Uno de los tipos más comunes e interesantes de experimento que involucra la medición de varios valores de dos diferentes variables físicas es aquel que tiene la finalidad de investigar la relación matemática entre ellas. La graficación de resultados obtenidos nos permite visualizar cualitativamente el *ajuste* de los datos a una función dada, tal como una línea recta. Una vez formulada una teoría que justifique la relación funcional debemos deducir el mejor valor de los parámetros que la definen. Por ejemplo, en el caso de un ajuste lineal, sería la pendiente y la ordenada en el origen. Existen formas cuantitativas de encontrar el valor de los parámetros que mejor representan a un conjunto de datos, y es precisamente este tema el que abordaremos aquí. Probablemente, los experimentos más comunes del tipo descrito más arriba son aquellos para los cuales la relación esperada entre las variables es *lineal*. Por ejemplo, cuando representamos la presión de un gas frente a la temperatura absoluta, a volumen constante, encontramos que la presión crece linealmente con la temperatura: P = aT. Si fijamos el volumen a un litro y disponemos de un mol de gas, el mejor ajuste nos conduce a una pendiente igual a la constante de gases R y una ordenada en el origen nula. En un planteamiento general consideraremos un par cualquiera de variables físicas $x \in y$ de las cuales sospechemos que están relacionadas por una relación lineal de la forma y = A + Bx, donde A y B son constantes. Si las dos variables y y x están relacionadas de esta manera, entonces un gráfico de y frente x debiera resultar una línea recta de pendiente B, que corta al eje de ordenadas en y = A. Si nuestras mediciones no están sujetas a error alguno, entonces cada uno de los puntos (x_i , y_{ij}) caería exactamente sobre la línea y = A + Bx. En la práctica, existen errores y debemos buscar la mejor estimación de los parámetros A y B. El método analítico de encontrar la mejor recta que se ajusta a una serie de datos experimentales es llamado regresión lineal, o ajuste de mínimos cuadrados para una recta. Una vez encontrada la mejor recta, debemos encontrar además alguna forma de medir cuan bien se ajusta esta línea a los datos y, por tanto, cuanta imprecisión tienen los parámetros que hemos ajustado.

Supondremos pues que *x* es la variable que fijamos e *y* la que medimos en el experimento. Aunque ambas variables están sujetas a error, supondremos que controlamos la variable *x* de manera exacta y que, por tanto, no está sujeta a ningún error aleatorio; cosa que equivale a trasladarle a la variable *y* el pequeño error de control que podamos tener sobre la otra variable. La variable *y* es la que consideramos sujeta al error aleatorio del experimento. Consideramos que en nuestro experimento fijamos la variable *x* a un cierto valor x_i y realizamos una serie m_i de medidas de la variable *y*: $y_{i1}, y_{i2}, ..., y_{im_i}$. En la figura mostramos la nube de puntos a que da lugar dicho experimento.

Llamamos y_i^c a los valores de la variable aleatoria que vienen dados por la regresión, $y_i^c = A + Bx_i$. Queremos encontrar los valores A y B que hagan que la recta *pase por el medio* de la nube de puntos. En otras palabras, queremos encontrar los valores A y B que hagan mínima la distancia de los puntos experimentales a la recta propuesta, esto es, queremos que la magnitud D_{reg}^2 , que definimos como suma de las distancias de los puntos a la recta,

$$D_{reg}^{2} = \sum_{ij} (y_{ij} - y_{i}^{c})^{2} = \sum_{ij} (y_{ij} - A - Bx_{i})^{2},$$

sea mínima. Démonos cuenta que tomamos la suma de diferencias elevadas al cuadrado, en lugar de la suma de diferencias, con objeto de evitar que diferencias negativas resten en vez de sumar.

En un experimento dado en el que la nube de puntos viene fijada, la magnitud *suma de cuadrados* D_{reg}^2 sólo es función de dos variables, *A* y *B*. Escogemos *A* y *B* de manera que la suma de cuadrados sea mínima, y por tanto, sus derivadas respecto de *A* y *B* sean nulas,

$$\frac{\partial D_{reg}^2}{\partial A} = 2\sum_{ij} (y_{ij} - A - Bx_i) = 0 \implies N \ \overline{y} - N \ A - N \ B \ \overline{x} = 0$$
$$\frac{\partial D_{reg}^2}{\partial B} = 2\sum_{ij} (y_{ij} - A - Bx_i) x_i = 0 \implies N \ \overline{xy} - N \ A \ \overline{x} - N \ B \ \overline{x^2} = 0$$

donde hemos definido las medias: $\overline{y} = \frac{1}{N} \sum_{ij} y_{ij}, \quad \overline{xy} = \frac{1}{N} \sum_{ij} x_i y_{ij}, \quad \text{etc.}$

Desde estas ecuaciones obtenemos los valores *A* y *B* que minimizan la distancia de los puntos experimentales a la recta propuesta:

$$B = \frac{\overline{xy} - \overline{x} \ \overline{y}}{\overline{x^2} - \overline{x}^2}; \qquad A = \overline{y} - B \ \overline{x}$$

