

Simulating

the Energy Spectrum of

Quantum Dots

7th IIC-EMTCCM

> European Master in Theoretical Chemistry and Computational Modelling
$7^{\text {th }}$ International Intensive Course

UNIVERSITAT JAUME•I

PROBLEM 1. Calculate the electron energy spectrum of a $1 \mathrm{D} \mathrm{GaAs/AIGaAs} \mathrm{QD} \mathrm{as} \mathrm{a} \mathrm{function} \mathrm{of} \mathrm{the} \mathrm{size}$.

Hint: consider GaAs effective mass all over the structure.

The single-band effective mass equation:

$$
\left[-\frac{\hbar^{2}}{2 m^{*}} \frac{d^{2}}{d x^{2}}+V(x)\right] f(x)=E f(x)
$$

Let us use atomic units ($\hbar=m_{0}=e=1$)

$$
\left[-\frac{1}{2\left(m^{*} / m_{0}\right)} \frac{d^{2}}{d x^{2}}+V(x)\right] f(x)=E f(x)
$$

$B C: f(0)=0$

$$
\begin{equation*}
\mathrm{m}^{*}{ }_{\mathrm{GaAs}}=0.05 \mathrm{~m}_{0} \tag{t}
\end{equation*}
$$

Numerical integration of the differential equation: finite differences

$$
\left[-\frac{1}{2 m^{*}} \frac{d^{2}}{d x^{2}}+V(x)\right] f(x)=E f(x)
$$

Discretization grid

How do we approximate the derivatives at each point?

$$
\begin{aligned}
& f^{\prime}\left(x_{i}\right)=f_{i}^{\prime}=\frac{f_{i+1}-f_{i-1}}{2 h} \\
& f^{\prime \prime}\left(x_{i}\right)=f_{i}^{\prime \prime}=\frac{f_{i+1}^{\prime}-f_{i-1}^{\prime}}{2 h}= \\
& =\ldots=\frac{f_{i+1}-2 f_{i}+f_{i-1}}{h^{2}}
\end{aligned}
$$

FINITE DIFFERENCES METHOD

$$
\left[-\frac{1}{2 m^{*}} \frac{d^{2}}{d x^{2}}+V(x)\right] f(x)=E f(x)+B C s: \left\lvert\, \begin{aligned}
& f(0)=0 \\
& f\left(L_{t}\right)=0
\end{aligned}\right.
$$

1. Define discretization grid
2. Discretize the equation:

$$
\begin{gathered}
-\frac{1}{2 m^{*}} f_{i}^{\prime \prime}+V_{i} f_{i}=E f_{i} \\
-\frac{1}{2 m^{*} h^{2}}\left[f_{i+1}-2 f_{i}+f_{i-1}\right]+V_{i} f_{i}=E f_{i}
\end{gathered}
$$

3. Group coefficients of fwd/center/bwd points

$$
\left(-\frac{1}{2 m * h^{2}}\right) f_{i-1}+\left(\frac{1}{m^{*} h^{2}}+V_{i}\right) f_{i}+\left(-\frac{1}{2 m^{*} h^{2}}\right) f_{i+1}=E f_{i}
$$

$$
b f_{i-1}+a_{i} f_{i}+b f_{i+1}=E f_{i}
$$

$$
b f_{i-1}+a_{i} f_{i}+b f_{i+1}=E f_{i}
$$

Trivial eqs: $f_{1}=0, f_{n}=0$.

Extreme eqs:

$$
\begin{gathered}
i=2 \rightarrow b f_{1}^{0}+a_{2} f_{2}+b f_{3}=E f_{2} \\
i=n-1 \rightarrow b f_{n-2}+a_{n-1} f_{n-1}+b \not f_{0}=E f_{n-1}
\end{gathered}
$$

Matriz (n-2) x (n-2) - sparse
We now have a standard diagonalization problem (dim $n-2$):

$$
\left[\begin{array}{ccccc}
a_{2} & b & & & \\
b & a_{3} & b & & \\
& \ddots & \ddots & \ddots & \\
& & b & a_{n-2} & b \\
& & & b & a_{n-1}
\end{array}\right] \cdot\left[\begin{array}{c}
f_{2} \\
f_{3} \\
\vdots \\
f_{n-2} \\
f_{n-1}
\end{array}\right]=E\left[\begin{array}{c}
f_{2} \\
f_{3} \\
\vdots \\
f_{n-2} \\
f_{n-1}
\end{array}\right]
$$

The result should look like this:

PROBLEM 1 - Additional questions

a) Compare the converged energies with those of the particle-in-the-box with infinite walls for the $\mathrm{n}=1,2,3$ states.

$$
E_{n}=\frac{\hbar^{2} \pi^{2}}{2 m L^{2}} n^{2}
$$

b) Use the routine plotwf.m to visualize the 3 lowest eigenstates for $\mathrm{L}=15 \mathrm{~nm}$, $L_{b}=10 \mathrm{~nm}$. What is different from the infinite wall eigenstates?

PROBLEM 2. Calculate the electron energy spectrum

 of two coupled QDs as a function of their separation S.Plot the two lowest states for $S=1 \mathrm{~nm}$ and $\mathrm{S}=10 \mathrm{~nm}$.

The result should look like this:

PROBLEM 3. Calculate the electron energy spectrum of $N=20$ coupled QDs as a function of their separation S.
Plot the charge density of the $\mathrm{n}=1,2$ and $\mathrm{n}=21,22$ states for $S=1 \mathrm{~nm}$ and $L=5 \mathrm{~nm}$.

The result should look like this (numerical instabilities aside):

PROBLEM 4. Write a code to calculate the energies of an electron in a 2D cylindrical quantum ring with inner radius $\mathrm{R}_{\text {in }}$ and outer radius $\mathrm{R}_{\text {out }}$, subject to an axial magnetic field B.

Calculate the energies as a function of $B=0-20 \mathrm{~T}$ for a structure with $\left(R_{\text {in }}, R_{\text {out }}\right)=(0,30) \mathrm{nm}$-i.e. a quantum disk- and for $(3,30) \mathrm{nm}$-a quantum ring-. $L_{b}=10 \mathrm{~nm}$. Discuss the role of the linear and quadratic magnetic terms in each case.

Hint 1: after integrating Φ, the Hamiltonian reads (atomic units):
$\left[-\frac{1}{2 m^{*}}\left(\frac{\partial^{2}}{\partial \rho^{2}}+\frac{1}{\rho} \frac{\partial}{\partial \rho}+\frac{M_{z}{ }^{2}}{\rho^{2}}+B M_{z}\right)+\frac{B^{2} \rho^{2}}{8}+V(\rho)\right] f(\rho)=E f(\rho)$
with $M_{z}=0, \pm 1, \pm 2$... the angular momentum z-projection.
1 atomic unit of magnetic field $=235054$ Tesla.
Hint 2: describe the radial potential as

where $\rho=0$ is the center of the ring

Hint 3: use the following $B C$

$$
f\left(L_{t}\right)=0 \text { (i.e. } f_{n}=0 \text {) }
$$

If $\mathrm{M}_{\mathrm{z}}=0$, then $\mathrm{f}^{\prime}(0)=0$ (i.e. $f_{1}=f_{2}$)
If $M_{z} \neq 0$, then $f(0)=0$ (i.e. $f_{1}=0$)

The results should look like this:

Ring
$\left(R_{\text {in }}=3 \mathrm{~nm}\right)$

