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A quantum dot is a small crystal of nanometric size. It is built of a huge amount of electrons 

and nuclei. As in macroscopic crystals, atoms inside quantum dots are arranged according to 

an ordered pattern, displaying microscopic periodicity. However, nanocrystals and 

macroscopic crystals display quite different behaviour and properties. In a macroscopic 

crystal, despite its finite size, most of the properties are bulk-like. At the electronic scale, 

macroscopic crystal is so huge that electrons see the crystal border as if located at infinity. 

This allows to fully exploiting translational symmetry, drastically simplifying its quantum 

mechanical description. If we now introduce a heterojunction (or consider a nanocrystal) we 

still have local periodicity. However, the border is no longer felt at infinity. Instead, we may 

consider the border effect as a potential superimposed to the crystalline periodic potential. 

This extra potential is extremely smooth at the scale of a lattice constant. Physically, it 

behaves as a confining potential which renders a discrete character to the electron energy 

structure. The possibility to precisely control the size of a quantum dot enables to determine 

the wavelength of the absorption and emission, which in turn determines the colour of light 

the human eye perceives. Quantum dots can therefore be tuned during production to emit any 

desired colour light. The smaller the dot, the closer it is to the blue end of the spectrum, and 

the larger the dot, the closer to the red end. Quantum dots can even be tuned beyond visible 

light, into the infra-red or into the ultra-violet. In addition to this potential, hereafter referred 

to as spatial confining potential, externally applied fields or just the presence of interfaces 

may bring about additional sources of confinement, as the magnetic confinement. We can 

therefore understand why quantum dots are called artificial atoms, as the manufacturer can 

tune its properties in the fabrication process or/and by means of appropriate external sources 

of confinement. Along two lectures, we will provide a bird’s eye view on periodicity and 

spatial and magnetic confinements on quantum dots. The aim of these talks, more than 

introducing the world of nanosystems is to revisit some basic knowledge viewed from and 

used for solid state and nanoscience.  



1. PERIODICITY AND SPATIAL CONFINEMENT 
 

1.1. Crystal structure: direct and reciprocal lattices 
 
A crystal is a solid material whose constituent atoms, molecules or ions are arranged in an 

orderly repeating pattern. The pattern can be described as a motif (basis) which is repeated 

periodically at the points of an underlying lattice which looks the same from when viewed 

from any of its points (Bravais lattice). Because of symmetry restrictions, only a few types of 

Bravais lattices exist. The (smallest) region of the crystal that fills the entire space when 

repeated by translation is known as (primitive) unit cell. Of particular interest is the so-called 

Wigner-Seitz cell, a primitive unit cell which preserves the point symmetry of the crystal. The 

Wigner–Seitz cell around a lattice point is defined as the locus of points in space that are 

closer to that lattice point than to any of the other lattice points. To build it, lines are drawn to 

all nearby (closest) lattice points. At the midpoint of each line, another line (2D)/plane (3D) is 

drawn normal to each of the first set of lines. 

  
Figure 1.1: Construction of a Wigner–Seitz primitive cell. 

The periodicity of a crystal, i.e., the existence of a lattice, is related to the translation 

symmetry and has profound consequences in the physical behaviour end the electronic 

structure of solids. For example, the observable electronic density ρ(r) is periodic (ρ(r) = 

ρ(r+t), with t a translation vector). The square of the modulus of the wave function then is 

periodic, and therefore the wave function is periodic up to a phase. This phases are precisely 

the characters of the irreducible representations (irreps) of the translation group (since 

translations commute, the translation group is commutative, so all its irreps are one-

dimensional). The linear momentum is the generator of translations  Then, its 

eigenfunctions {eikx} can be used as basis of the irreps, the calculation of their characters and 

the associated quantum number k as label for these irreps. However, while k can assume the 

value of all possible finite real numbers, the number of non-equivalent irreducible 

representations of the translation group is much smaller because eika =1, where a is a point of 

the Bravais Lattice, that means eikx = eik(x+a), i.e., k and (k+a) are the same irrep as they have 

the same set of characters. We see then that for each point of the direct Bravais lattice (a) 

).ˆ( p̂nai
n eT =



there is a point k in the so-called reciprocal space (units 1/length). The full set of k points 

form a Bravais lattice (K) whose Wigner-Seitz cell is known as the first Brillouin zone. The 

reciprocal lattice is extremely useful in the study of crystals. 