La segunda tarea a abordar es la determinación de la bondad del ajuste y la de los parámetros A y B. Una medida de esta bondad nos la da la propia suma de cuadrados, si la normalizamos dividiéndola por el número de puntos. Dicha normalización la hacemos para evitar que, al añadir puntos experimentales, aumentemos el valor de la suma de cuadrados, lo que daría la impresión de empeorar la bondad del ajuste al hacer más medidas, cosa completamente absurda. Del mismo modo, en vez de dividirla por el número de puntos N, dividiremos por N-2. Esto último lo hacemos para que un experimento en el que sólo hemos hecho dos medidas no nos de un error cero (por dos puntos siempre pasa una recta). En realidad, si sólo hemos hecho dos medidas no tenemos ni idea de cual es el error de nuestro experimento. En otras palabras, la bondad del ajuste es completamente indeterminada. Podemos hacer que las matemáticas nos digan que la bondad es indeterminada si definimos el parámetro de bondad como la siguiente *dispersión*:

$$S_{reg}^{2} = \frac{D_{reg}^{2}}{N-2} = \frac{1}{N-2} \sum_{ij} (y_{ij} - y_{i}^{c})^{2} = \frac{1}{N-2} \sum_{ij} (y_{ij} - A - Bx_{i})^{2}$$

En efecto, si solo hemos hecho dos medidas, la recta ajustada pasa por los únicos dos puntos experimentalmente determinados, por tanto la distancia de los puntos experimentales a la recta es cero y también lo es la suma de cuadrados. Ahora bien, el denominador (N-2) del parámetro de bondad también es cero puesto que N=2, y, en matemáticas, una fracción cero dividido por cero está indeterminada.

Tenemos pues un primer parámetro que nos indica la bondad del ajuste, pero necesitamos ser más concretos y determinar la imprecisión de los parámetros ajustados. Comencemos por *B*, que podemos reescribir como:

$$B = \frac{1}{\overline{x^2} - \overline{x}^2} \frac{1}{N} \sum_{ij} (x_i - \overline{x}) y_{ij}$$

En esta expresión sólo y_{ij} es aleatorio y presenta dispersión. Precisamente la que justo antes hemos calculado y que denominamos *dispersión de la regresión*. Como *B* depende de *y*, e *y* tiene un error aleatorio, también *B* presentará un error aleatorio. La correspondiente dispersión la podemos calcular a partir de la dispersión de la regresión, mediante una relación funcional análoga a la que relaciona B con *y* (ver sección <u>11.5.1</u>),

$$S_B^2 = \frac{1}{\left[\overline{x^2} - \overline{x}^2\right]^2} \frac{1}{N^2} \sum_{ij} (x_i - \overline{x})^2 S_{reg}^2 = \frac{S_{reg}^2}{\left[\overline{x^2} - \overline{x}^2\right]^2} \frac{1}{N^2} N(\overline{x^2} - \overline{x}^2) = \frac{S_{reg}^2}{N(\overline{x^2} - \overline{x}^2)} = \frac{S_{reg}^2}{D_x^2},$$

donde hemos introducido la definición de suma de cuadrados de la x: $D_x^2 = \sum_i (x_i - \overline{x})^2 = N(\overline{x^2} - \overline{x}^2)$.

De manera análoga, el parámetro $A = \overline{y} - B\overline{x} = \frac{1}{N} \sum_{ij} y_{ij} - B\overline{x}$, presenta una dispersión

$$S_A^2 = \frac{S_{reg}^2}{N} + \bar{x}^2 S_B^2 = \frac{\bar{x}^2}{D_r^2} S_{reg}^2$$

donde la última igualdad se obtiene sustituyendo el valor de la dispersión de la B, antes calculada, y ordenando la expresión obtenida. Nótese el cambio de signo al pasar de la fórmula de A a la de su dispersión. No es ningún error. Las imprecisiones siempre se suman.

Finalmente nos puede interesar calcular la dispersión de un valor ajustado $y_i^c = A + Bx_i$. Al igual que antes tenemos:

$$S_{y_i^c}^2 = S_A^2 + x_i^2 S_B^2 = \dots = \frac{S_{reg}^2}{N} \left[1 + \frac{N(x_i - \bar{x})^2}{D_x^2} \right]$$

La imprecisión o error se puede estimar como aproximadamente el doble de la raíz cuadrada de la dispersión (recuérdese que elevábamos al cuadrado para evitar números negativos. Ahora debemos pues quitar el cuadrado). De manera más exacta, la imprecisión o error se debe calcular como *t* veces la raíz cuadrada de la dispersión, donde el parámetro *t*, llamado *t* de Student, tiene en cuenta el número de *grados de libertad* de nuestro experimento (que es igual al número de medidas menos 2, como habíamos comentado anteriormente). A continuación incluimos una tabla de dicho parámetro.

