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Summary. We describe practical techniques for fitting stochastic models to spa-
tial point pattern data in the statistical package R. The techniques have been im-
plemented in our package spatstat in R. They are demonstrated on two example
datasets.

1 Introduction

This paper describes practical techniques for fitting stochastic models to spa-
tial point pattern data using the statistical language R. The techniques are
demonstrated with a detailed analysis of two real datasets.

We have implemented the techniques as a package spatstat in the R lan-
guage. Both spatstat and R are freely available from the R website [19].

Sections 2 and 3 introduce the spatstat package. Theory of point process
models is covered in Section 4, while Section 5 describes how to fit models in
spatstat, and Section 6 explains how to interpret the fitted models obtained
from the package. Models involving external covariates are discussed in Sec-
tion 7, and models for multitype point patterns in Section 8. Estimation of
irregular parameters is discussed in Section 9. Section 10 discusses formal
inference for models. Examples are analysed in Sections 11–12.

2 The spatstat Package

We assume the reader is conversant with basic ideas of spatial point pattern
analysis [28, 65] and with the R language [40, 38, 53].

Spatstat is a contributed R package for the analysis of spatial point pattern
data [4]. It contains facilities for data manipulation, tools for exploratory data
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analysis, convenient graphical facilities, tools to simulate a wide range of point
pattern models, versatile model-fitting capabilities, and model diagnostics. A
detailed introduction to spatstat has been provided in [4]. Here we give a brief
overview of the package.

2.1 Scope

Spatstat supports the following activities. Firstly basic manipulation of
point patterns is supported; a point pattern dataset can easily be created,
plotted, inspected, transformed and modified. Exploratory data analysis

is possible using summary functions such as the K function, pair correlation
function, empty space function, kernel-smoothed intensity maps, etc. (see e.g.
[28, 65]). A key feature of spatstat is its generic algorithm for parametric

model-fitting of spatial point process models to point pattern data. Models
may exhibit spatial inhomogeneity, interpoint interaction (of arbitrary order),
dependence on covariates, and interdependence between marks. Finally, sim-

ulation of point process models, including models fitted to data, is supported.
Figure 1 shows an example of a point pattern dataset which can be handled

by the package; it consists of points of two types (plotted as two different
symbols) and is observed within an irregular sampling region which has a
hole in it. The label or ‘mark’ attached to each point may be a categorical
variable, as in Fig. 1, or a continuous variable.

Fig. 1. Artificial example demonstrating the complexity of datasets which spatstat

can handle.

Point patterns analysed in spatstat may also be spatially inhomogeneous,
and may exhibit dependence on covariates. The package can deal with a variety
of covariate data structures. It will fit point process models which depend on
the covariates in a general way, and can also simulate such models.

2.2 Data Types in spatstat

A point pattern dataset is stored as a single ‘object’ X which may be plotted
simply by typing plot(X). Here spatstat uses the object-oriented features of
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R (“classes and methods”) to make it easy to manipulate, analyse, and plot
datasets.

The basic data types in spatstat are Point Patterns, Windows, and
Pixel Images. See Fig. 2. A point pattern is a dataset recording the spatial
locations of all ‘events’ or ‘individuals’ observed in a certain region. A window
is a region in two-dimensional space. It usually represents the ‘study area’.
A pixel image is an array of “brightness” values for each grid point in a
rectangular grid inside a certain region. It may contain covariate data (such
as a satellite image) or it may be the result of calculations (such as kernel
smoothing).

x

Fig. 2. A point pattern, a window, and a pixel image.

A point pattern is represented in spatstat by an object of the class "ppp". A
dataset in this format contains the coordinates of the points, optional ‘mark’
values attached to the points, and a description of the spatial region or ‘win-
dow’ in which the pattern was observed. Objects of class "ppp" can be created
using the function ppp, converted from other data using the function as.ppp,
or obtained in a variety of other ways.

In our current implementation, the mark attached to each point must be
a single value (which may be numeric, character, complex, logical, or factor).
Figure 3(a) shows an example where the mark is a positive real number. A
multitype point pattern is represented as a marked point pattern for which the
mark is a categorical variable (a “factor” in R). Figure 3(b) shows an example
where the mark is a categorical variable with two levels (i.e. a bivariate point
pattern).

If X is a point pattern object then typing X or print(X) will print a short
description of the point pattern; summary(X)will print a longer summary; and
plot(X) will generate a plot of the point pattern on a correct scale. Numerous
facilities are available for manipulating point pattern datasets.

3 Data Analysis in spatstat

3.1 Data Input

Point pattern datasets (objects of class "ppp") can be entered into spatstat

in various ways. We may create them from raw data using the function ppp,
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(a) (b)

Fig. 3. Examples of marked point patterns. (a) continuous marks. Mark values (tree
diameters) represented as radii of circles. The Longleaf Pines dataset, available as
longleaf. (b) categorical marks. Mark values (cell types) represented as different
graphical symbols. Hughes’ amacrine cell dataset, available as amacrine.

convert data from other formats (including other packages) using as.ppp, read
data from a file using scanpp, manipulate existing point pattern objects using
a variety of tools, or generate a random pattern using one of the simulation
routines.

Suppose, for example, that we have data for a point pattern observed in
the rectangle [0, 10] × [0, 4]. Assume the Cartesian coordinates of the points
are stored in R as vectors x and y. Then the command

X <- ppp(x, y, c(0,10), c(0,4))

creates a point pattern object containing this information.

3.2 Initial Inspection of Data

Chatfield [15] emphasises the importance of careful initial inspection of data.
The same principles apply to point pattern data. A point pattern dataset
should be inspected for the following: omission of data points; transcription
errors; data file format violations; incorrect scaling of the coordinates; flipping
of the axes; errors in delimiting the boundary; errors in inclusion/exclusion
of points near the boundary; incorrect interpretation of the data type of the
marks (e.g. categorical or continuous); inconsistency with plots of the same
data in the original source publication; coarse rounding of the Cartesian co-
ordinates; use of values such as 99 or −1 to indicate a missing value; incorrect
software translation of the levels of a factor; and duplicated points.

Inspection can be accomplished in spatstat mainly with the commands
plot, print, summary, identify, hist (to examine values of the Cartesian
coordinates) and nndist (to detect duplicated points).
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3.3 Exploratory Data Analysis

Before stochastic modelling of a point pattern dataset is attempted, and cer-
tainly before any formal hypothesis testing is contemplated, the data should
be subjected to exploratory data analysis. General principles of EDA are out-
lined in [15, 18, 24, 68, 72]. Numerous tools for exploratory analysis of spatial
point pattern data are surveyed in [22, 26, 28, 56, 58, 64, 65, 72].

In particular, the assumption of stationarity (‘spatial homogeneity’) is an
essential requirement for many of the classical methods for spatial point pat-
tern analysis [22, 26, 28, 55, 56, 58, 64, 65]. It seems clear that many real
point patterns cannot be described as stationary [51, 66], and the use of the
classical methods on such data would be invalid. Hence it is extremely impor-
tant that the homogeneity of a point pattern dataset be critically evaluated.
Techniques for analysing nonstationary (‘spatially inhomogeneous’) patterns
are less developed [3, 49, 50, 51, 52, 66].

An exploratory analysis should typically begin with an assessment of spa-
tial inhomogeneity using tools such as the kernel smoothed estimate of inten-
sity [25] (available in spatstat as ksmooth.ppp), or LISA (Local Indicators of
Spatial Association) methods [1, 21, 20]. The dataset could also be partitioned
manually using the subset operator [ or the commands cut and split.

If a simple form of spatial inhomogeneity (such as a gradient from left
to right) is suspected, this trend can be fitted using parametric methods as
described in Section 6.

If the data are judged to be spatially homogeneous, the next step would
be exploratory analysis using standard summary statistics such as Ripley’s
K function. A wide choice of summary statistics is now available [22, 28, 58,
65, 64]. In spatstat the available choices include Kest, which estimates the K
function [55, 56],[65, Chapter 15]; Fest, estimating the empty space function
F [56, 58] also known as the contact distribution function [65, Chapter 15]
and point-event distance function [26, Sect. 2.4]; Gest, estimating the nearest
neighbour distance distribution function G [26, Sect. 2.3],[65, Chapter 15];
pcf, the pair correlation function [65, Chapter 15]; Jest, the function J(r) =
(1−G(r))/(1−F (r)) of [70]; Kmeasure, the reduced second moment measure
[9, 10], [65, pp. 245, 247], [64]; and analogues of these functions for multitype
and marked point patterns [71].

However if the data are judged to be spatially inhomogeneous, then at
present there is limited scope for further exploratory analysis. One exception
is the inhomogeneous K function [3] implemented in spatstat as Kinhom.

4 Point Process Models

The spatstat package can fit parametric models of spatial point processes to
point pattern data. This section describes the relevant class of models, and
the next section explains how to fit them using spatstat.
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A typical realisation of a point pattern X in the bounded region W ⊂ R
2

will be denoted
x = {x1, . . . , xn}

where xi ∈ W are the individual points of the process, and the total number
of points n ≥ 0 is not fixed.

4.1 Formulation of Models

The point process models fitted in spatstat are Gibbs point processes, cf.
[5, 48, 69]. The scope of possible models is very wide: they may include spatial
trend, dependence on covariates, interpoint interactions of any order (i.e. we
are not restricted to pairwise interactions), and dependence on marks.

Each model will be specified in terms of its conditional intensity rather
than its likelihood. This turns out to be an intuitively appealing way to for-
mulate point process models, as well as being necessary for technical reasons.

The (Papangelou) conditional intensity is a function λ(u,x) of spatial lo-
cation u ∈ W and of the entire point pattern x. Roughly speaking, if we
consider an infinitesimal region around the point u of area du, then the condi-
tional probability that the point process contains a point in this infinitesimal
region, given the position of all points outside this region, is λ(u,x) du. See
[5, 17] and the excellent surveys by Ripley [58, 59].

For example, the homogeneous Poisson process (complete spatial random-
ness, CSR) has conditional intensity

λ(u,x) = β (1)

where β is the intensity (expected number of points per unit area). The in-
homogeneous Poisson process with local intensity function β(u), u ∈ R

2, has
conditional intensity

λ(u,x) = β(u). (2)

The Strauss process, a simple model of dependence between points, has con-
ditional intensity

λ(u,x) = βγt(u,x) (3)

where t(u,x) is the number of points of the pattern x that lie within a distance
r of the location u. Here γ is the interaction parameter, satisfying 0 ≤ γ ≤ 1,
and r > 0 is the interaction radius.

The conditional intensity is a useful modelling tool because its functional
form has a straightforward interpretation. The simplest form is a constant,
λ(u,x) ≡ β, which corresponds to “complete spatial randomness” (a uni-
form Poisson process). In most applications, this would be the null model.
A conditional intensity λ(u,x) which depends only on the location u, say
λ(u,x) = β(u), corresponds to an inhomogeneous Poisson process with inten-
sity function β(u). In this case the functional form of β(u) indicates the type
of inhomogeneity (or “spatial trend”).
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A conditional intensity λ(u,x) which depends on the point pattern x,
as well as on the location u, corresponds to a point process which exhibits
stochastic dependence between points. For example, in the Strauss process
(3) with γ < 1, dependence between points is reflected in the fact that the
conditional probability of finding a point of the process at the location u is
reduced if other points of the process are present within a distance r. In the
special case γ = 0, the conditional probability of finding a point at u is zero if
there are any other points of the process within a distance r of this location.

