Material de Laboratorio disponible

<-- Volver

Cantidad
TINI (Taylec)
Taylec TutorIO board 3
Taylec TINITutor board 3
1 Meg TINI micro-controller board 6
CAN (E/S) - Dismuntel
Remota 4ED/6SD/3EA 4
Remota 4ED/8SD relé/4EA/2SA 2
NV RAM y reloj en tiempo real para remota 2
Fuente de alimentación para remota 3
PC CAN ISA 1
PC CAN PCI 1
ibuttons (Dallas Semiconductor)
DS2430A 256-Bit EEPROM    [1] 2
DS2433 4Kbit EEPROM     [2] 2
DS2406 Dual Addressable Switch Plus 1Kbit Memory     [3] 30
DS2415 Time Chip     [4] 5
DS1820 Digital Thermometer    [5] 5
DS1821 Programmable Digital Thermostat    [6] 5
DS2450 Quad analog to digital converter      [7] 0
DS2890 Digital potentiometer    [8] 0
DS1920 Temperature ibutton      [9] 20
DS9097E serial port adapter      [10] 10
DS1402D-DR8 ibutton holder (serial port)      [11] 0
Material Vario (www.microcontroladores.com)
Sensor de Sonido MSE-S100       [12] 1
Sensor de Reflexión MSE-S110      [13] 5
Sensor ultrasónico de movimiento MSE-S120      [14] 1
Sensor de luz MSE-S130      [15] 5
Sensor I.R. de obstáculos MSE-S135      [16] 5
Medidor ultrasónico SRF04      [17] 2
Driver MSE-A100      [18] 1

[1]
The DS2430A is a 256-bit 1-Wire® EEPROM. Like all 1-Wire devices, the DS2430A contains a factory-lasered 64-bit registration number that consists of a unique 48-bit serial number, an 8-bit CRC, and an 8-bit family code (14h). The DS2430A also provides a 64-bit one-time programmable application register. The power to read and write the DS2430A is derived entirely from the 1-Wire communication line. Data is transferred serially via the 1-Wire protocol, which requires only a single data lead and a ground return. The 48-bit serial number that is factory-lasered into each DS2430A provides a guaranteed unique identity that allows for absolute traceability.
[2]
The DS2433 is a 4kb 1-Wire® EEPROM. Like all 1-Wire devices the DS2433 consists of a factory-lasered 64-bit ROM registration number that includes a unique 48-bit serial number, an 8-bit CRC, and an 8-bit family code (23h). The power to read and write the DS2433 is derived entirely from the 1-Wire communication line. The memory is organized as 16 pages of 256 bits each. Data is transferred serially through the 1-Wire protocol which requires only a single data lead and a ground return.
[3]
The DS2406 Dual Addressable Switch™ plus memory offers a simple way to remotely control a pair of open-drain transistors and to monitor the logic level at each transistor's output via the 1-Wire® bus for closed-loop control. Each DS2406 has its own 64-bit ROM registration number that is factory lasered into the chip to provide a guaranteed unique identity for absolute traceability. The device's 1024 bits of EPROM can be used as electronic label to store information such as switch function, physical location, and installation date. Communication with the DS2406 follows the standard Dallas Semiconductor 1-Wire protocol and can be accomplished with minimal hardware such as a single port pin of a microcontroller. Multiple DS2406 devices can reside on a common 1-Wire network and be operated independently of each other. Individual devices will respond to a conditional search command if they qualify for certain user-specified conditions, which include the state of the output transistor, the static logic level or a voltage transition at the transistor's output.
[4]
The DS2415 1-Wire® time chip offers a simple solution for storing and retrieving vital time information with minimal hardware. The DS2415 contains a unique, factory-lasered 64-bit ROM registration number and a real-time clock/calendar implemented as a binary counter. Only one pin is required for communication with the device. Utilizing a backup energy source, the data is nonvolatile and allows for stand-alone operation. The DS2415 features can be used to add functions such as calendar, time and date stamp, and logbook to any type of electronic device or embedded application that uses a microcontroller.
[5]
The DS18S20 is a digital thermometer featuring ±0.5°C accuracy over a -10°C to +85°C range. Data is read out over a 1-Wire® serial bus in 2's complement format with 9 bits of resolution.