Grados de libertad	Probabilidad		Grados de libertad	Probabilidad			
	0.05	0.01	0.001		0.05	0.01	0.001
1	12.71	63.66	636.62	18	2.10	2.88	3.92
2	4.30	9.93	31.60	19	2.09	2.86	3.88
3	3.18	5.84	12.92	20	2.09	2.85	3.85
4	2.78	4.60	8.61	21	2.08	2.83	3.82
5	2.57	4.03	6.87	22	2.07	2.82	3.79
6	2.45	3.71	5.96	23	2.07	2.82	3.77
7	2.37	3.50	5.41	24	2.06	2.80	3.75
8	2.31	3.36	5.04	25	2.06	2.79	3.73
9	2.26	3.25	4.78	26	2.06	2.78	3.71
10	2.23	3.17	4.59	27	2.05	2.77	3.69
11	2.20	3.11	4.44	28	2.05	2.76	3.67
12	2.18	3.06	4.32	29	2.05	2.76	3.66
13	2.16	3.01	4.22	30	2.04	2.75	3.65
14	2.14	2.98	4.14	40	2.02	2.70	3.55
15	2.13	2.95	4.07	60	2.00	2.66	3.46
16	2.12	2.92	4.02	120	1.98	2.62	3.37
17	2.11	2.90	3.97	x	1.96	2.58	3.29

Para finalizar, indicaremos que, en lugar de usar S_{reg}^2 para definir la bondad del ajuste, es habitual otro parámetro llamado *coeficiente de autocorrelación* ρ , relacionado con S_{reg}^2 , pero que tiene la ventaja de que su valor está acotado entre cero y uno. Se define mediante la siguiente expresión:

$$\rho = \sqrt{1 - \frac{S_{reg}^2}{S_y^2}}$$

11.5.1. Propagación de la dispersión

Imaginemos una función que depende de una variable aleatoria y = f(x). La generalización a funciones que dependen de más de una variable es inmediata. Comprobaremos en primer lugar que el valor medio de y=f(x) se puede calcular como la función de la media de la variable. Después, calcularemos la dispersión de la y, a partir de la suma de sus cuadrados.

Cuando realizamos un experimento determinamos un valor x_i , lo que conduce a un valor para la función $y_i = f(x_i)$. La variable x_i siempre se puede expresar como su valor medio más la desviación de dicho valor: $x_i = \overline{x} + d_i$. Sustituimos en la función y desarrollamos en serie de Taylor hasta primer orden:

$$y_i = f(\overline{x} + d_i) = f(\overline{x}) + d_i f'(\overline{x}) + \dots$$

Por su parte, teniendo en cuenta que el valor medio de las desviaciones que la variable aleatoria tiene respecto de su propia media es cero, el valor medio de *y* resulta:

$$\overline{y} = \frac{1}{N} \sum_{i} y_{i} \approx \frac{1}{N} \sum_{i} [f(\overline{x}) + d_{i}f'(\overline{x})] = f(\overline{x}) + f'(\overline{x}) \frac{1}{N} \sum_{i} d_{i} = f(\overline{x})$$

Calculemos ahora la dispersión de la y a partir de la suma de sus cuadrados:

$$S_{y}^{2} = \frac{1}{N} \sum_{i} (\bar{y} - y_{i})^{2} \approx \frac{1}{N} \sum_{i} \{f(\bar{x}) - [f(\bar{x}) + d_{i}f'(\bar{x})]\}^{2} = \frac{1}{N} f'(\bar{x})^{2} \sum_{i} d_{i}^{2} = f'(\bar{x})^{2} \frac{1}{N} \sum_{i} (x_{i} - \bar{x})^{2} \Rightarrow$$
$$\Rightarrow S_{y}^{2} = f'(\bar{x})^{2} S_{x}^{2}$$

Si la función depende varias variables aleatorias x_I, siguiendo un procedimiento análogo llegamos a que,

$$S_{y}^{2} = \sum_{I} \left(\frac{\partial f}{\partial x_{I}}\right)^{2} S_{x_{I}}^{2}$$

11.6. Otros ajustes lineales

Puede darse el caso de que tengamos fundamentos teóricos que nos permitan saber de manera exacta el valor bien de la pendiente, bien de la ordenada en el origen de una recta, y que los experimentos se hagan para determinar el segundo de los parámetros. Por ejemplo, podríamos pensar que la recta que relaciona concentración y absorbancia de una disolución diluida coloreada deba pasar por el origen, puesto que en el límite de concentración cero sólo tenemos el agua, la cual no absorbe luz visible. En estos casos no podemos usar las fórmulas demostradas en el apartado anterior, sino que hay que encontrar fórmulas adecuadas al problema.