 
1.2. Translations in 3D: Bloch functions 
 
The extension to three dimensions implies replacing x by r and k by k. Now the label of the 

three-dimensional translation group is not a number k but a vector k. The most general basis 

of the irreps are the so-called Bloch functions: )()(   );()(  rarrr rk
k uuuei =+= ⋅Ψ . We also 

can define in 3D the reciprocal lattice and identify the labels of all non-equivalent irreps 

within the 3D first Brillouin zone. 

1.3. Solving the Schrödinger equation 
In order to solve the Schrödinger equation of a crystal we use translational symmetry and the 

characters of the irreducible representation to set the required boundary conditions: since 
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equation for each k value and find a set of low-lying eigenvalues. The plot vs. k of the n-th 

eigenvalue, En(k), represents an energy band. 

 
Figure 1.2: energy bands 

1.4 Energy band structures 

 
As a starting point to study the energetics of crystal solids, we consider an electron travelling 

along the crystal. The quasi-free electron feels the Coulomb potential exerted by the lattice 

ions as a perturbation. This kind of carriers is responsible for most of the solid’s collective 

properties.  

Let us first assume that the kinetic energy of the electron greatly exceeds the potential, ε>>V 

(empty lattice). The Hamiltonian describing the system and its solutions are given by: 
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With p=ħk the linear momentum and N the normalization constant. Such a wave function is 



known as plane wave, and its energy structure vs k is shown in figure 1.3a. At zero 

temperature, the electrons in a solid will occupy the lowest orbitals allowed by the Pauli 

exclusion principle, from k=0 till k=kF. We then define the Fermi energy as εF=ħ2kF
2/2m.  

Let us next include the lattice as a weak perturbation. It can be shown that electrons will not 

feel the lattice unless k ~ π/a, where a is the lattice constant. If ,  k ~ π/a, the plane wave 

experiences Bragg reflection. This leads to forbidden values of k, where energy gaps appear 

(figure 1.3b).  Depending on the magnitude of the gap and the position of the Fermi energy, 

we classify solids as insulators, semiconductors and conductors (metals) –figure 1.3c-. 
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Figure 1.3. 

1.5 The k·p model. Effective mass. 

A computationally affordable yet reliable description of many semiconductor crystal is 

obtained using the k·p method. The idea is to project the crystal Hamiltonian, 

H=p2/2m+Vcr(r), onto a general Bloch function ψ(r) =N eikr uk(r). After operating and left-

multiplying by e-ikr, one gets the k·p Hamiltonian: 
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If we have some information about unk at a given point k=0 (Γ point, at the centre of the 

Brillouin zone), we can solve the Hamiltonian perturbationally for k near k=0. To this end, we 

expand the Hamiltonian in terms of a basis of functions unk(r)= Σn cnk un0(r) . A general matrix 

element is of the form: 
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Where εn0 is the energy gap and Pnl=<un0|p|ul0> is the Kane parameter. Both magnitudes can 

be inferred from spectroscopy experiments. Depending on the number n of functions in our 

basis, we speak about n-band k·p models. Typical models employed to describe zinc-blende 

semiconductors are the 1-band model for conduction electrons, 4-band model for valence 

holes and 8-band model to include coupling between conduction and valence bands. 