The DS18S20 offers thermostatic functionality with over-temperature (TH) and under-temperature (TL) user-programmable set points stored in on-chip EEPROM. An internal flag is set when the measured temperature is greater than TH or less than TL. If thermostatic operation is not required, the two bytes of EEPROM reserved for TH and TL may be used for general-purpose nonvolatile storage.

Each DS18S20 features a unique and unchangeable 64-bit silicon serial number, which serves as the bus address for the sensor. This allows multiple DS18S20 devices to coexist on the same 1-Wire bus. The DS18S20 may be locally powered through a 3.0V to 5.5V supply, or power can be derived from the 1-Wire data line (parasite power).

The DS18S20 is offered in 3-pin TO-92 (DS18S20) and 150mil 8-pin SO (DS18S20Z) packages. In addition, the DS18S20 is available in a parasite-power only version, the DS18S20-PAR.

The DS18S20 is supported by the DS1701K evaluation kit.
[6]
The DS1821 can function as a digital thermometer or as a standalone thermostat with ±1°C accuracy over a 0°C to +85°C range. When used as a thermometer, data is read out over a 1-Wire® serial bus in 2's complement format with 8 bits of resolution. Higher resolution readings can be calculated using data from the DS1821 counter and slope accumulator registers.

For thermostatic use, the DS1821 has over-temperature (TH) and under-temperature (TL) user-programmable set points stored in a on-chip EEPROM. The two set points provide programmable thermostat hysteresis: the thermostat signal, which is multiplexed with data on the 1-Wire bus, is asserted when the measured temperature exceeds TH and it remains active until the temperature falls below TL. When using the DS1821 as a standalone thermostat, the TH and TL setpoints can be preprogrammed, and the DS1821 can be configured to automatically begin taking temperature measurements at power-up.

The DS1821 is offered in 3-pin PR-35 (DS1821) and 8-pin 208mil SO (DS1821S) packages.

The DS1821 is supported by the DS1701K evaluation kit.
[7]
The DS2450 1-Wire® quad A/D converter is based on a successive-approximation analog-to-digital converter (ADC) with a four-to-one analog multiplexer. Each input channel has its own register set to store the input voltage range, resolution, and alarm threshold values as well as flags to enable participation of the device in the conditional search if the input voltage leaves the specified range. Two alarm flags for each channel indicate if the voltage measured was too high or too low without requiring the bus master to do the comparison. Each A/D conversion is initiated by the bus master. A channel not used as analog input can serve as a digital open-drain output. After disabling the input the bus master can directly switch on or off the open-drain transistor at the selected channel. All device settings are stored in SRAM and kept nonvolatile while the device gets power either through the 1-Wire bus or through its VCC pin. After powering up, a power-on reset flag signals the bus master the need to restore the device settings before the regular operation can resume.
[8]
The DS2890 is a linear taper digitally controlled potentiometer with 256 wiper positions. Device operation, including wiper position, is controlled over the single contact 1-Wire® bus for the ultimate in electrical interface simplicity. With a wide 0-11 volt working voltage range for the potentiometer terminals, the DS2890 is ideal for a broad range of industrial and control applications. Potentiometer terminal voltage is independent of device supply voltage as well as the voltage applied to the other potentiometer terminals. Communication with the DS2890 follows the standard Dallas Semiconductor 1-Wire protocol and can be accomplished with minimal hardware such as a single port pin of a microcontroller. Multiple DS2890 devices can reside on a common 1-Wire bus and be operated independently of each other. Each DS2890 has its own unalterable 64-bit ROM registration number that is factory lasered into the chip. The registration number guarantees unique identification for absolute traceability and is used to address the device in a multi-drop 1-Wire Network environment. The DS2890 will respond to a 1-Wire conditional search command if the potentiometer wiper is set at the power-on default position. This feature enables the bus master to easily determine whether a potentiometer has gone through a power-on reset and needs to be re-configured with a required wiper position setting. The DS2890 supports two power modes: 1-Wire only mode in which device power is supplied parasitically from the 1-Wire bus or VDD mode where power is supplied from an external supply; when operating from VDD mode wiper resistance is reduced.
[9]
The DS1920 provides direct-to-digital 9-bit temperature readings over a range of -55°C to +100°C in 0.5° increments. The iButton® communicates with a processor using the 1-Wire® protocol through a hardware port interface. The port interface provides both the physical link and handles the communication protocols that enable the processor to access iButton resources with simple commands. Two bytes of EEPROM can be used either to set alarm triggers or for storing user data.