4.2 Scope of Models

Our technique [5] fits any model for which the conditional intensity is of the
loglinear form

λ(u,x) = exp(ψTB(u) + ϕTC(u,x)) (4)

where θ = (ψ, ϕ) are the parameters to be estimated. Both ψ and ϕ may be
vectors of any dimension, corresponding to the dimensions of the vector-value
statistics B(u) and C(u,x) respectively.

The term B(u) depends only on the spatial location u, so it repre-
sents “spatial trend” or spatial covariate effects. The term C(u,x) represents
“stochastic interactions” or dependence between the points of the random
point process. For example C(u,x) is absent if the model is a Poisson process.

Gibbs models may require reparametrisation in order to conform to (4).
For example, the Strauss process conditional intensity (3) satisfies (4) if we
set B(u) ≡ 1 and C(u,x) = t(u,x), and take the parameters to be ψ = logβ
and ϕ = log γ.

In practice there is an additional constraint that the terms B(u) and
C(u,x) must be implemented in software. Some point process models which
belong to the class of Gibbs processes have a conditional intensity which is
difficult to evaluate. Notable examples include Cox processes [8]. For these
models, other approaches should be used [48].

4.3 Model-fitting Algorithm

Our software currently fits models by the method of maximum pseudolikeli-
hood (in Besag’s sense [13]), using a computational device developed for Pois-
son models by Berman & Turner [12] which we adapted to pseudolikelihoods
of general Gibbs point processes in [5]. Although maximum pseudolikelihood
may be statistically inefficient [42, 43], it is adequate in many practical appli-
cations [60] and it has the virtue that we can implement it in software with
great generality. Future versions of spatstat will implement the Huang-Ogata
improvement to maximum pseudolikelihood [39] which is believed to be highly
efficient.

Let the point pattern dataset x consist of n points x1, . . . , xn in a spatial
region W ⊆ R

d. Consider a point process model governed by a parameter
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θ and having conditional intensity λθ(u,x). The pseudolikelihood [13] of the
model is

PL(θ;x) =
n∏

i=1

λθ(xi;x) exp

(
−

∫

W

λθ(u;x) du

)
(5)

The maximum pseudolikelihood estimate of θ is the value which maximises
PL(θ;x). Now discretise the integral in (5) to obtain

∫

W

λθ(u;x) du ≈

m∑

j=1

λθ(uj ;x)wj . (6)

where uj ∈W are ‘quadrature points’ and wj ≥ 0 the associated ‘quadrature
weights’ for j = 1, . . . ,m. The quadrature scheme should be chosen so that
(6) is a good approximation.

The Berman-Turner [12] device involves choosing a set of quadrature
points {uj} which includes all the data points xi as well as some other
(“dummy”) points. Let zj be the indicator which equals 1 if uj is a data
point, and 0 if it is a dummy point. Then the logarithm of the pseudolikeli-
hood can be approximated by

log PL(θ;x) ≈

m∑

j=1

[zj logλθ(uj ;x) − wjλθ(uj ;x)]

=

m∑

j=1

wj(yj logλj − λj) (7)

where yj = zj/wj and λj = λθ(uj ,x). The key to the Berman-Turner device
is to recognise that the right hand side of (7) has the same functional form as
the log likelihood of m independent Poisson random variables Yj with means
λj and responses yj . This enables us to maximise the pseudolikelihood using
standard statistical software for fitting generalised linear models.

Given a point pattern dataset and a model of the form (4), our algorithm
constructs a suitable quadrature scheme {(uj , wj)}, evaluates the vector val-
ued sufficient statistic sj = (B(uj), C(uj ,x)), forms the indicator variable zj
and the pseudo-response yj = zj/wj , then calls standard R software to fit the
Poisson loglinear regression model Yj ∼ Poisson(λj) where logλj = θsj . The

fitted coefficient vector θ̂ given by this software is returned as the maximum
pseudolikelihood estimate of θ. For further explanation see [5]. Advantages of
using existing software to compute the fitted coefficients include its numerical
stability, reliability, and most of all, its flexibility.

5 Model-fitting in spatstat

5.1 Overview

The model-fitting function is called ppm and is strongly analogous to lm or
glm. In simple usage, it is called in the form
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ppm(X, trend, interaction, ...)

where X is the point pattern dataset, trend describes the spatial trend (the
function B(u) in equation (4)) and interaction describes the stochastic de-
pendence between points in the pattern (the function C(u,x) in equation (4)).
Other arguments to ppm may provide covariates, select edge corrections, and
control the fitting algorithm.

For example

ppm(X, ~1, Strauss(r=0.1), ....)

fits the stationary Strauss process (3) with interaction radius r = 0.1. The
spatial trend formula ~1 is a constant, meaning the process is stationary. The
argument Strauss(r=0.1) is an object representing the interpoint interaction
structure of the Strauss process with interaction radius r = 0.1.

Similarly

ppm(X, ~x + y, Poisson())

fits the non-stationary Poisson process with a loglinear intensity of the form

β(x, y) = exp(θ0 + θ1x+ θ2y)

where θ0, θ1, θ2 are (scalar) parameters to be fitted, and x, y are the Cartesian
coordinates.

5.2 Spatial Trend Terms

The trend argument of ppm describes any spatial trend and covariate effects.
It must be a formula expression in the R language, and serves a role analogous
to the formula for the linear predictor in a generalised linear model. See e.g.
[72, sect 6.2].

The right hand side of trend specifies the function B(u) in equation (4) fol-
lowing the standard R syntax for a linear predictor. The terms in the formula
may include the reserved names x, y for the Cartesian coordinates. Spatial
covariates may also appear in the trend formula as we explain in Section 7.

Effectively, the function B(u) in (4) is treated as the ‘systematic’ compo-
nent of the model. Note that the link function is always the logarithm, so the
model formula in a ppm call is always a description of the logarithm of the
conditional intensity.

The default trend formula is ~1, which indicates B(u) ≡ 1, corresponding
to a process without spatial trend or covariate effects. The formula ~x indicates
the vector statistic B((x, y)) = (1, x) corresponding to a spatial trend of the
form exp(ψB((x, y))) = exp(α + βx), where α, β are coefficient parameters
to be estimated, while ~x + y indicates B((x, y)) = (1, x, y) corresponding to
exp(ψB((x, y))) = exp(α + βx+ γy).
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A wide variety of model terms can easily be constructed from the Cartesian
coordinates. For example

ppm(X, ~ ifelse(x > 2, 0, 1), Poisson())

fits an inhomogeneous Poisson process with different, constant intensities on
each side of the line x = 2.

spatstat provides a function polynom which generates polynomials in 1 or
2 variables. For example

~ polynom(x, y, 2)

represents a polynomial of order 2 in the Cartesian coordinates x and y. This
would give a “log-quadratic” spatial trend.3

Similarly

~ harmonic(x, y, 2)

represents the most general harmonic polynomial of order 2 in x and y.
Other possibilities include B-splines and smoothing splines, fitted with bs

and s respectively. These terms introduce smoothing penalties, and thus pro-
vide an implementation of “penalised maximum pseudolikelihood” estimation
(cf. [30]).

The special term offset can also be used in the trend formula. It has the
same role in ppm as it does in other model-fitting functions, namely to add
to the linear predictor a term which is not associated with a parameter. For
example

~ offset(x)

will fit the model with log trend β + x where β is the only parameter to be
estimated.

Observed spatial covariates may also be included in the trend formula; see
Section 7 below.

5.3 Interaction Terms

The dependence structure or ‘interpoint interaction’ in a point process model
is determined by the function C(u,x) in (4). This term is specified by the
interaction argument of ppm, which is strongly analogous to the family

argument to glm. Thus, interpoint interaction is regarded as a “distributional”
component of the point process model, analogous to the distribution family
in a generalised linear model.

The interaction argument is an object of a special class "interact".
The user creates such objects using specialised spatstat functions, similar to
those which create the family argument to glm. For example, the command

3 We caution against using the standard function poly for the same purpose here.
For a model formula containing poly, prediction of the fitted model can be erro-
neous, for reasons which are well-known to R users. The function polynom pro-
vided in spatstat does not exhibit this problem.
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Strauss(r=0.1)

will create an object of class "interact" representing the interaction function
C(u,x) for the Strauss process (3) with interaction radius r. This object is
then passed to the model-fitting function ppm, usually in the direct form

ppm(cells, ~1, Strauss(r=0.1))

The following functions are supplied for creating interpoint interaction struc-
tures; details of these models can be consulted in [5].

Poisson . . . . . . . . . . . Poisson process
Strauss . . . . . . . . . . . Strauss process
StraussHard . . . . . . Strauss process with a hard core
Softcore . . . . . . . . . . Pairwise soft core interaction
PairPiece . . . . . . . . Pairwise interaction, step function potential
DiggleGratton . . . Diggle-Gratton potential
LennardJones . . . . Lennard-Jones potential
Geyer . . . . . . . . . . . . . Geyer’s saturation process
OrdThresh . . . . . . . . Ord’s process, threshold on cell area

Note that ppm estimates only the “canonical” parameters of a point process
model. These are parameters θ such that the conditional intensity is log-
linear in θ, as in equation (4). Other so-called “irregular” parameters (such
as the interaction radius r of the Strauss process) cannot be estimated by
the Berman-Turner device, and their values must be specified a priori, as
arguments to the interaction function. Estimation of irregular parameters is
discussed in Section 9.

For more advanced use, the following functions will accept “user-defined
potentials” in the form of an arbitrary R language function. They effectively
allow arbitrary point process models of these three classes.

Pairwise .. . . Pairwise interaction, user-supplied potential
Ord . . . . . . . . . . Ord model, user-supplied potential
Saturated. . . Saturated pairwise model, user-supplied potential

6 Fitted Models

The value returned by ppm is a “fitted point process model” of class "ppm". It
can be stored, inspected, plotted, predicted and updated. The following would
be typical usage:

fit <- ppm(X, ~1, Strauss(r=0.1), ...)

fit

plot(fit)

pf <- predict(fit)

coef(fit)
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Methods are provided for the following generic operations applied to "ppm"

objects:
print Print basic information
summary Print extensive summary information
coef Extract fitted model coefficients
plot Plot fitted intensity
fitted Compute fitted conditional intensity or trend at data points
predict Compute predictions (spatial trend, conditional intensity)
update Update the fit

Printing the fitted object fit will produce text output describing the fitted
model. Plotting the object will display the spatial trend and the conditional
intensity, as perspective plots, contour plots and image plots.