Consideremos en primer lugar el caso de ordenada en el origen conocida: $y = A_0 + Bx$, siendo que A_0 es conocida. Para deducir la fórmula del mejor valor de *B*, procedemos como antes: escribimos la suma de cuadrados de las distancias de los puntos experimentales a la recta teórica y ajustamos *B* para que sea mínima:

$$D_{reg}^{2} = \sum_{ij} (y_{ij} - y_{i}^{c})^{2} = \sum_{ij} (y_{ij} - A_{0} - Bx_{i})^{2}.$$

En este caso, puesto que A_0 es fija y conocida, sólo tenemos la posibilidad de encontrar el valor *B* que haga mínima la distancia de los puntos experimentales a la recta propuesta, esto es, que haga mínimo D_{reg}^2 . Para ello, como hicimos antes, procedemos a derivar e igualar a cero:

$$\frac{d D_{reg}^2}{d B} = 2\sum_{ij} (y_{ij} - A_0 - Bx_i)(-x_i) = 0 \implies B = \frac{\overline{xy} - A_0 \overline{x}}{\overline{x^2}}$$

En cuanto a las dispersiones de la B y del un valor ajustado y_i^c , procediendo de modo análogo al apartado anterior, encontramos que:

$$S_B^2 = \frac{S_{reg}^2}{N \,\overline{x^2}}; \qquad S_{y_i^c}^2 = x_i^2 \, \frac{S_{reg}^2}{N \,\overline{x^2}}; \qquad S_{reg}^2 = \frac{D_{reg}^2}{N - 1} = \frac{1}{N - 1} \sum_{ij} (y_{ij} - y_i^c)^2$$

donde ahora la suma de cuadrados se divide por N-1 y no N-2 porque, conocida la ordenada en el origen, basta un experimento para poder construir la curva, y, con un solo experimento tenemos indeterminación en la bondad del ajuste.

En el caso de recta con pendiente conocida, $y = A + B_0 x$, las expresiones a las que se llegan son:

$$A = \overline{y} - B\overline{x}; \qquad S_A^2 = \frac{S_{reg}^2}{N}; \qquad S_{y_i^c}^2 = S_A^2,$$

con la misma salvedad que antes respecto al factor N-1 que divide la suma de cuadrados.

11.7. Otros ajustes no lineales

El método de los mínimos cuadrados puede extenderse a otro tipo de ajustes, como el ajuste a una parábola, que no es más que un polinomio de segundo grado con tres parámetros de ajuste *A*, *B* y *C*. El procedimiento a seguir es el mismo, aunque la obtención de fórmulas se hace más complicada. En tales casos se puede recurrir a la obtención numérica. El procedimiento **Solver** de MS EXCEL[®] seria un ejemplo bien conocido.

11.8. Balances de carga y materia

La determinación de la concentración de todas las especies en equilibrio de la disolución acuosa diluida de ácidos y bases se resume a un problema de *N* ecuaciones no lineales con *N* incógnitas, más la condición que no puede haber ninguna concentración negativa, lo que permite elegir una, entre todas las posibles soluciones.

A la hora de resolver un problema de este tipo, lo primero que debemos hacer es escribir una lista de todas las moléculas e iones en disolución, excepto el disolvente, que es el agua, cuya concentración, 55.55 M, es conocida (consideramos que en un litro de disolución diluida hay un kilogramo de agua, de peso molecular 18, lo que conduce a una concentración 1000/18=55.55 M). El resto de especies están todas en concentración muy diluida y constituyen la lista de incógnitas a determinar, empezando por los protones e hidroxilos, más todas las especies que se forman en la disolución.

Pues bien, una vez escrita la lista, contamos las especies cuya concentración desconocemos. El resultado es el número de incógnitas. Debemos ahora escribir tantas ecuaciones como incógnitas tenemos. La primera de las ecuaciones es el producto iónico del agua: $K_w = 10^{-14} = [H][OH]$. A continuación escribimos todas las ecuaciones de equilibrio, cuyas respectivas constantes vendrán dadas en el enunciado del problema o debemos buscar en tablas. Seguidamente escribiremos el balance de cargas. Obviamente, sólo existe un balance de de cargas que nos dice que, puesto que la disolución es electro-neutra, habrá tantas carga positivas como negativas. Volveremos más tarde sobre cómo escribir la ecuación de este balance. Contamos ahora cuantas ecuaciones hemos escrito y por tanto cuantas nos quedan hasta llegar al número de incógnitas. El número resultante coincide con el número de balances de materia que podemos establecer y que más tarde volveremos sobre el detalle de cómo plantearlos.

Con esto hemos escrito tantas ecuaciones como incógnitas teníamos. Como el sistema de ecuaciones no es lineal habrá más de una solución. Ahora bien, entre todas las soluciones sólo habrá una que tendrá sentido y es la que debemos escoger. Típicamente sólo encontraremos una en que todas las concentraciones son positivas.

Volvamos sobre los balances de materia. Se establece uno por cada ácido y uno por cada base que añadimos en disolución, entendiendo que una sal está compuesta de ácidos y bases. Con esto último quiere decirse que si tenemos, por ejemplo, una disolución de acetato amónico CH_3COONH_4 o simplemente $AcNH_4$, tenemos en realidad la base anión acetato $Ac^- y$ el ácido catión amonio NH_4^+ .

Consideremos un primer ejemplo sencillo: la disolución de un ácido débil, por ejemplo de ácido acético AcH. Empezamos con la lista de incógnitas. En primer lugar está el agua que genera protones H^+ e hidroxilos OH⁻ y en segundo y último lugar está el ácido acético que por ser un ácido débil se disocia parcialmente dando lugar a acetato, Ac⁻, más protones H⁺. Esto viene esquematizado en la figura siguiente.