Armored in an iButton, the thermometer can measure temperatures in demanding environments. Like every other iButton, the DS1920 has a unique serial number. The 1-Wire interface reduces data output, address, and power to one line. A unique serial number allows multiple 1920s to share the same bus, with many sensors placed at different sites reporting to a single port on a processor. Multidropped DS1920s make the lowest-power temperature sensing network available inside buildings, equipment, or machinery and in process monitoring and control. With appropriate accessories the DS1920 easily attaches to an object or circuit board.
[10]
The DS9097 COM port adapter is a simple, low-cost passive adapter which performs RS-232C (±12V) level conversion, allowing an iButton® probe to be connected to the serial port of a computer so that a non-EPROM iButton can be read and written directly. It can also read all EPROM-based iButtons. The serial port must support a data transmission rate of 115.2kbps in order to create the 1-Wire® time slots correctly. Nearly all PCs support the required data rate and are fully compatible with the DS9097. Since an 8-bit character (6 data bits plus start and stop bit) on the RS-232 port operating at 115.2kbps is used to form a single 1-Wire time slot, the maximum effective 1-Wire transfer rate is 14.4kbps (regular speed). Details on the operation of the DS9097 including software examples are found in application note 74, Section V.

The DS9097E is an upgraded version of the DS9097 that is capable of supplying the 12 volts necessary to program the EPROM-based iButton products (DS198x Add-Only iButtons) in addition to reading and writing SRAM and EEPROM-based devices (DS199x, DS196x, DS197x). When combined with the appropriate software, the DS9097E can be used in a standalone mode where all of the programming current is supplied by the serial port itself. In this configuration, the maximum number of EPROM bits that can be programmed simultaneously is four on a typical serial port. For higher performance, the above mentioned 12V auxiliary supply can be plugged into the power jack on the DS9097E and with proper software enable the serial port to program up to eight EPROM bits simultaneously.
[11]
Using four basic types of connectors, RJ-11, iButton®, Touch-and-Hold Probe, and Blue Dot Receptor, the DS1402 series of MicroLAN cables provides connectivity for iButtons. The cables are designed to connect any COM-port adapter or parallel port adapter to any iButton. Both, the iButton probe cables and the Blue Dot receptor cables can touch any iButton, but can only hold the F5 version iButtons. The DS1402BR8 is the only cable that connects to the DS1401 iButton Holder. Applications of the DS1402-series MicroLAN cables range from software protection to handheld computers and MicroLANs.
[12]
Se trata de un sensor activado por sonido. Un micrófono recoge la señal de sonido o ruido ambiente. Esta señal es amplificada y, si se alcanza un determinado nivel o umbral, se produce un pulso lógico de disparo de unos 100 mS de duración y activo por flanco ascendente. Un potenciómetro de ajuste permite regular el nivel sonoro al que se desea se produzca la señal de disparo en la salida. De esta forma se puede ajustar la sensibilidad del circuito. El circuito en reposo (ausencia de ruido/sonido) mantiene la señal de salida a nivel lógico “0” permanente. El circuito dispone de un orificio que permite una flexible instalación y sujeción del mismo sobre cualquier tipo de estructura.
[13]