6.1 Interpretation of Fitted Coefficients

The easiest way to interpret a fitted point process model is to print it at the
terminal. The print method attempts to produce a comprehensible descrip-
tion. For example,

> ppm(swedishpines, ~1, Strauss(7))

Stationary Strauss process

First order term:

beta

0.01823799

Interaction: Strauss process

interaction distance: 7

Fitted interaction parameter gamma:

[1] 0.2472

Thus the fitted model is the stationary Strauss process (3) with parameters
β = 0.01823799 and γ = 0.2472.

Alternatively the coefficients of the fitted model may be extracted using
coef. These should be interpreted as the canonical parameters θ = (ψ, ϕ)
appearing in (4). For example

> u <- ppm(swedishpines, ~1, Strauss(7))

> coef(u)

(Intercept) Interaction

-4.004248 -1.397759

Comparing (4) with (3) we see that the usual parameters β, γ of the Strauss
process are β = expψ and γ = expϕ, so typing

> exp(coef(u))

(Intercept) Interaction

0.01823799 0.24715026
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shows that the fitted parameters are β = 0.0182 and γ = 0.2472.
If the model includes a spatial trend, then the fitted canonical coefficients

of the trend will be presented using the standard R conventions. For example

> ppm(swedishpines, ~x)

Nonstationary Poisson process

Trend formula: ~x

Fitted coefficients for trend formula:

(Intercept) x

-5.13707319 0.00462614

indicates that the fitted model is a Poisson process with intensity function

β((x, y) = exp(−5.13707319 + 0.00462614x).

In more complex models, the interpretation of the fitted coefficients may de-
pend on the choice of contrasts for the coefficients of linear models. For
example, if the treatment contrasts [72, sect 6.2] are in force, then a model
involving a factor will be printed as follows:

> ppm(swedishpines, ~factor(ifelse(x < 50, "left", "right")))

Nonstationary Poisson process

Trend formula: ~factor(ifelse(x < 50, "left", "right"))

Fitted coefficients for trend formula:

(Intercept)

-5.075

factor(ifelse(x < 50, "left", "right"))right

0.331

The explanatory variable is a factor with two levels, left and right. By de-
fault the levels are sorted alphabetically. Since we are using the treatment con-
trasts, the value labelled “(Intercept)” is the fitted coefficient for the first level
(left), while the value labelled “right” is the estimated treatment contrast
(to be added to the intercept) for the level right. This indicates that the fitted
model is a Poisson process with intensity exp(−5.075) = 0.00625 on the left
half of the dividing line x = 50, and intensity exp(−5.075 + 0.331) = 0.00871
on the right side.

6.2 Invalid Models

For some values of the parameters, a point process model with conditional
intensity (4) may be ‘invalid’ or ‘undefined’, in the sense that the correspond-
ing probability density is not integrable. For example, the Strauss process (3)
is defined only for 0 ≤ γ ≤ 1 (equivalently for ϕ ≤ 0); the density is not
integrable if γ > 1, as famously announced in [44].

A point process model fitted by ppm may sometimes be invalid in this sense.
For example, a fitted Strauss process model may sometimes have a value
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of γ greater than 1. This happens because, in the Berman-Turner device,
the conditional intensity (4) is treated as if it were the mean in a Poisson
loglinear regression model. The latter model is well-defined for all values of the
linear predictor, so the software does not constrain the values of the canonical
parameters ψ, ϕ in (4).

The spatstat package has internal procedures for deciding whether a fitted
model is valid, and for mapping or ‘projecting’ an invalid model to the nearest
valid model. Currently these procedures are invoked only when we simulate a
realisation of the fitted model. They are not invoked when a model is printed
or when it is returned from ppm, so that the printed output from ppm may
represent an invalid model.

6.3 Predicting and Plotting a Fitted Model

The predict method for a fitted point process model computes either the
fitted spatial trend

τ(u) = exp(ψ̂B(u)) (8)

or the fitted conditional intensity

λ �

θ
(u,x) = exp(ψ̂B(u) + ϕ̂C(u,x)) (9)

at arbitrary locations u. Note that x is always taken to be the observed data
pattern to which the model was fitted.

The default behaviour is to produce a pixel image of both trend and condi-
tional intensity, where these are nontrivial. A typical example is the following:

data(cells)

m <- ppm(cells,~polynom(x,y,2),Strauss(0.05), rbord=0.05)

trend <- predict(m,type="trend",ngrid=100)

cif <- predict(m,type="cif",ngrid=100)

The resulting objects trend and cif are pixel images. One could then plot
the resulting surfaces with calls like

persp(trend)

persp(cif, theta=-30,phi=40,d=4,ticktype="detailed",zlab="z")

We caution again that the result of predict may be incorrect if the trend
formula of the point process model contains one of the functions poly, bs, lo,
or ns.

The plot method (plot.ppm) will take a fitted point process model and
plot the trend and/or the conditional intensity. By default this surface is
calculated at a 40 × 40 grid of points on the (enclosing rectangle of) the
observation window. The plots may be produced as perspective plots, images,
or contour plots. For example

plot(fit,cif=FALSE,how="persp")

will generate a perspective plot of the fitted trend, where fit is the fitted
model.
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Fig. 4. Contour plot of fitted log-cubic trend for Longleaf Pines data (locations
only) obtained using plot.ppm.

7 Models with Covariates

In order to model the dependence of a point pattern on a spatial covariate,
there are several requirements. First, the covariate must be a quantity Z(u)
observable (in principle) at each location u in the window (e.g. altitude, soil
pH, or distance to another spatial pattern). There may be several such co-
variates, and they may be continuous valued or factors. Second, the values
Z(xi) of Z at each point of the data point pattern must be available. Thirdly,
the values Z(u) at some other points u in the window must be available. The
accuracy of the algorithm depends on the number of these additional points
and on their spatial arrangement. For a good approximation to the pseudo-
likelihood, the density of the additional points should be high throughout the
window.

The argument covariates to the function ppm specifies the values of the
spatial covariates. It may be either a data frame or a list of pixel images.

(a) If covariates is a list of pixel images, then each image is assumed to
contain the values of a spatial covariate at a fine grid of spatial locations.
The names of the list entries should be the names of the covariates used
in the trend formula when you call ppm.

(b) If covariates is a data frame, then the ith row of the data frame is
expected to contain the covariate values for the ith ‘quadrature point’ (see
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below). The column names of the data frame should be the names of the
covariates used in the trend formula when you call ppm.

7.1 Covariates in a List of Images

The format (a), in which covariates is a list of images, would typically be
used when the covariate values are computed from other data.
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Fig. 5. The Chorley-Ribble data [27]. Cases of cancer of the larynx (•) and lung (+)
in the Chorley-Ribble region of Lancashire, England, and the location of a disused
industrial incinerator (⊕).

For example, Fig. 5 shows a spatial epidemiological dataset containing
a point pattern X of disease cases, and another point pattern Y of control
cases. We want to model X as a point process with intensity proportional to
the local density % of the susceptible population. We estimate % by taking a
kernel-smoothed estimate of the intensity of Y. Thus

rho.hat <- ksmooth.ppp(Y, sigma=1.2)

ppm(X, ~offset(log(rho)), covariates=list(rho=rho.hat))

The first line computes the values of the kernel-smoothed intensity estimate
at a fine grid of pixels, and stores them in the pixel image object rho.hat

(plotted in Fig. 6). The second line fits the Poisson process model with log
intensity

logλ(u) = ψ + log %(u) (10)

where ψ is an unknown parameter; that is, it fits the Poisson model with
intensity

λ(u) = µ %(u) (11)
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where µ = eψ is the only parameter to be estimated. Note that covariates

must be a list, even though there is only one covariate. The variable name
rho in the model formula must match the name rho in the list.
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Fig. 6. Kernel smoothed intensity estimate
�

%(u) of the lung cancer data from Fig. 5,
which serves as a spatial covariate for modelling the laryngeal cancer data.

Typical output is as follows:

> ppm(X, ~offset(log(rho)), Poisson(), data=list(rho=rho.hat))

Nonstationary Poisson process

Trend formula: ~offset(log(rho))

Fitted coefficients for trend formula:

(Intercept)

-2.889

This indicates that the estimate of the parameter ψ in (10) is ψ̂ = −2.889.
Equivalently the estimate of µ in (11) is µ̂ = e−2.889 = 0.056.

More complex models may be fitted to explore other effects by adding
terms to the trend formula. For example

ppm(X, ~ x + offset(log(rho)), data=list(rho=rho.hat))

would fit a nonstationary Poisson model with intensity

β((x, y)) = eψ+ϕx%((x, y)).

Covariates represented by pixel images in spatstat may have values that are
numerical, complex, logical, or character strings. Unfortunately a pixel image
in spatstat cannot have categorical (factor) values, because R refuses to create
a factor-valued matrix. In order to represent a categorical variate as a pixel
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image, the categorical values should be encoded as integers (for efficiency’s
sake) and assigned to an integer-valued pixel image. Then the model formula
should invoke the factor command on this image. For example if fim is an
image with integer values which represent levels of a factor, then

ppm(X, ~factor(f), Poisson(), covariates=list(f=fim))

fits the nonstationary Poisson process with an intensity that depends on the
levels of this factor. Care must be taken to ensure the correct interpretation
of the factor levels [72, p. 22 ff.].

7.2 Covariates in a Data Frame

Typically we would use the data frame format (b) if the values of the spatial
covariates can only be observed at certain locations. We need to force ppm to
use these locations to fit the model. That is, these locations must be used as
the quadrature points uj in the Berman-Turner approximation (6).

The function ppm may be called in the form

ppm(Q, trend, interaction, ...)

where Q is a ‘quadrature scheme’ and the other arguments are unchanged. A
quadrature scheme in spatstat is an object of a special class "quad" which
comprises both ‘data points’ (the points of the observed point pattern) and
‘dummy points’ (some other locations in the window). It is usually created
using the function quadscheme.

In the present context we will need to create a quadrature scheme based
on the spatial locations where the covariate Z has been observed. Then the
values of the covariate at these locations are passed to ppm through the data
frame covariates.

For example, suppose that X is the observed point pattern and we are
trying to model the effect of soil acidity (pH). Suppose we have measured the
values of soil pH at the points xi of the point pattern, and stored them in a
vector XpH. Suppose we have measured soil pH at some other locations u in
the window, and stored the results in a data frame U with columns x, y, pH.
Then do as follows:

Q <- quadscheme(data=X, dummy=list(x=U$x, y=U$y))

df <- data.frame(pH=c(XpH, U$pH))

Then the rows of the data frame df correspond to the quadrature points in
the quadrature scheme Q. To fit just the effect of pH, we type

ppm(Q, ~ pH, Poisson(), covariates=df)

where the term pH in the formula pH agrees with the column label pH in the
argument covariates = df. This will fit an inhomogeneous Poisson process
with intensity that is a loglinear function of soil pH. We could can also try
(say)
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ppm(Q, ~ pH, Strauss(r=1), covariates=df)

ppm(Q, ~ factor(pH > 7), Poisson(), covariates=df)

ppm(Q, ~ polynom(x, 2) * factor(pH > 7), covariates=df)

8 Fitting Models to Multitype Point Patterns

The function ppm will also fit models to multitype point patterns. A multitype
point pattern is a point pattern in which the points are each classified into
one of a finite number of possible types (e.g. species, colours, on/off states). In
spatstat a multitype point pattern is represented by a "ppp" object X whose
marks are a factor. Fig. 3(b) shows an example.

