Lab Workbook Creating a Processor System Lab

Creating a Processor System Lab

Introduction

This lab introduces a design flow to generate a IP-XACT adapter from a design using Vivado HLS and
using the generated IP-XACT adapter in a processor system using IP Integrator in Vivado.

Objectives

After completing this lab, you will be able to:

e Understand the steps and directives involved in creating an IP-XACT adapter from a synthesized
design in Vivado HLS

e Create a processor system using IP Integrator in Vivado

e Integrate the generated IP-XACT adapter into the created processor system

The Design

The design consists of a FIR filter to filter a 4 KHz tone added to CD quality (48 KHz) music. The
characteristic of the filter is as follows:

FS=48000 Hz

FPASS1=2000 Hz

FSTOP1=3800 Hz

FSTOP2=4200 Hz

FPASS2=6000 Hz

APASS1=APASS2=1 dB

ASTOP=60 dB

This lab requires you to develop a peripheral core of the designed filter that can be instantiated in a
processor system. The processor system will acquire a stereo music stream using an on-board CODEC
chip and 12C controller, process it through the designed filter (bandstop filter), and output back to the
headphone.

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 9 primary steps: You will create a new project in Vivado HLS, run simulation,
synthesize the design, run RTL/C co-simulation, create a project in Project Navigator, run simulation
using ISIM, setup for IP-XACT adapter in Vivado HLS, implement the design in Vivado HLS, create a
processor system in Vivado using IP Integrator, create a software application in SDK, and verify the
design in hardware.

i www.xilinx.com/university Zynq 4-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Create a IZVI\ Run C |:> Synthesize :> Run RTL/C :> Setup IP-
New Simulation the Desi Co- XACT

i gn : .
Project Simulation Adapter
Step 6: Step 7: Step 8: Stgp 9: Appendix:
Generate Create a Export to Verify the Create an
the IP-XACT |:> Vivg_do |:> SDK & :> Design in |:> Inlthl Design
Adapter Project Create an Hardware using Tcl
Annlication Script
Create a New Project Step 1

1-1. Create a new project in Vivado HLS targeting XC7Z2020CLG484-1
(ZedBoard) or XC7Z010CLG400-1 (Zybo).

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado HLS > Vivado HLS 2015.4

A Getting Started GUI will appear.

1-1-2. Inthe Getting Started section, click on Create New Project. The New Vivado HLS Project wizard
opens.

1-1-3. Click Browse... button of the Location field, browse to c:\xup\hls\labs\lab4, and then click OK.
1-1-4. For Project Name, type fir.prj
1-1-5. Click Next.

1-1-6. Inthe Add/Remove Files for the source files, type fir as the function name (the provided source
file contains the function, to be synthesized, called fir).

1-1-7. Click the Add Files... button, select fir.c and fir_coef.dat files from the c:\xup\hls\labs\lab4 folder,
and then click Open.

1-1-8. Click Next.

1-1-9. Inthe Add/Remove Files for the testbench, click the Add Files... button, select fir_test.c file from
the c:\xup\his\labs\lab4 folder and click Open.

1-1-10. Click Next.

1-1-11. In the Solution Configuration page, leave Solution Name field as solution1 and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank as it will take 1.25 as
the default value for ZedBoard and 1 for Zybo.

Zynq 4-2 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

1-1-12. Click on Part’s Browse button, and select the following filters, using the Parts Specify option, to
select xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo), and click OK:
Family: Zynqg
Sub-Family: Zynq
Package: clg484 (ZedBoard) or clg400 (Zybo)
Speed Grade: -1

1-1-13. Click Finish.

You will see the created project in the Explorer view. Expand various sub-folders to see the
entries under each sub-folder.

1-1-14. Double-click on the fir.c under the source folder to open its content in the information pane.

1#include "fir.h"

2
dvoid fir (
4 data_t *y,

5 data_t x

6) q

7 const coef_t c[N+1]={
8 #include "fir_coef.dat"
° ks

(%)

12 static data_t shift_reg[N];

13 acc_t acc;

14 int i;

15

16 acc=(acc_t)shift_reg[N-1]*(acc_t)c[N];
17 loop: for (i=N-1;i!=0;i--) {

18 acc+=(acc_t)shift_reg[i-1]*(acc_t)c[i];
19 shift_reg[i]=shift_reg[i-1];

20}

21 acc+=(acc_t)x*(acc_t)c[0];

22 shift_reg[@]=x;

23 Fy = acc »» 15;

241

Figure 1. The design under consideration

The FIR filter expects x as a sample input and pointer to the computed sample out. Both of them
are defined of data type data_t. The coefficients are loaded in array c of type coef_t from the file
called fir_coef.dat located in the current directory. The sequential algorithm is applied and
accumulated value (sample out) is computed in variable acc of type acc_t.