The 1-band model (all models indeed) is usually solved up to second-order perturbation 
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theory, leading to energies: 
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Note that the energy is simply that of a free electron but with an effective mass m*, which 

depends on the coupling with other bands. The effective mass can have small and even 

negative values, which leads to lots of interesting physics in semiconductors. 

It must be pointed out that perturbation theory becomes quite more complex for many-band 

models and that, actually, nobody calculate the huge amount of integrals involved in the 

perturbation expansions, but group them and fit to the experiment. A good (simpler and 

deeper) alternative to perturbation expansions for reaching the Hamiltonian is to determine it 

by pure symmetry considerations: the theory of Invariants comes to play. The fundamental 

underlying idea is that a product A·B is invariant (A1 symmetry) if A, B are of the same 

symmetry.  Since the Hamiltonian must be quadratic in k (as it comes from a second order 

perturbation), then  Therefore, we must write down symmetry-adapted kikj 

products (as are given in the character table of the involved point group, Td for zinc-blende 

semiconductors) and find out appropriate partner matrices (of the same symmetry). To this 

end one can employ symmetry-adapted products of matrix representations of the angular 

momentum. The resulting Hamiltonian can be written , where  is the 

symmetry-adapted matrix,  the symmetry-adapted kikj product and aΓ a fitting parameter 

that cannot be determined by symmetry considerations. 
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1.6 Heterostructures. Quantum wells, wires and dots. 

 
So far we have considered homogeneous crystals. However, current semiconductor research is 

largely focused on semiconductors made of different materials. How do we model a system 

with two semiconductor crystals A and B (figure 1.4a)? If both materials have the same 

crystal structure and similar lattice constant, one usually employs the envelope function 

approximation. We replace the usual Bloch function by: ψ(r) =N eik
┴

r
┴ χ(z) uk(r), where χ(z)  is 

an unknown function in the direction where the translational symmetry has been broken. 

Noteworthy, f(r)= eik
┴

r
┴ χ(z), varies slowly as compared to the unit cell function uk(r). Thus, it 

is often referred to as the envelope function, which is modulated inside each unit cell by uk. 

Next, one proceeds as in the homogeneous case, with the additional consideration that the 



integral ∫Ω f(r)u(r) dr3 ≈ 1/Ω ( ∫Ω u(r) dr3) ( ∫Ω f(r) dr3), with Ω standing for the crystal volume. 

For a one-band model, eventually this leads to the eigenvalue equation: 
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where V(z) is the spatial confinement potential defined by the alignment between the band 

gaps of materials A (εA) and B (εB). As shown in figure 1.4b, for a B/A/B heterostructure the 

potential can be that of a quantum well, and the eigenstates χ(z) the solutions particle in the 

box. Thus, semiconductor heterostructures provide the experimental realization of 

fundamental systems which had hitherto been but theoretical idealizations.  It is also possible 

to fabricate heterostructures where translational symmetry is broken in two and three 

directions of the space, which gives rise to quantum wires and quantum dots, respectively. Of 

particular interest are quantum dots, where a strong spatial confinement in the three directions 

leads to discrete energy levels, very much as in atoms. Because of this quantum dots are often 

referred to as artificial atoms or macroatoms. Unlike natural atoms, however, quantum dots 

can be built with different sizes, shapes and composition, so that the energy spectrum is 

designed at will. This has opened great prospects for fundamental research and technological 

developments over the last two decades. 

 
Figure 1.4. 
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2. MAGNETIC CONFINEMENT 
 

2.1. Overview: Lagrange equations with velocity-dependent potentials 

 
The concept of a Lagrangian L is introduced in order to reformulate classical Newton 

mechanics. In the case of conservative systems, the Lagrangian is defined as the velocity-

dependent kinetic energy T of the system minus its coordinate-dependent potential energy V, 

L=T-V, and the Lagrange equation,  

,0=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x
L

x
L

dt
d

&
 

can be seen as a rewriting of the Newton law 0)( =− Fpdt
d , as can be easily checked. When 

the potential does not depend on the velocity, kinetic momentum (velocity-derivative of the 

kinetic energy) and canonic momentum (velocity-derivative of the Lagrangian) coincide. In 

this case, the Hamiltonian (Lagrange transformation of the Lagrangian function) is just the 

total energy H=T+V. 