Currently, ppm will not fit models to a marked point pattern if the marks
are not a factor.

8.1 Conditional Intensity

A multitype point process in a region W ⊂ R
2, with a set M of pos-

sible types, may be regarded as a point process in W × M. Let y =
{(x1,m1), . . . , (xn,mn)} denote a typical realisation of the process, where
xi ∈ W are the locations and mi ∈ M the corresponding marks (types).

The conditional intensity is now of the form λ((u,m),y), where u ∈ W
and m ∈ M. It has the interpretation that λ((u,m),y) du is the conditional
probability of finding a point of type m in an infinitesimal neighbourhood of
the point u, given that the rest of the process coincides with y.

This introduces some subtleties. A conditional intensity function which is
constant,

λ((u,m),y) = β (12)

corresponds to a process in which the points of each typem ∈ M constitute
a uniform Poisson process with intensity β. By standard properties of the
Poisson process [45], this is equivalent to a marked Poisson process of total
intensity Mβ (where M is the number of possible types M = |M|) in which
the points have independent random marks, with equal probability 1/M for
each possible type.

A conditional intensity function which depends only on the marks,

λ((u,m),y) = βm (13)

where βm, m ∈ M are constants, is a marked Poisson process of total inten-
sity µ =

∑
m βm, in which the points have independent random marks, with

probability pm = βm/µ for type m.
The most general multitype Poisson process has conditional intensity

λ((u,m),y) = βm(u) (14)
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where βm(u),m ∈ M are arbitrary nonnegative integrable functions. This
process has total intensity µ(u) =

∑
m βm(u). The marks are independent

but not identically distributed: a point at location u has conditional mark
distribution pm(u) = βm(u)/µ(u) for m ∈ M.

8.2 Multitype Models

Trend Component

In order to represent the dependence of the trend on the marks, the trend
formula passed to ppm may involve the reserved name marks.

The trend formula ~1 states that the trend is constant and does not depend
on the marks, as in (12). The formula ~marks indicates that there is a separate,
constant intensity for each possible mark, as in (13). If a uniform multitype
Poisson process is to be fitted to data, the usual intention is to allow for
different intensities for each mark, so the appropriate call would be

ppm(X, ~ marks, Poisson())

The result of fitting this model to the data in Fig. 3(b) yields the following
output.

Stationary multitype Poisson process

Possible marks: off on

Intensity: Trend formula: ~marks

Fitted intensities:

beta_off beta_on

88.68302 94.92830

This indicates that the fitted model is a multitype Poisson process with in-
tensities 88.7 and 94.9 for the points of type “off” and “on” respectively.

In more elaborate cases, the trend formula may involve both the marks
and the spatial locations or spatial covariates. For example the trend for-
mula ~marks + polynom(x,y,2) signifies that the first order trend is a log-
quadratic function of the Cartesian coordinates, multiplied by a constant fac-
tor depending on the mark. The formulae

~ marks * polynom(x,2)

~ marks + marks:polynom(x,2)

both specify that, for each mark, the first order trend is a different log-
quadratic function of the Cartesian coordinates. The second form looks
“wrong” since it includes a “marks by polynom” interaction without hav-
ing polynom in the model, but since polynom is a covariate rather than a
factor this is is allowed, and makes perfectly good sense. As a result the two
foregoing models are in fact mathematically equivalent. However, the fitted
model objects will give slightly different output.
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For example, the first model ~marks * polynom(x,2) fitted to the data
in Fig. 3(b) gives the following output (assuming options("contrasts") is
set to its default, namely the ‘treatment’ contrasts):

Nonstationary multitype Poisson process

Trend formula: ~marks * polynom(x, 2)

Fitted coefficients for trend formula:

(Intercept) markson

4.3127945 0.2681231

polynom(x, 2)[x] polynom(x, 2)[x^2]

0.4651860 -0.2363352

markson:polynom(x, 2)[x] markson:polynom(x, 2)[x^2]

-0.6781045 0.4023491

This form of the model gives two quadratic functions: a “baseline” quadratic

P0(x, y) = 4.3127945 + 0.4651860x− 0.2363352x2

and a quadratic associated with the mark level “on”,

Pon(x, y) = 0.2681231− 0.6781045x+ 0.4023491x2.

The baseline quadratic is the logarithm of the fitted trend for the points of
type off, since off is the first level of the factor marks. For points of type
on, since we are using the treatment contrasts, the log trend is

P0(x, y) + Pon(x, y) = 4.580918− 0.2129185x+ 0.1660139x2.

On the other hand, when the second model ~marks + marks:polynom(x,2))

is fitted to the same dataset, the output is

Nonstationary multitype Poisson process

Trend formula: ~marks + marks:polynom(x, 2)

Fitted coefficients for trend formula:

(Intercept) markson

4.3127945 0.2681231

marksoff:polynom(x, 2)[x] markson:polynom(x, 2)[x]

0.4651860 -0.2129185

marksoff:polynom(x, 2)[x^2] markson:polynom(x, 2)[x^2]

-0.2363352 0.1660138

This says explicitly that the log trend for points of type off is

Qoff(x, y) = 4.3127945 + 0.4651860x− 0.2363352x2

while for points of type on it is

Qon(x, y) = 4.580918− 0.2129185x+ 0.1660139x2.

Hence the two fitted models are mathematically identical.
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Interaction Component

For the interaction component of the model, any of the interactions listed
above for unmarked point processes may be used. However these interactions
do not depend on the marks. We have additionally defined two interactions
which do depend on the marks:

MultiStrauss multitype Strauss process
MultiStraussHard multitype Strauss/hard core

For the multitype Strauss process, a matrix of “interaction radii” must be
specified. If there are m distinct levels of the marks, we require a matrix
r in which r[i,j] is the interaction radius rij between types i and j. For
the multitype Strauss/hard core model, a matrix of “hardcore radii” must be
supplied as well. These matrices will be of dimension m × m and must be
symmetric.

9 Irregular Parameters

As explained in Section 4.2, our model-fitting technique [5] estimates the pa-
rameters θ which appear in loglinear form (4) in the conditional intensity.
We call these “regular” parameters, while other model parameters are called
“irregular”. Most of the familiar point process models have irregular parame-
ters controlling the scale or range of interaction: an example is the interaction
radius r of the Strauss process (3). Irregular parameters cannot be estimated
directly using our algorithm, and must be given a fixed value in any call to
ppm.

Very little theory is available about the estimation of irregular parameters.
An exception is the case of hard-core radii. For example, consider the classical
hard-core process, which is the special case of the Strauss process (3) with
γ = 0. It can easily be shown [61] that the maximum likelihood and maximum
pseudolikelihood estimate of r is

r̂ = min
i

min
j 6=i

||xi − xj ||,

the minimum interpoint distance in the point pattern x.
Some irregular parameters can be determined from the pair correlation

function or the K function [34, 29, 28]. For the Strauss process with γ < 1,
the pair correlation function has a jump at r. This leads to a useful procedure
for estimating r called the ‘cusp method’ [34, 63], [65, p. 333]. These methods
are not yet implemented in spatstat.

One general strategy available in spatstat for estimating irregular param-
eters is profile pseudolikelihood [5, Section 8.2]. Let θ and ψ denote the reg-
ular and irregular parameters respectively, and write the pseudolikelihood as
PL(θ, ψ;x). Define the profile pseudolikelihood for ψ to be
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PPL(ψ;x) = max
θ

PL(θ, ψ;x), (15)

the maximum value of pseudolikelihood obtained by maximising over the reg-
ular parameters with ψ held fixed. Then the maximum pseudolikelihood esti-
mate of ψ is the value which maximises the profile pseudolikelihood,

ψ̂ = argmaxψ PPL(ψ;x). (16)

In spatstat the profile pseudolikelihood (15) can be evaluated for any given
value of ψ by fitting the model with this value of ψ using ppm. The result-
ing fitted model object has a component named maxlogpl which gives the
maximised log pseudolikelihood.

For example, the following code computes the maximum pseudolikelihood
estimate of the interaction radius r in the Strauss process model for the cells
dataset.

data(cells)

rval <- seq(0.01, 0.2, by=0.01)

prof <- numeric(length(rval))

for(i in seq(rval)) {

fit <- ppm(cells, ~1, Strauss(r=rval[i]),

correction="translate")

prof[i] <- fit$maxlogpl

}

iopt <- min(which(prof == max(prof)))

rhat <- rval[iopt]

Note that the same edge correction must be used to fit each model in order
that the pseudolikelihood values be comparable. The example above shows
the translation edge correction. If the border edge correction is used, the
correction distance rbord should be fixed at the maximum interaction radius
of all models to be fitted.

For diagnostic purposes the profile pseudolikelihood prof should be plotted
against the r argument rval to verify that the function has a unique global
maximum. In the example shown above, there is an unambiguous peak in
profile likelihood at r̂ = 0.1. Section 12.2 gives an example where more care
is required.

10 Model Validation

Having fitted a point process model to data, it is important to ‘validate’ the
model, i.e. to check formally or informally that the model is a good fit to
the data, and that all terms in the model are appropriate [2, 16, 24, 72], [47,
Chap. 12].
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10.1 Residuals and Diagnostics

Residuals from the fitted model are an important diagnostic tool in other
areas of applied statistics, but in spatial statistics they have only recently been
developed [7, 46, 62]. The residuals and diagnostic plots introduced in [7] are
available in spatstat. The function diagnose.ppm is the analogue of plotting
the residuals against the covariates in a linear model, while qqplot.ppm is the
analogue of a Q–Q plot of the residuals in a linear model.

These techniques are particularly well suited to detecting spatial inho-
mogeneity. For example, Fig. 7 (left) shows a point pattern simulated from
the Poisson process with intensity λ(x, y) = 300 exp(−3|x − 0.5|) in the unit
square. We then fitted the incorrect model, a uniform Poisson process, to
these data. The right side of Fig. 7 shows the result of diagnose.ppm for this
incorrect model. The striking deviations of the plots from their nominal (con-
stant) values indicate clearly that the model is inappropriate, and suggest the
form of departure from the model. For detailed information and examples, see
[7] and the help files for these functions.
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Fig. 7. Demonstration of diagnostic tools in spatstat. Left: data point pattern, a
realisation of an inhomogeneous Poisson process. Right: diagnostic plots (generated
by diagnose.ppm) for an incorrect model, a uniform Poisson process, fitted to the
data.

10.2 Formal Inference

Techniques

Formal hypothesis tests are often applied in spatial statistics for the following
purposes:
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1. to test whether the point pattern is a realisation of a uniform Poisson
process (complete spatial randomness or CSR);

2. to assess the goodness-of-fit of a point process model that has been fitted
to the point pattern data;

3. to select models (e.g. to decide whether a particular term in a point process
model may be omitted).