1-1-15. Double-click on the fir.h in the outline tab to open its content in the information pane.

i www.xilinx.com/university Zynq 4-3
t‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

1-1-16.

1#ifndef FIR H_

2 #define FIR H_

3 #include "ap_cint.h"

A #define N 58

5 #define SAMPLES N+1@ // just few more samples ther
6 typedef short coef t;

7 typedef short data t;

Stypedef int38 acc_t;

S #endif

L)

o
=
=
m
=
(=]
t
+
21}
=]
[T

Figure 2. The header file

The header file includes ap_cint.h so user defined data width (of arbitrary precision) can be used.
It also defines number of taps (N), number of samples to be generated (in the testbench), and
data types coef _t, data_t, and acc_t. The coef t and data_t are short (16 bits). Since the
algorithm iterates (multiply and accumulate) over 59 taps, there is a possibility of bit growth of 6
bits and hence acc_t is defined as int38. Since the acc_t is bigger than sample and coefficient
width, they have to cast before being used (like in lines 16, 18, and 21 of fir.c).

Double-click on the fir_test.c under the testbench folder to open its content in the information
pane.

Notice that the testbench opens fir_impulse.dat in write mode, and sends an impulse (first sample
being 0x8000.

Run C Simulation Step 2

2-1.

2-1-1.

Run C simulation to observe the expected output.

Select Project > Run C Simulation or click on = from the tools bar buttons, and Click OK in
the C Simulation Dialog window.

The testbench will be compiled using apcc compiler and csim.exe file will be generated. The
csim.exe will then be executed and the output will be displayed in the console view.

Zyng 4-4 www.xilinx.com/university i' Xl LINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

Starting C simulation ...
C:/Xilinx/Vivado_HLS/2015.4/bin/vivado_hls.bat C:/xup/hls/labs/lab4d/fir.prj/solutionl/csim.tcl
@I [HLS-18] Running 'C:/Xilinx/Vivado HLS/2015.4/bin/unwrapped/winé4.o/vivado_hls.exe’
for user 'parimalp' on host "xsjparimalp31’ (Windows NT_amd64 version 6.1) on Mon Dec 21
in directory 'C:/xup/hls/labs/lab4’
@I [HLS-10] Opening project 'C:/xup/hls/labs/labd/fir.prj’.
@I [HLS-18] Opening solution 'C:/xup/hls/labs/lab4/fir.prj/solutionl”.
@I [SYN-201] Setting up clock ‘default’ with a period of 1@ns.
@I [HLS-18] Setting target device to "xc7z820clga84-1'
Compiling(apcc) ../../../../fir_test.c in debug mode
@I [HLS-18] Running 'c:/Xilinx/Vivado HLS/2015.4/bin/unwrapped/wint4.o/apcc.exe’
for user 'parimalp' on host "xsjparimalp31’ (Windows NT_amd64 version 6.1) on Mon Dec 21
in directory 'C:/xup/hls/labs/labd/fir.prj/solutionl/csim/build’
@I [APCC-3] Tmp directory is apcc_db
@I [APCC-1] APCC is done.
Compiling(apcc) ../../../../fir.c in debug mode

@I [LIC-1081] Checked in feature [VIVADO_HLS]
Generating csim.exe

0 -32768 378
1873
28 -27

3 8 -170
4 @ -298
58 -352
6 8 -302
7 8 -168
30 -14

o 0 80

10 @ 64
11 @ -53
12 & -186
13 @ -216
14 @ -4
15 @ 356
16 @ 867
17 @ 1283
18 @ 1366

Figure 3. Initial part of the generated output in the Console view

You should see the filter coefficients being computed.

Synthesize the Design Step 3

3-1. Synthesize the design with the defaults. View the synthesis results and
answer the question listed in the detailed section of this step.

3-1-1. Select Solution > Run C Synthesis > Active Solution to start the synthesis process.

3-1-2. When synthesis is completed, several report files will become accessible and the Synthesis
Results will be displayed in the information pane.