En este caso hay cuatro incógnitas (HAc, Ac⁻, H⁺, OH⁻). Entre las ecuaciones tenemos el producto iónico del agua: $K_w = 10^{-14} = [H][OH]$, el equilibrio de disociación del ácido acético,

$$K_a = \frac{[Ac^-][H^+]}{[HAc]},$$

y el balance de cargas, esto es, el que la suma de cargas positivas es igual al de negativas. En este caso:

número de iones H^+ = número de iones Ac^- + número iones OH^- .

Si dividimos ambos miembros por el número de Avogadro obtenemos la ecuación equivalente:

número de moles H^+ = número de moles Ac^- + número moles OH^- .

Si finalmente dividimos por el volumen, encontramos concentraciones: $[H^+] = [Ac^-] + [OH^-]$.

Podremos ahora establecer tantos balances de materia como ecuaciones necesitemos, hasta tener tantas como incógnitas. En este caso sólo una, pues tenemos la disolución de una sola especie (en nuestro caso ácida). La figura ejemplifica cómo debemos plantear el balance material. Representamos allí por un cuadro grande los moles de ácido acético que añadimos inicialmente para preparar un litro de disolución y por un círculo el agua. Cuando se alcanza el equilibrio, el acético se disocia, de manera que parte del acético inicial desaparece (el cuadro oscuro) dando lugar a sendos cuadros de Ac⁻ y H⁺. También el agua genera algunos protones e hidroxilos, pero no sabemos cuantos. Por ello, el balance material, que equivale a decir que

debemos restituir el cuadro eliminado, sólo lo podemos establecer sumando las concentraciones de AcH y Ac⁻ en equilibrio: $[HAc]_0 = [HAc] + [Ac^-]$.

Pasemos a un caso un poco más complicado: la disolución de un ácido diprótico, como por ejemplo el ácido sulfhídrico H₂S. La lista de especies en disolución es: H⁺, OH⁻, H₂S, HS⁻, S⁼. Hay pues cinco incógnitas y deberá haber cinco ecuaciones. En primer lugar tenemos el producto iónico del agua. A continuación, las dos ecuaciones de disociación del ácido sulfhídrico y por último el balance de cargas. Queda pues una incógnita por cubrir, que lo haremos con un balance material correspondiente a la única especie que hemos añadido para hacer la disolución.

De nuevo la figura nos da la clave para establecer el balance. Cuando se establece el equilibrio parte del H₂S desaparece (cuadro negro mayor) para formar la correspondiente cantidad de HS⁻ (cuadro blanco mediano) y H⁺. El HS⁻, a su vez, se disocia y parte desaparece (cuadro negro pequeño) para formar la correspondiente cantidad de S⁼ (cuadro blanco pequeño) y H⁺. Como antes, el agua aporta también protones e hidroxilos en una cantidad desconocida que no permite tomar estas especies a la hora de hacer balances (restituir el cuadro inicial). El balance material queda pues: $[H_2S]_0 = [H_2S] + [HS^-] + [S^-]$.

Veamos ahora el balance de cargas. Hemos de contar por una parte las cargas positivas, que en este caso sólo son protones H⁺, y por otra las negativas, que aparecen en las especies siguientes OH⁻, HS⁻ y S⁼. Ahora, y esto es importante, debemos recordar que estamos contando número de cargas y no número de especies que las llevan. Por ello, el número de cargas negativas será $[OH^-] + [HS^-] + 2[S^=]$. Es decir contamos dos veces el número de especies que llevan dos cargas. Podemos hacer un símil. Supongamos que tenemos *A* monocicletas (de una rueda) y *B* bicicletas (de dos ruedas). El numero total de ruedas será A+2B, ya que habrá una rueda por cada monocicleta pero dos por cada bicicleta. Y si hubiese coches, contaríamos cuatro veces cada coche, que tiene cuatro ruedas!

Pasemos a un caso un poco más complicado aún: Hemos preparado la disolución añadiendo un ácido y una base. Por ejemplo acético y amoniaco. La lista de especies en disolución es: H^+ , OH_-^- , HAc, Ac^- , NH_4OH , NH_4^+ . Tenemos pues seis incógnitas. Entre las ecuaciones tenemos el producto iónico del agua, a continuación una ecuación de disociación del ácido acético y otra del amoniaco y, por último, el balance de cargas. Total cuatro ecuaciones y tenemos seis incógnitas. Habrá pues dos balances, que se corresponden a las dos especies que hemos añadido al agua para formar la disolución.

La figura visualiza los dos balances: $[HAc]_0 = [HAc] + [Ac^-] y [NH_4OH]_0 = [NH_4OH] + [NH_4^+]$. En cuanto al balance de carga: $[H^+] + [NH_4^+] = [OH^-] + [Ac^-]$.