The first type of test is the most popular in applications, following Ripley
[54, 56]. However, this test may often be inappropriate or uninformative: we
usually know that the data are not completely random, and a formal confirma-
tion of this statement is not scientifically informative since it does not indicate
the kind of departure from complete randomness. Normally the second and
third types of tests are more useful in modelling.

Statistical theory of parameter estimation and hypothesis testing for spa-
tial point processes is rather limited. See the recent surveys of Møller and
Waagepetersen [48, Chapters 8–10], Diggle [28, Chapter 2] and Van Lieshout
[69, Chapter 3].

Techniques available for formal inference depend on the class of models
envisaged. For Poisson processes (homogeneous or inhomogeneous), much
of the classical theory of maximum likelihood is applicable, including the
likelihood ratio test. Goodness-of-fit tests based on the χ2 distribution are
also possible after discretisation (binning) of the data. For Cox processes,
estimation methods include minimum contrast [48, p. 182] and maximum like-
lihood in special cases [48, Section 10.3]. In the latter case, a likelihood ratio
test is applicable. For Gibbs processes, we may use Monte Carlo maximum
likelihood [48, Sect. 9.1.4] which provides approximate maximum likelihood
estimates, confidence intervals and likelihood ratio tests. Bayesian inference
has also also been developed [48, Sects. 9.3, 10.4]. For Gibbs processes, we
may also use maximum pseudolikelihood [48, Sect. 9.2]. Maximum pseudo-
likelihood estimates are known to be consistent and asymptotically normal
in some contexts [43, 42], but at the time of writing there is no statistical
theory for hypothesis tests based on the pseudolikelihood. For general point

processes which can be simulated, some elementary simulation-based infer-

ence is feasible [48, Chapter 8]. The canonical example is the Monte Carlo
test [37, 14, 56]. Monte Carlo tests based on envelopes of simulations of the
K function (and other summary functions) are very popular [28].

It is not known whether maximum likelihood estimation is optimally ef-
ficient [23, Sect. 8.5.8], [57]. Little is known about the power of the various
tests mentioned above [28, p. 28]. The distributional information required for
statistical inference can often be obtained only by using Monte Carlo meth-
ods. For example, simple formulae for the variance of estimators are available
only for the uniform Poisson process [58, Sect. 3.3], but the Fisher informa-
tion matrix for a general Gibbs process can be estimated by MCMC methods
[32, 33], [69, page 103].
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Implementation in spatstat

Spatstat includes the following support for formal inference.
For Poisson processes, since maximum pseudolikelihood is equivalent to

maximum likelihood, models fitted using ppm can be compared using the like-
lihood ratio test. The function anova.ppm performs analysis of deviance and
reports p-values for the likelihood ratio test.

For example, suppose we wish to test the null hypothesis that the point
process is a homogeneous Poisson process, against the alternative that it is
an inhomogeneous Poisson process with intensity of the form

λ(x, y) = exp(a+ bx) .

The likelihood ratio test is performed as follows, assuming X is the point
pattern dataset.

fit0 <- ppm(X, ~1, Poisson())

fit1 <- ppm(X, ~x, Poisson())

anova(fit0,fit1)

For Gibbs processes, spatstat provides a simulation algorithm rmh, an im-
plementation of the Metropolis-Hastings algorithm. This implementation will
simulate a wide range of models, including models fitted to data by ppm.
The algorithm handles arbitrary first-order trends, using a renormalisation
technique [6, Sect. 10.4]. Trends may be specified as symbolic functions, as
pixel images, or using a fitted model object. However, due to the high com-
putational load, interpoint interaction terms in the conditional intensity are
calculated in Fortran. This restricts the range of models that can be sim-
ulated. Currently the available interaction terms include Poisson, Strauss,
Strauss/hard core, soft core, Geyer saturation process, multitype Strauss, mul-
titype Strauss/hard-core, and the general stationary pairwise interaction with
step-function potential.

Here are two examples of the use of rmh(); see the help file in spatstat for
a plethora of other examples.

m <- list(cif="strauss",par=c(beta=2,gamma=0.2,r=0.7),

w=c(0,10,0,10))

X1 <- rmh(model=m,start=list(n.start=80),

control=list(nrep=5e6,nverb=1e5))

fit <- ppm(cells, ~1, Strauss(0.1))

X2 <- rmh(fit,start=list(n.start=200),

control=list(nrep=1e5,nverb=5000))

The user may exploit rmh to perform simulation-based inference. Currently,
inferential techniques must be implemented by hand: an example is given in
Section 11.4. Future extensions of the package will include basic support for
simulation-based inference.
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Pseudolikelihood Ratio and Monte Carlo Tests

A reasonable substitute for the likelihood ratio test statistic for a general
Gibbs process is based on the log pseudolikelihood ratio. Consider a null hy-
pothesisH0 and an alternativeH1, and supposeH0 is contained in H1. Denote
the point pattern dataset by x. Let θ̂0 = θ̂0(x) be the estimate of the canoni-

cal parameters (by maximum pseudolikelihood) under H0, and θ̂1 = θ̂1(x) the
estimate under H1. The test statistic will be twice the log pseudolikelihood
ratio

∆ = ∆(x) = 2
(
log PL(θ̂1(x);x) − log PL(θ̂0(x);x)

)
(17)

analogous to the deviance in likelihood theory. The following simple function
calculates the quantity ∆ from two fitted model objects in spatstat.

delta <- function(model0, model1)

2 * (model1$maxlogpl - model0$maxlogpl)

However we emphasise again that there is no statistical theory available
to support inferential interpretations of ∆. We explore a distributional ap-
proximation for ∆ in Sect. 11. Alternatively one may simply use ∆ as the
test statistic in a Monte Carlo test. Suppose for example that H0 is a simple
hypothesis (i.e. in which θ0 is fixed). Generate m independent realisations
x(1), . . . ,x(m) from the null hypothesis. Compute the corresponding values of
the test statistic, say ∆i = ∆(x(i)) for i = 1, . . . ,m. Compute the rank of ∆
in the set of values {∆1, . . . , ∆m} ∪ {∆}, that is, R = 1 +

∑m

i=1 1{∆i > ∆}.
Then under H0, the rank R is uniformly distributed on {1, 2, . . . ,m+ 1}, as-
suming there are no ties. Hence, the test which rejects H0 when R ≤ k has
size α = k/(m+ 1) exactly, if H0 is simple. The associated p-value is

p =
R

m+ 1
. (18)

Gamma Approximation to Distribution of Pseudolikelihood Ratio

Another possibility is to approximate the null distribution of the log pseu-
dolikelihood ratio statistic ∆ by a Gamma distribution. The Gamma family
is chosen simply because it is a flexible class of distributions, and because it
includes the χ2 distribution, which is the asymptotic null distribution of the
likelihood ratio test statistic.

Given some realisations from the null distribution of ∆, we fit a Gamma
distribution using the method of moments, then calculate a critical value or
p-value for the observed ∆ statistic based on this fitted Gamma distribution.
The p-value so obtained will be called the “gamma p-value”, in contrast to
the “Monte Carlo p-value” given by (18). The gamma approximation offers a
substantial economy in the number of replicates used in the simulations. Of
course this economy comes at the cost of placing trust in the approximation.

Some minimal experimentation indicates that the fit is generally good in
the upper tail. See Fig. 8.



28 Adrian Baddeley and Rolf Turner

11 Harkness-Isham Ants’ Nests Data

11.1 Description of Data

Figure 9 shows a point pattern data set recorded by Professor R.D. Harkness
at a site in northern Greece, and described and analysed in [35]. The points
record the locations of two species of ants: 68 nests of Messor wasmanni and
29 nests of Cataglyphis bicolor , in an irregular region 425 feet in diameter.
Covariate information is also provided: the bold diagonal line in the Fig. 9
indicates a boundary between vegetation types, ‘field’ and ‘scrub’, while the
two closely-spaced parallel lines delimit a foot track.
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Fig. 8. Assessment of the gamma distribution approximation to the null distribu-
tion of the log pseudolikelihood ratio statistic ∆. Calculated for the test for between-
species interaction described in Section 11. Top: P–P and Q–Q plots comparing the
empirical null distribution of ∆ (from simulations of H0) with the gamma distribu-
tion. Bottom: analogous plots for i.i.d. random Gamma variates.

Interest in these data focuses on whether there is evidence of spatial inhi-
bition between Messor nests, and of a tendency for Cataglyphis nests to be
situated close to Messor nests. Harkness and Isham suggested that the two
species have a relationship similar to that of predator and prey. Messor is a
harvester which collects seeds for food and builds nests composed mainly of
seed husks. Cataglyphis is a forager which eats dead insects and other arthro-
pods, and, while not preying upon the Messor ants, feeds upon dead Messors
which have been killed by a predatory spider.

Rectangular subsets of the data were analysed in [35, 41, 67, 36, 5] and
[60, Sect. 5.3]. Most of these analyses have used the dashed rectangles labelled
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A and B in Fig. 9, which were defined by Harkness and Isham. The current
analysis is, to our knowledge, the first to treat the full data set in its original
(polygonal) window.

A

B

Fig. 9. Harkness-Isham ants’ nests data [35, Fig. 1]. Locations of nests of two species
of ants, Messor wasmanni (4) and Cataglyphis bicolor (◦) in an irregular region
425 feet in diameter. Additional markings explained in the text. North at top of
figure. Data reproduced by kind permission of Profs. R.D. Harkness and V. Isham.

The nest locations (in units of half-feet) were kindly provided by Professor
V. Isham. The polygonal window and the extra features (foot track, field-scrub
boundary, rectangles A and B) were digitized by the first author from Fig. 1
in [35]. The full dataset is now available in spatstat as ants. Dr A. Särkkä also
kindly provided a version of the subset in rectangle A which was analysed in
her work [60].

Harkness and Isham [35] concluded from their analysis of rectangular sub-
sets A and B that there is spatial dependence in the location of the nests, both
within and between species. Results for subsets A and B were similar, suggest-
ing that the field-scrub boundary has no effect. Särkkä [60] concluded from an
analysis of subset A that there was strong inhibition among Cataglyphis nests,
but obtained conflicting conclusions (depending on the choice of technique)
about any dependence between species.

11.2 Exploratory Analysis

Our analysis of the full dataset in spatstat begins with exploratory methods
(Section 3.3). Kernel-smoothed intensity estimates for the nests of each species
(see Fig. 10) are plotted by the code at the top of the next page.
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smoothants <- lapply(split(ants), ksmooth.ppp)

plot(smoothants$Cataglyphis, main="Cataglyphis nests")

plot(smoothants$Messor, main="Messor nests")

The results suggest some slightly nonstationary trends in nest abundance.
Messor nests are absent close to the track, and close to the eastern corner of
the polygon. Cataglyphis nests are absent from the northeast border. We may
also plot, for example, the ratio of these intensity estimates by

cata <- smoothants$Cataglyphis

mess <- smoothants$Messor

ratio <- im(cata$v/mess$v, cata$xcol, cata$yrow)

plot(ratio, main="Cataglyphis-to-Messor ratio")

A plot of this ratio appears roughly constant and suggests that the same slight
inhomogeneity may affect both species equally.