3-1-3. The Synthesis Report shows the performance and resource estimates as well as estimated
latency in the design.

i www.xilinx.com/university Zynq 4-5
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

3-1-4. Using scroll bar on the right, scroll down into the report and answer the following question.

Question 1

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMSs used:

Number of FFs used:

Number of LUTs used:

3-1-5. The report also shows the top-level interface signals generated by the tools.

Interface
- Summary

RTL Ports Dir Bits Protocol Source Object C Type

ap_clk in 1 ap_ctrl_hs fir return value
ap_rst in 1 ap_ctrl_hs fir return value
ap_start in 1 ap_ctrl_hs fir return value
ap_done out 1 ap_ctrl_hs fir return value
ap_idle out 1 ap_ctrl_hs fir return value
ap_ready out 1 ap_ctrl_hs fir return value
y out 16 ap_vid y pointer
y_ap_vid out 1 ap_vld ¥ pointer
X in 16 ap_none X scalar

Figure 4. Generated interface signals

You can see the design expects x input as 16-bit scalar and outputs y via pointer of the 16-bit
data. It also has ap_vld signal to indicate when the result is valid.

3-2. Add PIPELINE directive to loop and re-synthesize the design. View the
synthesis results.

3-2-1. Make sure that the fir.c is open in the information view.

3-2-2. Select the Directive tab, and apply the PIPELINE directive to the loop.

3-2-3. Select Solution > Run C Synthesis > Active Solution to start the synthesis process.

3-2-4. When synthesis is completed, the Synthesis Results will be displayed in the information pane.

3-2-5. Note that the latency has reduced to 63 clock cycles. The DSP48 and BRAM consumption
remains same; however, LUT and FF consumptions have slightly increased.

Zynqg 4-6 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

Run RTL/C CoSimulation Step 4

4-1.

Run the RTL/C Co-simulation, selecting Verilog. Verify that the simulation
passes.

4-1-1. Select Solution = Run C/RTL Cosimulation or click on the ¥ button to open the dialog box
so the desired simulations can be run.
A C/RTL Co-simulation Dialog box will open.

4-1-2. Select the Verilog option and click OK.
The Co-simulation will run, generating and compiling several files, and then simulating the design.
In the console window you can see the progress. When done the RTL Simulation Report shows
that it was successful and the latency reported was 63.

Setup IP-XACT Adapter Step 5

5-1. Add INTERFACE directive to create AXl4LiteS adapters so IP-XACT adapter
can be generated during the RTL Export step.

5-1-1. Make sure that fir.c file is open and in focus in the information view.

5-1-2. Select the Directive tab.

5-1-3. Right-click x, and click on Insert Directive....

5-1-4. Inthe Vivado HLS Directive Editor dialog box, select INTERFACE using the drop-down button.

5-1-5. Click on the button beside mode (optional). Select s_axilite.

5-1-6. In the bundle (optional) field, enter fir_io and click OK.

t' Xl LINX www.xilinx.com/university Zynq 4-7

Xup@xilinx.com
© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

| Vivado HLS Directive Editor —

Directive
INTERFACE v

Destination
(") Source File
@ Directive File

Options
mode (optional): s_axilite ¥
register (optional):]

depth (optional):

port (required): X

offset (optional):

bundle (optional): fir_io

Help | | Cancel | [OK

"

Figure 5. Selecting the AXIl4LiteS adapter and naming bundle

5-1-7. Similarly, apply the INTERFACE directive (including bundle) to the y output.

Zynq 4-8 www.xilinx.com/university (' XI LINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook

Creating a Processor System Lab

\

'+ | Vivado HLS Directive Editor

Directive

INTERFACE

Destination

©) Source File
@ Directive File
Options

mode (optional):

register (optional):

depth (optional):

port (required):

offset (optional):

bundle (optional):

s_axilite

O

fir_io

Help

Cancel | 1

OK

s

Figure 6. Applying bundle to assign y output to AXI4Lite adapter

5-1-8. Apply the INTERFACE directive to the top-level module fir to include ap_start, ap_done, and
ap_idle signals as part of bus adapter (the variable name shown will be return). Include the
bundle information too.