When the potentials also dependent on velocity, , kinetic )v,x(U  π  and canonic p  momenta 

are different and the Hamiltonian coincides with the kinetic energy. It can be check in the case 

of a particle in a magnetic field, described by the potential U )Av(e ⋅−=  

AB

, with A being the 

potential vector, related to the magnetic field by the equation ∧∇= . One can easily find 

that Aep  += π , and that the Hamiltonian can be written as .)2eA( pH −=
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2.2. Coulomb gauge and quantification 

 
We can realize that, as far as )(xχ  is a scalar potential, two vector functions  and )(xA

)()( xxA χ∇+ yield the same magnetic field (since 0)( =∇∧∇ xχ ). This means that we have 

some freedom to select the potential vector. Having in mind the transition to quantum 

mechanics, where momentum ( ∇− h i ) and coordinate do not commute, it is customary to 

select )(xχ  such that it yields a null the divergence of A  ( 0=⋅∇ A ). This is called the 

Coulomb gauge. Assuming this gauge, the quantification ( ∇−→ ip h , xx → ) of the 

Hamilton function yields 
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In the case of a uniform axial magnetic field, kBB
r

 0= , we can select a potential 



vector  and this equation turns into:  ],/xB,/yB[A 0 2 2 00−=
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2.3. Magnetic Confinement: Landau levels 

 
By introducing the notation mBe 2/ 0−=ω ,  the above equation can be rewritten as: 
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Since the two-dimensional harmonic oscillator Hamiltonian, , commutes with the z-

component of the angular momentum, 

HO
DĤ2

zL̂ , in addition to the kinetic energy along z, the 

energy of the system is just ω)1||),( 2( +++= MMMmE n , where ω  is proportional to the 

magnetic field. These are the so-called Landau levels of a free electron in a uniform magnetic 

field. As we see, the energy levels grow linearly without crossings as the magnetic field 

increases. 

 
2.4. Spatial and magnetic confinement in quantum dots 

 
When an additional, spatial confining potential co-exists with the magnetic confinement, the 

above Landau levels mix and we find out a competition between linear and the quadratic 

terms of the magnetic field. For example, the case of a spherical quantum dot in a 

homogeneous magnetic field is described by the following eigenvalue equation  
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We find a very different behaviour for short/large radius, owing to the  factor appearing in 

the second term of the above equation. As a result, for small radius the response to the 

magnetic field is atomic-like (just an energy splitting due to 

2ρ

BW μ−= , see figure 3.1a) while 

for larger systems one may envisage the formation of Landau levels for extremely large 

magnetic fields, where the magnetic confinement overpasses the spatial one –figure 3.1b-. 
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Figure 3.1 

 
2.5. Multiple-connected quantum systems: Aharonov-Bohm effect 

The response of a system with a multiply connected topology, as for example a quantum ring, 

is even more complex, showing level crossings as the magnetic field increases. This is related 

to the so-called Aharonov-Bhom effect. In figure 3.2 (from J. Planelles ,W. Jaskólski, and I. 

Aliaga, Phys. Rev. B 65 (2001) 033306) we show the two low-lying bands of a prototypical 

InAs quantum ring.  

 
Figure 3.2 

The most intriguing aspect of the Aharonov-Bhom effect is that these crossings can be 

predicted even in the case that the magnetic field pierces the inner hole of the ring only, i.e. no 

magnetic field acts on the ring section, the region where the electron is located. The 

mathematical reason comes from the fact that it is the potential vector and not the magnetic 

field itself that comes into the Hamiltonian, so that an electron can be influenced by the 

potentials even if no fields act upon it. The physical counterpart is a set of experimental 

observations that can only be understood as coming from this purely quantum effect without a 

classical correspondence. 