The next step might be to assess within- and between-species interaction
by computing exploratory summary functions. Spatstat provides multitype
versions of the standard summary functions F, G, K, and J and the pair
correlation function. In the notation of [71], for a stationary multitype point
process, Fi denotes the empty space function F for the pattern consisting
solely of points of type i, while F• is the ordinary empty space function of the
process of all points regardless of type. Gij is the distribution function of the
distance from a typical point of type i to the nearest point of type j, while
Gi• is the distribution function of the distance from a typical point of type i
to the nearest point regardless of type. Similarly Kij is the K-function based
on distances from points of type i to points of type j only, while Ki• is the K-
function for distances from points of type i to points of any type. The pair cor-
relation function %ij is defined by %ij(t) = [(d/dt)Kij(t)]/(2πt), analogously
to the univariate case, and similarly for %i•. Finally the J functions are defined
[71] by Jij(t) = (1−Gij(t))/(1− Fi(t)) and Ji•(t) = (1−Gi•(t))/(1− Fi(t)).
Diagnostic interpretation of these functions is described in [71, 65].

The spatstat function alltypes will compute these statistics and return
an array of functions. For example

antsF <- alltypes(ants, "F")

plot(antsF)

computes the functions Fi (for i = Cataglyphis and i = Messor) and plots
them. Similarly

antsG <- alltypes(ants, "G")

plot(antsG)

computes the functions Gij for each i, j and plots them as a 2 × 2 array of
panels, shown in Fig. 11. Similarly for the functions Kij and Jij . Algebraic
transformations of these functions can be plotted easily using the R syntax
for formulas.
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Fig. 10. Kernel smoothed intensity estimates for the two species of ants’ nests

For example the corresponding L functions Lij(t) =
√
Kij(t)/π may be

plotted by

antsK <- alltypes(ants, "K")

plot(antsK, sqrt(trans/pi) ~ r)

The last line invokes plot.fasp. The second argument to plot.fasp is a
model formula representing the variables which should be plotted. Here trans
refers to the translation-correction estimate of Kij . These plots all appear
to evince some indication of between species attraction and of within species
repulsion, at least over certain distance ranges. Plots based on the rectangular
subset used by Särkkä are reasonably consistent in their appearance with those
plots based on the full data set.

The pair correlation functions %ij are obtained from the Kij estimates
using pcf:

antsK <- alltypes(ants, "K")

antspcf <- pcf(antsK)

plot(antspcf)

This plot, shown in Fig. 12, tells a somewhat different story. It suggests that
there is strong inhibition between Messor nests at all scales, while there is
inhibition between Cataglyphis and Messor nests up to 10 half-feet and no
interaction at longer distances. Between Cataglyphis nests there is a suggestion
of short-scale inhibition and medium-scale attraction. For comparison we also
show in Fig. 13 the pair correlation plot for rectangular subset A. This suggests
inhibition for all combinations of nests.
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Fig. 11. Estimates of the cross-type nearest neighbour functions Gij for the full
ants’ nests data.

11.3 Modelling

Takacs & Fiksel [67] and Särkkä [60, Sect. 5.3] fitted a Strauss/hard core model
(amongst other models) to assess the evidence of within- and between-species
dependence. Let y = {(x1,m1), . . . , (xn,mn)} denote a typical realisation of
the process, where xi ∈ W are the locations and mi ∈ M the corresponding
marks (types). The Strauss/hard-core model has conditional intensity

λ((u, k),y) = βm
∏

i

g(k,mi, ||u− xi||) (19)

where

g(k,m, d) =





0 if d < hkm
γmk if hkm ≤ d ≤ rkm
1 if d > rkm

Here βm > 0 are parameters influencing the intensity of the process, and
γkm > 0 are interaction parameters similar to the Strauss interaction param-
eter γ and satisfying γmk = γkm. The parameters hkm > 0 are ‘hard-core
distances’ satisfying hmk = hkm, while rkm > 0 are ‘interaction distances’
analogous to the Strauss interaction radius r, and satisfying rmk = rkm and
rkm > hkm. The process is well-defined and integrable provided either that
hmm > 0 for all m, or that γkm ≤ 1 for all k,m.

This model is chosen for its simplicity and flexibility in allowing for
both negative and positive association within and between species. It is cer-
tainly a tentative model, and indeed pairwise interaction models such as the
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Fig. 12. Estimates of the cross-type pair correlation functions %ij for the full ants’
nests data.

Strauss/hard core model are sometimes regarded as inadequate for describing
clustering.

Denoting the two types Cataglyphis and Messor by C and M respectively,
the model has 5 regular parameters (the intensities βC , βM and interaction pa-
rameters γCC , γMM , γCM ) and 6 irregular parameters (the hard core distances
hij and interaction distances rij).

To reduce the computational load we estimate the hard core distances by
their maximum likelihood (and maximum pseudolikelihood) estimates, which
are the corresponding minimum interpoint distances, obtained by

d <- pairdist(ants)

mks <- ants$marks

tapply(d, list(mks[row(d)], mks[col(d)]), min)

Note that if rounding is performed, then these values must be rounded down-
ward, to ensure that the model still has nonzero likelihood. The resulting
values are ĥMM = 18.7, ĥCC = 4.9 and ĥCM = 12.2 (in half-feet). For the
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Fig. 13. Estimates of the pair correlation functions for Särkkä’s version of the ants’
nests data.

values of the Strauss interaction radii we adopted the same values as Takacs
& Fiksel [67] and Särkkä [60], namely rMM = rCC = rCM = 90 half-feet.

The model was fitted to the full dataset as follows.

rr <- matrix(90,2,2)

hh <- matrix(c(5.0,12.2,12.2,18.7),2,2)

types <- levels(ants$marks)

Int <- MultiStraussHard(types, rr, hh)

fit <- ppm(ants, ~marks, Int, correction="border", rbord=90)

Note that the trend formula must be ~marks in order to allow different inten-
sity values βM , βC for the two species.

Printing the fitted model object fit shows the fitted values of all parame-
ters. It is necessary to select a value for the correction argument specifying
the edge correction for the pseudolikelihood [5]. Here we fitted the model using
the ‘border’ correction. Alternative choices of edge correction yield different
fitted parameter values, as shown in the following table.
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Edge correction βC × 104 βM × 104 γCC γMM γCM
Border 0.92 8.69 0.50 0.68 1.12

Translation 0.72 2.35 0.75 0.90 1.11
None 0.71 2.33 0.72 0.88 1.13

Evidence for between-species dependence is quantified by the Strauss inter-
action parameter γCM , which is slightly greater than unity, suggesting moder-
ate positive association. The estimates of within-species interaction γCC , γMM

are below unity, suggesting inhibition.
These conclusions should be compared to those of Särkkä’s [60] analysis

of the subset of data in the rectangle labelled A in Fig. 9. She obtained
γ̂CM = 0.88, which would indicate inhibition between species. For the sake
of direct comparison, we also fitted the Strauss/hard core model to the data
used by Dr Särkkä and kindly supplied by her. Several small differences can
be observed between Särkkä’s dataset and the subset of our data indicated
by rectangle A. These may be attributed to slight differences in digitising
Fig. 1 of [35]. In Särkkä’s dataset the minimum interpoint distance between
Cataglyphis and Messor nests is 11.2 half-feet rather than 12.2.

Changing the inter-species hard core distance to hCM = 11.2, we fitted the
Strauss-hard core model to Särkkä’s version of the data in rectangle A. This
also allows us to compare four different edge corrections for the pseudolikeli-
hood [5] which are implemented for rectangular windows, namely the border,
periodic and translation edge corrections, and Ripley’s isotropic correction.

The choice of edge correction appeared to have a substantial impact upon
the results. (As a matter of convenience Särkkä used a periodic edge correc-
tion in her analysis, and a stochastic approximation to the pseudolikelihood.)
Our estimates of γCM , based upon Särkkä’s data, are 1.37 (border correc-
tion), 0.99 (periodic edge correction), 1.20 (translation correction) and 1.00
(Ripley isotropic correction). These estimates are larger than Särkkä’s value
of 0.88, and two of them are larger than unity, consistent with between-species
attraction.

We also fitted the same model (i.e. with smaller hCM = 11.2) to the
complete data set, in its polygonal window, resulting in γCM estimates of
1.33 (border correction) and 1.12 (translation correction). In this case both
estimates are greater than 1, perhaps substantially greater. The evidence at
this point is thus somewhat contradictory. The exploratory summary functions
F , G, K, J suggest interspecies attraction, while the pair correlation function
exhibits no sign of between-species interaction. Four of the six estimates of
γCM are larger than unity, again suggesting interspecies attraction. Formal
methods may be useful at this point.

11.4 Formal Inference

We conducted formal hypothesis tests for the presence of inter-species inter-
action using the methods described in Section 10.2. The null hypothesis of no
inter-species interaction can be formulated as
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H0 : γCM = 1, hCM = 0

which implies that the nests of the two species are independent point processes
of Strauss-hard core type.

The Strauss interaction radii were held fixed at 90 half-feet in all instances.
Under the null hypothesis, the cross-species interaction radius rCM is not
identifiable, since it plays no role in the model when γCM = 1. Hence rCM
should not be estimated from simulations ofH0. The within-species interaction
parameters γCC , γMM were held fixed to reduce computational load, but they
could have been estimated instead.

Under the null model, there are no interaction terms between nests of
different species. In spatstat, assigning a value of NA to an irregular parameter
will cause the interpoint interaction term associated with this parameter to be
omitted from the analysis. Thus our null model is represented by assigning NA

values to every off-diagonal entry in the matrices of hard core distances and of
Strauss interaction distances. The following code fits the null and alternative
hypotheses to the data and evaluates the log pseudolikelihood ratio statistic
∆:

Str1 <- matrix(c(90, 90, 90, 90), 2,2)

Str0 <- matrix(c(90, NA, NA, 90), 2,2)

Hard1 <- matrix(c(5.0, 12.2, 12.2, 18.7), 2,2)

Hard0 <- matrix(c(5.0, NA, NA, 18.7), 2,2)

Int0 <- MultiStraussHard(types, Str0, Hard0)

Int1 <- MultiStraussHard(types, Str1, Hard1)

fit0 <- ppm(ants, ~marks, Int0, correction="translate")

fit1 <- ppm(ants, ~marks, Int1, correction="translate")

dobs <- 2 * (fit1$maxlogpl - fit0$maxlogpl)

To generate 99 realisations from the null distribution of ∆ we proceed as
follows:

dvalues <- numeric(99)

for(i in 1:99) {

Xsim <- rmh(fit0)

hc1 <- nnd(Xsim)

hc0 <- matrix(NA, 2, 2)

diag(hc0) <- diag(hc1)

Int0sim <- MultiStraussHard(types, Str0, hc0)

Int1sim <- MultiStraussHard(types, Str1, hc1)

fit0sim <- ppm(Xsim, ~marks, Int0sim,

correction="translate")

fit1sim <- ppm(Xsim, ~marks, Int1sim,

correction="translate")

dvalues[i] <- 2 * (fit1sim$maxlogpl - fit0sim$maxlogpl)

}
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where nnd is a small function to compute the minimum nearest-neighbour
distances between each pair of types:

nnd <- function(X) {

mks <- X$marks

d <- pairdist(X)

tapply(d, list(mks[row(d)], mks[col(d)]), min)

}

The resulting Monte Carlo test for between-species interaction gave a p-value
(18) of 0.18, based on 99 simulations from the null model as above. Using the
gamma approximation (Sect. 10.2) based on a separate set of only 30 simulated
realisations from the null model, the approximate p-value obtained was 0.1885.
(Validity of this approximation is confirmed by Fig. 8 in Section 10.2.) Thus
there appears to be no evidence of between-species interaction.