& XILINX.

www.xilinx.com/university
xup@xilinx.com
© copyright 2015 Xilinx

Zynq 4-9

Creating a Processor System Lab Lab Workbook

'+ | Vivado HLS Directive Editor]

Directive

INTERFACE v

Destination
) Source File
@) Directive File

Options

mode (optional): s_axilite v

register (optional):]

depth (optional):

offset (optional):

bundle (optional): fir_io

Help | | Cancel | l OK

Figure 7. Applying bundle to assign function control signals to AXl4Lite adapter

Note that the above steps 5-1-3 through 5-1-8 will create address maps for x, y, ap_start ap_valid,
ap_done, and ap_idle, which can be accessed via software. Alternately, ap_start, ap_valid,
ap_done, ap_idle signals can be generated as separate ports on the core by not applying
RESOURCE directive to the top-level module fir. These ports will then have to be connected in a
processor system using available GPIO IP.

Zyng 4-10 www.xilinx.com/university i
xup@xilinx.com $4 XI LINX@

© copyright 2015 Xilinx

Lab Workbook

Creating a Processor System Lab

Generate IP-XACT Adapt

er

Step 6

6-1. Re-synthesize the design as directives have been added. Run the RTL

Export to generate the

IP-XACT adapter.

6-1-1. Since the directives have been added, it is safe to re-synthesize the design. Select Solution >
Run C Synthesis > Active Solution

Check the Interface summary at the bottom of the Synthesis report to see the interface that has

been created.

6-1-2. Once the design is synthesized, select Solution > Export RTL to open the dialog box so the

desired IP can be generated

An Export RTL Dialog box will open.

+ | Export RTL Dialog

Export RTL

Format Selection

[IP Catalog

VJ ‘ Configuration...

Options

| Evaluate |Verilog

| Do not show this dialog box again. "

OK | [Cancel

X

Figure 8. Export RTL Dialog

6-1-3. Click OK to generate the IP-XACT adapter.

6-1-4. When the run is completed, expand the impl folder in the Explorer view and observe various

generated directories; ip, ve

rilog and vhdl.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zyng 4-11

Creating a Processor System Lab

Lab Workbook

4 = impl

=21

» = sdaccel
» = verilog
» = vhdl

Figure 9. IP-XACT adapter generated

Expand the ip directory and observe several files and sub-directories. One of the sub-directory of
interest is the drivers directory which consists of header, c, tcl, mdd, and makefile files. Another
file of interest is the zip file, which is the ip repository file that can be imported in an IP Integrator
design

4 = impl

‘[r-_"/ip

|5l autoimpl.log
auxiliaryxmil
componentxml
fir_info.xml

|5l pack.bat

W@ run_ippack.tcl
=| vivado,jou

= vivado.log

[

[l

= xilinx_com_hls_fir_

1 0zip

. 4 constraints
& bd

: = doc

4 = drivers

4 (= fir vl 0

4 (= data
=/ firmdd
W firtcl

4 (= 5rC
L& Makefile
L xfir_hw.h
[£ xfir_linux.

€] xfir.c
[£] xfir.h

[€ xfir sinit.c

C

> = example
> = hdl
> = misc

= subcore
> = xgui

Figure 10. Adapter’s drivers directory

6-1-5. Close Vivado HLS by selecting File > Exit.

Zyng 4-12

www.xilinx.com/university

Xup@xilinx.com

© copyright 2015 Xilinx

& XILINX.

Lab Workbook Creating a Processor System Lab

Create a Vivado Project Step 7

7-1. Launch Vivado Tcl Shell and run the provided tcl script to create an initial

system targeting either the Zedboard (having xc7z020clg484-1 device) or
Zybo (having xc7z010clg400-1 device).

If you want to create the system from scratch then follow the steps
provided in Appendix and then continue from step 7-2 below.

7-1-1. Open Vivado Tcl Shell by selecting Start > All Programs > Xilinx Design Tools > Vivado

2015.4 > Vivado 2015.4 Tcl Shell

7-1-2. In the shell window, change the directory to c:/xup/hls/labs/lab4 using the cd account.

7-1-3. Run the provided script file to create an initial system having zed_audio_ctrl and GPIO

peripherals by typing the following command:
source zed_audio_project_create.tcl for ZedBoard or
source zybo_audio_project_create.tcl for Zybo

The script will be run and the initial system, shown below, will be created.