Pasemos a otro caso, la disolución de una sal. Hemos preparado la disolución de acetato amónico $AcNH_4$. El acetato amónico es una sal soluble que se disuelve completamente generando un ácido, el catión amonio NH_4^+ , y una base, el anión acetato Ac^- . Ambas especies son débiles, en el sentido que reaccionan parcialmente con el agua generando protones e hidroxilos, siendo que la mayoría de compuesto queda por reaccionar:

$$NH_4^+ + H_2O \rightleftharpoons NH_4OH + H^+$$

 $Ac^- + H_2O \rightleftharpoons HAc + OH^-$

Vemos pues que las especies que se generan en disolución son las mismas que en el caso anterior, con la única diferencia que las concentraciones *iniciales* de acetato y amonio son iguales entre si e iguales a los moles de acetato amónico que hemos disuelto en el litro de disolución, $[AcNH_4]_0 = [Ac^-]_0 = [NH_4^+]_0$.

Los balances materiales son: $[Ac^{-}]_{0} = [Ac^{-}] + [HAc] \times [NH_{4}^{+}]_{0} = [NH_{4}^{+}] + [NH_{4}OH].$

El balance de carga es el mismo: $[H^+] + [NH_4^+] = [OH^-] + [Ac^-]$.

El grafico siguiente visualiza las ecuaciones de balance.

Para acabar plantearemos un último problema cuyo interés radica en su balance material. Es el caso de la disolución de ácido fluorhídrico en cuya disolución suceden los siguientes equilibrios: $HF \rightleftharpoons F^- + H^+$, cuya constante de equilibrio es k_a=0.0007, y $HF + F^- \rightleftharpoons HF_2^-$, con una constate k₂=5.

La lista de especies en disolución es: H^+ , OH^- , HF, F^- , HF_2^- . Total cinco incógnitas. En cuanto a ecuaciones, tenemos el producto iónico del agua, las dos ecuaciones de equilibrio del fluorhídrico y el balance de cargas. Queda pues una incógnita. Habrá pues un balance material, correspondiente a la única especie que hemos añadido para hacer la disolución. Para hacer bien este balance debemos recordar el símil del coche y las ruedas. El balance es: $[HF]_0 = [HF] + [F^-] + 2[HF_2^-]$, puesto que en el dímero hay dos átomos flúor. En la figura se ve que debemos contar dos veces el cuadro pequeño blanco para que, sumado a los otros dos cuadros, se obtenga el cuadro blanco original.

11.9. Fórmulas aproximadas para el diagrama concentración/pH de un ácido diprótico

Al igual que en la sección <u>4.6</u>, tomaremos como ejemplo el caso del ácido sulfhídrico. Para la resolución del problema contamos con las ecuaciones de equilibrio más el balance de materia:

$$K_{1} = \frac{[SH^{-}][H^{+}]}{[SH_{2}]}; \qquad K_{2} = \frac{[S^{2-}][H^{+}]}{[SH^{-}]}; \qquad c_{0} = [SH_{2}] + [SH^{-}] + [S^{2-}]$$

En el presente apartado procederemos a obtener ecuaciones simples (aproximadas) para la concentración de las distintas especies en función del pH. Aunque simples, las fórmulas obtenidas conducen a represtaciones gráficas indistinguibles de las calculadas con las fórmulas exactas. Para obtener las fórmulas aproximadas haremos una serie de aproximaciones razonables, a la vista del diagrama cualitativo de predominancia de especies, que detallamos a continuación:

1	pK_1	pK_2
SH_2	SH ⁻	S ²⁻

Así, consideramos que en medio ácido, esto es, cuando predomina el sulfhídrico SH_2 , la concertación de ión sulfuro S^{2^-} es tan pequeña que podemos tomarla cero en el balance de materia. Concentración cero de ión sulfuro S^{2^-} significa que el ácido sulfhídrico se comporta como un ácido monoprótico. Tenemos pues que desde pH muy ácido hasta un valor $pH = pK_1$ el problema es idéntico al del ácido acético estudiado en el apartado <u>4.4</u>. Tenemos la ecuación de la primera constante de disociación más el balance de materia (aproximado):

$$K_1 = \frac{[SH^-][H^+]}{[SH_2]};$$
 $c_0 = [SH_2] + [SH^-]$

Las mismas fórmulas deducidas en la sección 4.4 valen pues ahora también (excepto que ahora llamamos K₁ a la constante de acidez en vez de llamarla K_a):

$$[SH_2] = \frac{c_0}{1+10^{pH-pK_1}}; [SH^-] = \frac{c_0}{1+10^{pK_1-pH}}$$

Nos queda por determinar la concentración de sulfuro, que aun siendo muy pequeña no es exactamente cero. Para ello tomaremos la ecuación producto de las dos constantes de acidez y asumiremos, a la vista del resultado obtenido para el ácido acético en la gráfica del apartado <u>4.4</u>, que la especie predominante prácticamente acapara toda la concentración:

$$K_1 K_2 = \frac{[S^{2-}][H^+]^2}{[SH_2]};$$
 $c_0 \approx [SH_2]$

De aquí obtenemos de inmediato la concentración de sulfuro: $[S^{2-}] = 10^{2pH-pK_1-pK_2} c_0$.