We then checked whether there was evidence of any interaction at all. In
this case the null model simply consists of two independent Poisson processes,
of different intensities. This is fitted by calling ppm with the trend given as
~marks and the interaction as Poisson. The alternative model was taken to
be the full model, including both between and within species interactions. We
obtained a Monte Carlo p-value of 0.03, and a gamma approximation p-value
of 0.0402, thus providing evidence that some sort of interaction is present.

If we eliminate between-species interaction from the model, we can test
for within-species interaction either for both species simultaneously, or in the
context of univariate models fitted to each species separately. The p-values for
the simultaneous test were 0.03 (Monte Carlo) and 0.0021 (gamma) indicating
some evidence of within species interaction. The test based on univariate mod-
els gave p-values for the Messor ants of 0 (Monte Carlo) and 0.004 (gamma)
and for the Cataglyphis ants of 0.64 (Monte Carlo) and 0.6279 (gamma), sug-
gesting that there is within-species interaction among the Messor ants, but
not among the Cataglyphis ants.

Finally, as a check on the absence of between species interaction, we per-
formed a test in terms of a univariate model fitted to the Messor ants con-

ditional upon the Cataglyphis ants. This model used the Strauss/hard core
interaction as before, but added a trend term, the trend being a log-linear
function of distance to the nearest Cataglyphis nest. The null model was
formed simply by omitting the trend term. The empirical p-values for this
test were 0.18 (Monte Carlo) and 0.1108 (gamma), which are again consistent
with the hypothesis of no between-species interaction.

11.5 Incorporation of Covariates

In addition to recording the locations of the ants’ nests, Harkness [35] noted
a boundary between “field” and “scrub” crossing the middle of the study
region, and a foot track running close to the perimeter. The relevance of these
geographical features to the ants’ nests pattern can easily be assessed using
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spatstat. Here we demonstrate the use of the modelling software to formulate
and fit point process models which depend on covariates (Section 7).

A very simple model for “field/scrub” effect is one in which the intensity
of the process is a different, constant value on each side of the field/scrub
boundary. In more complicated models, the intensity might also depend on
distance from the field/scrub boundary.

It is convenient to use the function fsdistance(x,y) which is displayed
on page 38. This function computes the signed distance from any location
(x, y) to the field/scrub boundary. A point (x,y) belongs to the field region
if fsdistance(x,y) > 0.

The simplest sensible model, in which intensity of each species is a differ-
ent, constant value on each side of the field/scrub boundary, can be fitted by
including a covariate which is a two-level factor, indicating whether the point
in question is in field or scrub. One way to do this is by means of the function
fsfac(x,y) shown below.

fsdistance <- function(x,y) {

ends <- ants.extra$fieldscrub

para <- c(diff(ends$x),diff(ends$y))

perp <- c(para[2], -para[1])

unit <- perp/sqrt(sum(perp^2))

cbind(x,y) %*% unit - (ends$x[1] * unit[1] +

ends$y[1] * unit[2])

}

fsfac <- function(x,y) {

factor(ifelse(fsdistance(x,y) > 0, "field", "scrub"))

}

The desired model can then be fitted via:

ppm(ants, ~ marks * fsfac(x,y), Poisson())

Note carefully that the variable names x and y in the call to ppm above, are
reserved names which refer to the Cartesian coordinates in the quadrature
scheme. The code above exploits the fact that the chosen covariate can be
expressed as a function of the Cartesian coordinates. If this is not true, then
the covariates must be supplied either as pixel images or as columns in a data
frame, as explained in Section 7.

The fitted model output (after rounding) is

Nonstationary multitype Poisson process

Trend formula: ~marks * fs(x, y)

Fitted coefficients

(Intercept) marksMessor fsfac(x,y)scrub

-9.35 0.52 -0.77

marksMessor:fsfac(x,y)scrub

0.97
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Since field is the first level of the factor fsfac(x,y), this output indicates
that the fitted intensities are as follows:

Cataglyphis Messor

Field exp(−9.35) exp(−9.35 + 0.52)
= 0.9× 10−4 = 1.5 × 10−4

Scrub exp(−9.35− 0.77) exp(−9.35 + 0.52− 0.77 + 0.97)
= 0.4× 10−4 = 1.7 × 10−4

These values could also have been obtained by geometrically dividing the
study region into two subregions and counting the numbers of nests of each
species in each subregion. They show that Cataglyphis has a marked preference
for the field region, while Messor nests have approximately equal intensity in
field and scrub regions. This finding was reported by Harkness & Isham [35].

However, these differences are not significant according to the (asymptotic)
likelihood ratio test for a field/scrub effect. Typing

fit1 <- ppm(ants, ~ marks * fsfac(x,y), Poisson())

fit0 <- ppm(ants, ~ marks, Poisson())

anova(fit0, fit1, test="Chi")

yields a p-value of 0.12 (with reference to the χ2
2 distribution).

Interpoint interaction may be incorporated, and probably should be incor-
porated, even into the simplest model. For example, we may fit

ppm(ants, ~ marks * fsfac(x,y), Int1)

where Int1 is the interaction object representing the multitype Strauss/hard
core model, constructed in the previous section using MultiStraussHard. The
fitted intensity parameters β are as follows.

Cataglyphis Messor

Field 1.0 × 10−4 2.0× 10−4

Scrub 0.3 × 10−4 2.0× 10−4

This strengthens the earlier suggestion that Cataglyphis nests have an affinity
for field over scrub while Messor nests are indifferent.

Extending the model further, we might fit a trend (in either or both of
the types) depending on the distance from the field/scrub boundary, as well
as on the distinction between field and scrub. Assuming that the dependence
on distance is loglinear, the model can be fitted by

fsdist <- function(x,y) { abs(fsdistance(x,y)) }

ppm(ants, ~ marks * fsdist(x,y) * fsfac(x,y), Int1)

This trend is essentially the simplest which can be fitted and which makes
full use of all the variables of interest. It is admittedly arbitrary, but should
have a reasonable chance of revealing a trend dependent upon the field/scrub
dichotomy if such a trend exists.

We tested for a trend of the specified form, first in terms of a model al-
lowing for both between and within species interactions, and then in terms
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of the model which appears most appropriate in the light of the tests pre-
viously conducted, namely a model in which there is interaction within the
Messor species only. Testing for the trend yielded empirical p-values of 0.32
(Monte Carlo) and 0.3692 (gamma) when the full multivariate Strauss/hard
core interaction was used, and of 0.50 (Monte Carlo) and 0.5709 (gamma)
when the within-Messor-only interaction was used. Thus there is no evidence
of a field/scrub effect, at least as described by a model of this form. Models
involving smooth intensity functions can also be fitted in the same style.

12 The Queensland Copper Data

12.1 Data and Previous Analyses

The Queensland copper data, shown in Fig. 14, were introduced and analysed
by Berman [11]. They consist of a point pattern of 67 copper ore deposits,
and a line segment pattern of 146 geological features, called ‘lineaments’, ob-
tained from an intensive geological survey of a 70 × 158 km region in central
Queensland, Australia. It is of interest to find any association between the
copper deposits and the lineaments. Since the lineaments are visible on satel-
lite images, they might be used to guide the search for copper deposits, by
predicting regions of high intensity for the copper points.

Fig. 14. Copper ore deposits (◦) and lineaments (—) in a region of central Queens-
land. North at top of frame. Reproduced by kind permission of Dr A Green,
Dr J Huntington, Dr M Berman and the Royal Statistical Society.

Berman [11] developed formal tests for dependence of the points upon the
lineaments, based on measuring the distance from each point to the nearest
lineament. The points are assumed to constitute an inhomogeneous Poisson
process, with an intensity that depends on distance to the nearest lineament.
The null hypothesis is that the intensity is constant.

Let X denote the copper point process and L the lineament process. All
analysis will be performed conditionally upon L. In [11] it is assumed that X
is conditionally Poisson given L, with intensity function of the form
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λX|L(u) = %(d(u, L)) (20)

where d(u, L) denotes the shortest distance from the point u to the nearest
lineament, and % is an unknown function. Under this assumption, the observed

distances di = d(xi, L) for all points xi ∈ X are i.i.d. The null hypothesis,
that % is constant, corresponds to assuming a known distribution for the
di (determined by the geometry of L) and hence can be tested using the
Kolmogorov-Smirnov or other tests of goodness-of-fit. For details see [11].

For geological reasons, lineaments lying in different spatial orientations
have typically been created at different epochs. Hence Berman [11] also con-
sidered the possibility that the intensity of the points depends only upon
distance to lineaments lying in a particular subset of orientations. This subset
consists of those lineaments having an angle (measured in the anticlockwise
direction from the horizontal, with 0◦ pointing east) between 120◦ and 160◦.
He also considered the subset whose angles lie between 10◦ and 40◦, but found
the results from this latter set not to differ from the results for all lineaments.

Berman concluded that there is some evidence of dependence of the in-
tensity of points upon the lineaments, when the entire window is considered,
but speculated that this dependence might be a spurious artifact due to the
scarcity of points in the northern half of the window. When he restricted at-
tention to the southern half of the window (shown in Fig. 15) he found no
evidence of association between points and lineaments.

Fig. 15. Southern half window of the Queensland copper data.

The data in the southern half window were re-analysed in [7, 31]. Both
analyses concluded that there is no evidence of dependence.

12.2 Analysis

In this work we re-visit these data, making use of the spatstat package. The
convenient model-fitting and simulation facilities of spatstat make it easy to
conduct tests of association between the points and lineaments, and to explore
other aspects of the nature of these data. In particular we investigate the
assumption that the points are conditionally Poisson. Attention is mainly
restricted to the southern half window, but a further analysis of the entire
window is discussed briefly.
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We test for dependence of the points on the lineaments, using three simple
parametric loglinear models for the intensity of the points given the lines:

λ(u) = β exp{αd} (21)

λ(u) = β exp{α1d+ α2d cos θ + α3d sin θ} (22)

λ(u) = exp{α0,i + α1,id}, i = 1, . . . , 3 . (23)

These models are expressed in terms of d = d(u, L), the distance from a
point u to the nearest lineament, and θ = θ(u, L), the spatial orientation
of the lineament closest to u (measured as an anticlockwise angle from the
east-pointing direction). Model (23) is obtained by dividing the angle θ into
classes, with breakpoints determined by the lineament subsets investigated by
Berman in [11]. These breakpoints are 10◦, 40◦, 120◦,and 160◦. There were
no lineaments in the intervals [0◦, 10◦] nor [160◦, 180◦] so there are effectively
three classes. The index i = 1, . . . , 3 is determined by the class in which the
angle θ falls.