 

2.6. Lattices and magneto-translations: Hofstadter butterfly 

 
When one proceeds to calculate the energy structure of a two-dimensional periodic system 



pierced by an axial magnetic field, a fractal-like spectrum is obtained, which is referred to as 

Hofstadter butterfly (in honour to Douglas Hofstadter, which described it for the first time in 

Phys. Rev. B 14 (1976) 2239), see figure 3.3a.  

(a) (b)

 
Figure 3.3 

We may understand this fractal structure using the concept of magnetotranslation (E. Brown, 

Phys. Rev. 133 (1964) A1038). In the absence of magnetic field, the Bloch functions are 

simultaneously eigenfunctions of the Hamiltonian and the translation operator. In the presence 

of magnetic field, magnetotranslations commute with the Hamiltonian but the size of the 

magnetic unit cell (cell pierced by a flux unit) depends on the magnetic field. In order to get 

Bloch-like functions, spatial and magnetic unit cells must have a commensurate relation. So 

we meet a two-fold periodicity, spatial and magnetic. As we increase the magnetic field from 

zero, the magnetic unit cell in the direct space becomes extremely large (and then very small 

in the reciprocal space) thus producing the splitting the zero field band into a huge set of 

minibands (whose number and distribution depends on the magnetic field). As the magnetic 

flux on the spatial unit cell approaches unity, magnetic and spatial unit cells coincide and the 

system recover a unique band, as at B=0. 
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3. HANDS ON SESSION 
The aim of this session is to introduce the students to the task of identifying a system, 

translate it into a differential equation, numerically integrate it and plot the results. To this end 

we propose a set of elementary 1D/2D examples of increasing difficulty. The first and most 

simple case of determining the bottom of the bands in a quantum well (or equivalently, the 

energy spectrum of a 1D QD) is fully developed and used to introduce some key matlab 

commands that will be used in the later examples. Also some basic on differences finites to 

numerically integrate differential equations, choice of appropriate boundary conditions, 

building up appropriate matrix representation and further diagonalization are outlined. Then 

the rest of examples are sketched with some hints. 

 

Exercise 1. Write a code to calculate the electron energy spectrum of a 1D GaAs/AlGaAs QD 

as a function of the size. Consider GaAs effective mass, m*=0.05, all over the structure. 

Justify the assumed simplification. The GaAs/AlGaAs band off set amounts 0.25 eV. Assume 

a well width L=25nm. Repeat the calculations for L ranging in [5, 50] nm and plot a few low-

lying energies vs. L. Discuss the obtained results. 

 

Exercise 2. Write a code to  calculate the electron energy spectrum of two coupled 

GaAs/AlGaAs QDs as a function of their separation S. Plot the two lowest states for S=1 nm 

and S=10 nm and discuss the obtained results. 

 

Exercise 3. Write a code to calculate the electron energy spectrum of N=20 coupled 

GaAs/AlGaAs QDs as a function of their separation S. Plot the charge density of the n=1, 2 

and n=21, 22 states  for S=1 nm and L=5 nm. 

 

Exercise 4. Write a code to calculate the energies of an electron in a 2D GaAs/AlGaAs 

cylindrical quantum ring with inner radius Rin and outer radius Rout, subject to an axial 

magnetic field B. The system (ring) is made of GaAs. The surrounding matrix and inner hole 

of the ring is made of AlGaAs. Consider a finite width Lb for the surrounding AlGaAs matrix, 

Lb=10 nm, (i.e., assume that beyond of this distance the wave function is zero). Calculate the 

energies as a function of B in the range 0-20 T, both, for a structure with (Rin, Rout)=(0, 30) nm 

–i.e. a quantum disk- and for (3, 30) nm –a quantum ring-. Discuss the role of the linear and 

quadratic magnetic terms in each case. 
 