Obviamente, en la región que va más allá de $pH = pK_2$ haremos el mismo tipo de planteamiento. Esto es, tomamos un valor cero para la concentración de sulfhídrico SH_2 en el balance material. Por tanto tenemos:

$$K_2 = \frac{[S^{2^-}][H^+]}{[SH^-]};$$
 $c_0 = [SH^-] + [S^{2^-}]$

Ello nos conduce a resultados similares para las fórmulas de las concentraciones:

$$[SH^{-}] = \frac{c_0}{1+10^{pH-pK_2}}; \qquad [S^{2-}] = \frac{c_0}{1+10^{pK_2-pH}}$$

Respecto al sulfhídrico tenemos:

$$K_1 K_2 = \frac{[S^{2-}][H^+]^2}{[SH_2]};$$
 $c_0 \approx [S^{2-}]$

lo que conduce a $[SH_2] = 10^{pK_1 + pK_2 - 2pH} c_0$.

Finalmente, en la parte intermedia, donde domina el bisulfuro SH⁻, podemos considerar tanto

$$K_1 = \frac{[SH^-][H^+]}{[SH_2]};$$
 $c_0 = [SH_2] + [SH^-]$

como:

$$K_{2} = \frac{[S^{2^{-}}][H^{+}]}{[SH^{-}]}; \qquad c_{0} = [SH^{-}] + [S^{2^{-}}]$$

Del primer par de ecuaciones deduciremos la concentración del sulfhídrico, del segundo par la del sulfuro (que ya hemos obtenido más arriba) y de cada uno de los pares la de bisulfuro en las regiones derecha e izquierda (fórmulas como las deducidas anteriormente). Resumimos a continuación las formulas encontradas para las distintas regiones:

Región 1 de predominancia del sulfhídrico SH₂,

$$[SH_{2}] = \frac{c_{0}}{1+10^{pH-pK_{1}}}; \qquad [SH^{-}] = \frac{c_{0}}{1+10^{pK_{1}-pH}}; \qquad [S^{2-}] = 10^{2pH-pK_{1}-pK_{2}}c_{0}$$

Región 2 de predominancia del bisulfuro SH⁻,

$$[SH_2] = \frac{c_0}{1+10^{pH-pK_1}}; [S^{2-}] = \frac{c_0}{1+10^{pK_2-pH}}$$

$$[SH^{-}] = \frac{c_0}{1+10^{pK_1-pH}}; \qquad [SH^{-}] = \frac{c_0}{1+10^{pH-pK_2}}$$

Región 3 de predominancia del sulfuro S^{2-} ,

$$[SH_{2}] = 10^{pK_{1}+pK_{2}-2pH} c_{0}; \qquad [SH^{-}] = \frac{c_{0}}{1+10^{pH-pK_{2}}}; \qquad [S^{2-}] = \frac{c_{0}}{1+10^{pK_{2}-pH}}.$$

11.10. Resumen de comandos MATHEMATICA®

Se presenta a continuación un resumen de los comandos MATHEMATICA[®] más relevantes empleados en estos apuntes.

• Borrado de memoria:

In[1]:= a = 1; b = 2; ClearAll["Global`*"]; {a, b}
Out[1]= {a, b}

```
In[2]:= a = 1; b = 2; ClearAll[a]; {a, b}
Out[2]= {a, 2}
```

• Redondeo a números enteros: Round y IntergerPart:

In[1]:=	Round [4.2]	In[2]:=	Round [4.6]	In[3]:=	<pre>IntegerPart[4.6]</pre>
Out[1]=	4	Out[2]=	5	Out[3]=	4

• Logaritmos naturales y decimales:

Logaritmo natural	Logaritmo decimal		
ln[1]:= Log[10.]	ln[2]:= Log[10, 10.]		
Out[1]= 2.30259	Out[2]= 1.		

• Listas:

```
ln[1]:= lista = \{\{\{1, 2, 3\}, \{4, 5\}\}, \{6\}, \{7, 8, 9, 10\}\};
ln[2]:= lista[[1]]
ln[3]:= lista[[3]]
```

Out[2]=	$\{\{1, 2, 3\}, \{4, 5\}\}$	Out[3]=	{7, 8, 9, 10}
In[4]:=	lista[[1, 1]]	In[5]:=	lista[[1, 1, 2]]
Out [4]=	{1, 2, 3}	Out[5]=	2

• Añadir términos a una lista: AppendTo:

```
In[1]:= lista = {{1, 2}}; AppendTo[lista, {3, 4}]; lista
Out[1]= {{1, 2}, {3, 4}}
```

• Definición de funciones (atención a la diferencia):

In[1]:=	$f[x] = x^2; f[3]$	In[2]:=	$f[x_] = x^2; f[3]$
Out[1]=	f[3]	Out[2]=	9

• Derivadas:

ln[1]:= D[x^3, x]	$\ln[2] = D[x^3, \{x, 2\}]$	$\ln[3] = D[x^3, \{x, 3\}]$
Out[1]= 3 x ²	Out[2]= 6 x	Out[3]= 6

• Asignaciones momentáneas:

```
ln[1]:= ec = 2 * x + y; ec /. \{x \to 1, y \to 1\}
Out[1]= 3
ln[2]:= ec
```

Out[2]= 2 x + y

• Eliminate:

 $\ln[1] = \text{Eliminate}[\{x * n = 2 * z, n * m = 1, x + z = 2, x + m = n\}, \{x, n, m\}]$ Out[1]= 4 z - 11 z² + 2 z³ == -4

• Solve y NSolve:

Ecuaciones simples:

 $\begin{array}{ll} \ln[1] \coloneqq & \text{Solve} \left[3 \star x^2 - 2 \star x - 2 == 0, x \right] \\ \\ \text{Out}[1] = & \left\{ \left\{ x \rightarrow \frac{1}{3} \left(1 - \sqrt{7} \right) \right\}, \left\{ x \rightarrow \frac{1}{3} \left(1 + \sqrt{7} \right) \right\} \right\} \\ \\ \ln[2] \coloneqq & \text{Solve} \left[3 \star x^2 - 2 \star x - 2 == 0, x \right] \ // \ N \\ \\ \text{Out}[2] = & \left\{ \left\{ x \rightarrow -0.548584 \right\}, \left\{ x \rightarrow 1.21525 \right\} \right\} \\ \\ \ln[3] \coloneqq & \text{NSolve} \left[3 \star x^2 - 2 \star x - 2 == 0, x \right] \\ \\ \text{Out}[3] \coloneqq & \left\{ \left\{ x \rightarrow -0.548584 \right\}, \left\{ x \rightarrow 1.21525 \right\} \right\} \\ \end{array}$

Sistemas de ecuaciones:

```
\ln[4] := \text{NSolve}[\{3 \star x^2 - 2 \star x \star y - 2 == 0, x + y - 1 == 0\}, \{x, y\}]
```

Out[4]= { { $x \rightarrow -0.463325, y \rightarrow 1.46332$ }, { $x \rightarrow 0.863325, y \rightarrow 0.136675$ }

• FindRoot (Solve funciona bien con polinomios. Para otro tipo de funciones podemos utilizar FindRoot, que requiere especificar un valor inicial con que iniciar el método iterativo):

```
h[1]:= Solve[Sin[x] == 0, x]
Solve:::ifun : Inverse functions are being used by Solve, so some solutions
may not be found; use Reduce for complete solution information. More..
Out[1]= {{x → 0}}
h[2]:= FindRoot[Sin[x], {x, 3}]
h[3]:= FindRoot[Sin[x], {x, -6}]
Out[2]= {x → 3.14159}
Out[3]= {x → -6.28319}
e Bucles: For:
h[1]:= For[i = 2, i ≤ 3, i++, Print["hola ", i *10]]
hola 20
```

hola 30

• Ajustes: Fit y FindFit:

Fit (ajuste por mínimos cuadrados como combinación lineal de las funciones de base especificadas):

 $ln[1]:= datos = \{\{0, 5\}, \{1, 4\}, \{2, 3\}, \{3, 2\}, \{4, 1\}\}; \\ Fit[datos, \{1, x, x^2, Sin[x]\}, x] \\ Out[1]= 5. - 1. x + 4.72062 \times 10^{-17} x^2 + 9.13378 \times 10^{-16} Sin[x]$

FindFit (ajuste por mínimos cuadrados de los parámetros de la función especificada):

```
ln[2]:= datos = {{0, 3}, {0.5, 2.38}, {1, 1.80}, {1.5, 1.29}, {2, 0.89}};
FindFit[datos, a + b * Sin[c * x], {a, b, c}, x]
```

```
Out[2]= \{a \rightarrow 3.00012, b \rightarrow -2.51332, c \rightarrow 0.498407\}
```

• Representación:

```
 \ln[1]:= \operatorname{Plot}[\{x^2, x\}, \{x, -0.5, 0.5\}, \operatorname{AxesLabel} \rightarrow \{"x", "y"\}]
```


12. Bibliografía recomendada

AGUILAR M. (1999): Introducción a los equilibrios iónicos, Barcelona, Editorial Reverté.

BILLO, E. J. (1997): Excel for Chemists, Nueva York, Wiley-VCH.

BUDEVSKY, O. (1993) Fonaments de l'Anàlisi Química, Barcelona, Publicacions Universitat de Barcelona.

BURRIEL, F., LUCENA, F., ARRIBAS, S., HERNÁNDEZ, J. (1992): *Química Analítica Cualitativa, Madrid, Editorial Paraninfo*.

BUTLER J. N. (1964): Ionic Equilibrium. A Mathematical Approach, Massachussetts, Addison-Wesley.

CROPPER, W. H. (1998): Mathematica Computer Programs for Physical Chemistry, Nueva York, Springer.

DE LEVIE, R. (2001): How to use EXCEL in Analytical Chemistry, London Cambridge University Press.

DIAMOND D., HANRATTY V. C. A. (1997): Spreadsheet Applications in Chemistry using Microsoft Excel, Nueva York, John Willey & sons.

FEAGIN, J. M. (1994): Quantum Method with Mathematica, Nueva York, Springer Verlag.

MA, N. L., TSANG, C. W. (1998): Curve-fitting approach to potentiometric titration using spreadsheet, Journal of Chemical Education, 75, 122.