El sensor de reflexión MSE-S110 está basado en los populares CNY70 y están disponibles en versiones con 1 o 2 de estos dispositivos (MSE-S110.1 o MSE-S110.2). Cada dispositivo dispone de un emisor/receptor de luz IR. Cuando la luz se dispersa o es absorbida por una superficie oscura, la salida del correspondiente dispositivo, tras ser acondicionada, es de nivel “1”. Sin embargo, cuando la luz es reflejada por una superficie clara, se genera una señal lógica de nivel “0”.
[14]
Basado en los ultrasonidos, el sensor es capaz de detectar cualquier movimiento o obstáculo dentro de su radio de acción. Una cápsula ultrasónica emite una señal con una frecuencia en torno a los 40KHz. Cuando la señal rebota sobre un objeto, es captada por otra cápsula receptora. Tras amplificar y acondicionar la señal recibida, se genera un impulso lógico de salida por la conexión OUT (3) de la borna J1. Dicho pulso es activo por flanco ascendente y tiene una duración aproximada de 0.5 “.
[15]
Se trata de un dispositivo sensor de luz visible basado en el foto transistor BPW40. El circuito se alimenta con una tensión de +5Vcc. La variación de luz ambiente detectada por el foto transistor es acondicionada y amplificada para proporcionar a la salida una tensión variable entre 0,1 Vcc y 5Vcc en función de dicha variación. La tensión de salida se obtiene por la salida OUT (conexión 3 de la borna) y puede ser tratada de forma analógica o digital en los posteriores procesos de automatización y control. El dispositivo dispone de un orificio que permite una flexible instalación y sujeción del mismo sobre cualquier tipo de estructura.
[16]
El circuito MSE-S135 es un detector IR de obstáculos que detecta la presencia de un objeto sin contacto físico con el mismo. Consiste en un emisor/detector de luz infrarroja modulada. Esta característica lo hace prácticamente inmune a interferencias provocadas por otras fuentes de luz. Un diodo emisor emite una haz infrarrojo modulado a una frecuencia de 7.7 KHz. El rebote de dicho haz sobre un objeto, es captado por un foto transistor detector que acondiciona la señal recibida, compara si corresponde con la señal emitida y, en caso afirmativo, genera una señal de salida activa por flanco descendente. Si no se detecta ningún rebote de la señal emitida, la salida se mantiene en reposo, a nivel lógico “1”. El dispositivo dispone de un orificio que permite una flexible instalación y sujeción del mismo sobre cualquier tipo de estructura.
[17]
El módulo SRF04 consiste en un medidor ultrasónico de distancias y de bajo coste, desarrollado por la firma DEVANTECH Ltd. Es capaz de medir la distancia entre el módulo y un objeto cualquiera. El rango de medida va de 3cm a 3m y emplea una única tensión de alimentación de +5Vcc. Genera una señal de salida modulada cuya anchura determina la distancia medida o eco. Dicha señal oscila entre 100uS para una distancia de 1.7 cm y 18mS para una distancia de 310 cm.
[18]
Se trata de un driver de propósito general basado en el dispositivo L293B de la firma SGS-THOMSON. Consiste en 4 canales amplificadores totalmente independientes entre si. Cada canal es capaz de soportar corrientes de salida de 1 A con picos de hasta 2 A. Poseen una alta inmunidad al ruido, protección para sobre temperaturas y tensión de alimentación de las cargas separada de la tensión de alimentación de la lógica. La señal de entrada de cada canal es compatible con señales TTL. Las señales de salida disponen de los correspondientes diodos de absorción para las corrientes inversas que generan las cargas inductivas. Sus salidas pueden controlar y activar directamente relés, motores DC, motores paso a paso, cargas luminosas, sonoras, etc.