Under the assumption that the points, given the lineaments, are a real-
ization of an (inhomogeneous) Poisson processes we may apply the likelihood
ratio test. The three models (and the null model comprising a constant in-
tensity Poisson process) are fitted as follows. First we construct a data frame
Cov containing the desired covariates: it has columns d (the distance to the
nearest lineament), angle (the angle made by this nearest lineament with
the horizontal) and cat.ang (the categorical variable or factor resulting from
classifying angle into three groups).

data(copper)

attach(copper)

Q <- quadscheme(SouthPoints,nd=c(24,106))

UQ <- union.quad(Q)

Cov <- makecov(UQ, SouthLines)

The function makecov is a one-off utility which performs the analytic geometry
of computing distances between points and line segments. The implementation
of such calculations will change shortly. Interested readers should contact the
authors for further information.

The three models (21)–(23) can then be fitted, along with the null model,
as follows

F0 <- ppm(Q)

F1 <- ppm(Q, ~d, covariates=Cov)

F2 <- ppm(Q, ~d + I(d * sin(angle)) + I(d * cos(angle)),

covariates=Cov)

F3 <- ppm(Q, ~d * cat.ang, covariates=Cov)

These models are Poisson by default. Note that expressions like d*sin(angle)
must be protected by I() within a call to ppm() to ensure that * is interpreted
as multiplication.
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The likelihood ratio test for each successive pair of models can now be
performed using anova.ppm, or by hand as indicated in Sect. 10. The resulting
p-values are as follows.

Model Statistic p-value
1 0.5613 0.4538
2 6.0080 0.1112
3 3.7561 0.5850

Another subdivision of the lineament orientations with breakpoints of 0◦, 60◦,
120◦ and 180◦, resulted in a likelihood ratio statistic of 7.7873 with p-value
0.1684.

There is thus no evidence of dependence of the points upon the linea-
ments, at least in the forms of these models. Thus our conclusions here are in
agreement with the previous analyses [7, 11, 31].

However, the foregoing analyses assume that the copper points form an (in-
homogeneous) Poisson process given the lineaments. This assumption should
be validated. One possibility is to use the residual plots described in Sec-
tion 10.1; an analysis of these data is reported in [7].

Alternatively we may use the inhomogeneous version of the K-function,
Kinhom(r) introduced in [3]. This requires the intensity function of the cop-
per point process, evaluated at the data points. We estimated the intensity
function in four ways: from the three foregoing parametric models, and also
non-parametrically.

The parametric estimates are straightforward. The fitted intensity at the
data points is provided by fitted.ppm. Thus for example

lambda <- fitted(F1)

K1 <- Kinhom(SouthPoints, lambda)

plot(K1)

computes the inhomogeneous K-function based on the intensity function λ
estimated under the model (21), and plots the result.

For the non-parametric estimate of the intensity function, we assume (20)
holds, where the form of the function % is not specified. We make use of the
following relationship [31]. Suppose X and L are jointly stationary. Let FL be
the empty space function for the L process, that is, FL(t) is the cumulative
distribution function of the distance from an arbitrary point in the plane to
the nearest lineament in L. LetGXL be the cumulative distribution function of
the distance from a typical point of the process X to the nearest line segment
in L. Then if (20) holds, we have

GXL(t) =

∫ t
0
%(s)dFL(s)∫ ∞

0
%(s)dFL(s)

(24)
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From this it follows that

%(t) = µ
dGXL(t)/dt

dFL(t)/dt
(25)

where

µ =

∫ ∞

0

%(s)dFL(s) = E(%(d(u, L))

is the intensity of X . The moment estimator of µ is µ̂ = n(X)/|W |.
To estimate dGXL(t)/dt and dF (t)/dt we can compute empirical estimates

of F and G, fit smoothing splines, and take the derivatives of the splines. Es-
timates of F and G can be computed using standard methods. At the time of
writing, these methods must be implemented by hand for line segment pat-
terns. Future extensions of spatstat will include support for these calculations.
The graph of %̂(t) is shown in Fig. 16.
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Fig. 16. Estimate of the function %(t) in (20) obtained using by substituting spline
estimates in (25).

There were very substantial differences in the appearance of the inten-
sity surfaces computed by different parametric methods, and by the non-
parametric methods. Despite this, the four estimates of the inhomogeneous
K function turned out to be virtually identical to each other, and to the
estimated conventional K function, for each window. Plots of one of the inho-
mogeneous K function estimates and of the conventional K function estimate
are shown in Fig. 17. The explanation is that the inhomogeneous K func-
tion depends only on the estimated intensity values at the points of the point
pattern. These intensity values were approximately constant for these data.

TheK functions suggest that there is positive association between the cop-
per deposits, conditioned on the lineaments. Again, we would like to be able
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Fig. 17. Inhomogeneous K function (solid line), conventional K function (dotted
line) and theoretical K function under CSR (dashed line) for the Queensland copper
data. Inhomogeneous version computed using parametric model (22).

to test this formally, and this requires a class of models which allow for pos-
itive association or clustering. One convenient choice is the Geyer saturation
model [32].

In order to fit the Geyer model we need to estimate the “irregular” param-
eters of the model, namely the interaction radius r > 0 and the saturation
number s. Rough estimates may be found by searching over a small set of
integer values for s (1 to 5 inclusive) using profile pseudolikelihood. Note that
the maximum over r of the log pseudolikelihood (for a fixed value of s) must
occur at one of the interpoint distances of the observed pattern.

The values obtained for the estimates of the irregular parameters were
r̂ = 1.18 and ŝ = 2 respectively. Similar estimates (r̂ = 1.05 and ŝ = 2) were
obtained when we also included in the model a trend of the form (22) along
with the Geyer interaction. Sample plots of the profiles, for the trend-included
setting, are shown in Fig. 18. The profile over r for s = 5 is very similar to
that for s = 4 and is omitted to save space.

The profile log pseudolikelihood in Fig. 18 is shown only for r ≤ 10 km.
Localized sharp peaks occur for some larger values of r, and in fact the overall
unconstrained maximum occurs at r = 10.62 and s = 1. However, this value
of r is not credible. The associated estimate of γ is 94.272, which would cause
immensely strong clustering. Plots of the estimated G and K functions and
the pair correlation function suggest an interaction range between 1 and 3
km. It seems plausible that the value of r = 10.62 is a numerical artifact,
since it is just slightly larger than the maximum nearest neighbour distance
in the data, and the observation window has a width of only 35 km. We
therefore decided to dismiss the profile peaks for r > 10 as anomalies. This
example illustrates the delicacy of estimating irregular parameters and the
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need to check the results of a maximisation algorithm. For interaction radii it
is probably sensible to restrict the search range to the interval from 0 to the
maximum nearest neighbour distance.
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Fig. 18. Profile log pseudolikelihood for a Geyer model, as a function of interaction
radius r, for several values of the saturation parameter s. Southern half window.
Trend from model (22) included in the fit.

We tested the model with trend given by model (22) and interaction given
by Geyer(1.05,2) against the null model with trend only. We also tested a
stationary model with Geyer(1.18,2) interaction against a completely null
(i.e. constant intensity Poisson) model.

In the first case we obtained a log pseudolikelihood ratio statistic ∆ =
57.35, a Monte Carlo p-value of 0.01, and a gamma approximation p-value of
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4.6× 10−6. In the second case ∆ = 59.36, with Monte Carlo p-value 0.01, and
gamma p-value of 4.8 × 10−11.

These tests appear to confirm the impression given by the K function
plots that there is positive association between the points. Given that there is
attraction, the tests for dependence of the points upon the lineaments, based
upon inhomogeneous Poisson models, cannot be considered valid. However we
can now conduct tests allowing for the apparent interaction. The test of trend
(given by model (22)) plus Geyer(1.05,2) against Geyer interaction only
gave ∆ = 4.75, with a Monte Carlo p-value of 0.12, and a gamma p-value of
0.144. Thus when interaction is allowed for, the evidence of dependence of the
points upon the lines is still “insignificant” and is in fact slightly weaker than
if we assume the points to arise from an (inhomogeneous) Poisson process.

12.3 North-South Effect

We now briefly consider the complete data set rather than the southern half
window. In particular we focus on Berman’s conjecture that the apparent
dependence of points on lineaments, when the entire window is considered,
might be a spurious artifact due to the scarcity of points in the northern half of
the window. If this is indeed the case, then it may be possible to adjust for the
low intensity in the northern half window by introducing a trend depending
upon the spatial covariates x and y.

One convenient class of models uses the smoothing term s in the trend
formula. For example

Q <- quadscheme(copper$points, nd=c(34,75))

F0 <- ppm(Q,~s(y),use.gam=TRUE)

fits a Poisson model with a smooth trend in the y coordinate (Northing) only.
We may test this null model against more elaborate models such as

UQ <- union.quad(Q)

Cov <- makecov(UQ, copper$lines)

F1 <- ppm(Q, ~s(y) + d + I(d * sin(angle)) +

I(d * cos(angle)), covariates=Cov, use.gam=TRUE)

F2 <- ppm(Q, ~s(y) + d * cat.ang, covariates=Cov,

use.gam=TRUE)

The likelihood ratio test of models F1 and F2 against model F0 turned out
to have values of 18.22 and 9.96 on 3 and 9 degrees of freedom respectively.
(Note that for the full window, all five angle categories are non-empty.) The
corresponding p-values are 0.0003 and 0.3537. Thus there appears to remain
an indication of dependence of the points on the lineaments via model (22)
(although not via model (23)) for the full data set, even after a spatial trend
(depending on the x and y coordinates) is allowed for.

The foregoing likelihood ratio test may be criticised since we had already
demonstrated an interpoint interaction in the southern half window. Instead
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we should be conducting Monte Carlo tests involving an interpoint interaction
term. The Geyer model irregular parameters may be estimated for the full
window by profiling, yielding r̂ = 1.18 and ŝ = 2 (as for the southern half
window when no trend is included. The estimates of the irregular parameters
were the same for the full window whether a lineaments-dependent trend was
allowed for or not.) We might thus set out to test the null model

F0 <- ppm(Q, ~s(y), Geyer(1.18,2), covariates=Cov,

use.gam=TRUE)

against (for instance)

F1 <- ppm(Q,~ s(y) + d * cat.ang, Geyer(1.18,2),

covariates=Cov, use.gam=TRUE)

Notice that here, as elsewhere, we propose to conduct inference conditionally

on the fitted values of the irregular parameters. This is done mainly to save
computational time. A definitive formal analysis should also look at the effect
of estimating the irregular parameters.
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