processing_system?_0

DOR
FIXED 104
nc 14

D0OR
FIXED_ID

—{ 1

M_AXT_GPO_ACLE ZYNQ‘ H_AXT_GPO

FCLE_CLKD R
[FCLK_CLKL
FCLK RESETO Nt

{3 FOLK_CLK1

ZYN(T Processing System

SDATAI axi_gpio_0
rst_processing_system7?_0_100M processing_system?_0_axi_periph | ——
o omen e | B Eop e oo e—
cxt_resat_in baurs_struct_resat[0:0] = e s aremn 57102 | GPIOZ
-iaux_mset_n penpheral_resa0:0]=
-ilm 0ebug SYS (S INCErCONNECt Aesetr0:0] el = 1 1 AXT GPID
-itm Jecked peripheral sao_' -l TN :§E::|Lt o p zed_audio_otrl 0
Procusser System Resel o acik g R L G P]
¥ B=m 8 . |
HO_ARFSETH —EDATA T Ll — x:‘:K
ROLE | -—|
—HOLACLK 5 AXI_ACLK ey — SDATA O
—lmlmm A 5_AXI_ARESETH =
 ——
AXT Interconnect zed_audo,_ctr|

Figure 11. Block design having zed_audio_ctrl and connections made for ZedBoard

processing_system?_(0

M_AXI_ GPO_ACLK ZYNO‘

__rst_processing_system?_0_100M processing_system?_0_axi_periph

S —— mb_reset i w - =
[- bars_sdract_resact[0:0] | S0 B

RECDAT[L

| —— LY
periphers_reset| 00

i _reset_in
Lreset)
=mib_debisg Sys =t inkerconnect_aresetn|0:0]

—sto_pck Hozd L.
-I&m‘mﬂ b— 500 ARESETN D§D:1'::zf ;h
ol

— ;

—MIOACLE s BCLK b {3 BOLK
MO0 ARESETN RECDAT PBLRCLK {5 PELRCLK
—=H01_ACLK l —5_AXI_ ALK RECLRCLK {3 RECLRCLK
b MO1_ARESETN S_AXI_ARESETN PROATA {5 PEOATA
" et

ol 1 zybo_audio_ctrl
AXI Interconmect yioo_audio_c

AX] GFIO
zybo_audio_drl 0

it

peripheral_a

Processor System Resst

Figure 11. Block design having zybo_audio_ctrl and connections made for Zybo

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zynq 4-13

& XILINX.

Creating a Processor System Lab Lab Workbook

7-2. Addthe HLS IP to the IP Catalog
7-2-1. In the Flow Navigator pane, click Project Settings under Project Manager.
7-2-2. Click the IP icon.

7-2-3. Click the + button (The lab4/ip_repo directory has already been added). Browse to
c:\xup\hls\labs\lab4\fir.prj\solution\impl\ip and click Select.

The directory will be scanned and added in the IP Repositories window, and one IP entry will be
detected.

7-2-4. Click OK.

¢ Project Settings &J

.) P
C-yj General” | ‘Manager | Packager | IP Cache
General (@ Add directories to the list of repositories. You may then add additional IP to a selected
(0 repository. If an IP is disabled then a tool-tip will alert you to the reason.
IF Repositories
Simulation == c:/xup/hls/labs/lab4/ip_repo (Project)
g‘:@ N c: xup/hls/labs/lab4/fir.prj/solution1/impl/ip (Project)
Elaboration 1+
» |
Synthesis

Implementation

1040
Q001

EY

Bitstream I

= 1

Refresh All

l OK H Cancel ” Apply

% L

Figure 12. Setting path to IP Repositories

7-2-5. Click OK to accept the settings.
7-3. Instantiate fir_top core twice, one for each side channel, into the
processing system naming the instances as fir_left and fir_right.

7-3-1. Click the Add IP icon ﬁ and search for Fir in the catalog by typing Fir and double-click on the Fir
entry to add an instance.

Zyng 4-14 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

7-3-2. Click on the Add IP to Block Design button if presented.

Notice that the added IP has HLS logo in it indicating that this was created by Vivado HLS.

7-3-3. Select the added instance in the diagram, and change its instance name to fir_left by typing it in
the Name field of the Block Properties form in the left.

7-3-4. Similarly, add another instance of the HLS IP, and name it fir_right.

7-3-5. Click on Run Connection Automation, and select All Automation

7-3-6. Click on ffir_left/s_axi_fir_io, and /fir_right/ s_axi_fir_io and verify that they will both be
connected to the M_AXI_GPO0, and click OK.

7-3-7. Similarly, click on Run Connection Automation again, and select /fir_right/ s_axi_fir_io and
click OK.

7-4. Enable the PS-PL Interrupt ports > IRQ_F2P ports. Add an instance of
concat IP with two single-bit input ports. Connect input ports to the
interrupt ports of the two FIR instances and the output port to the IRQ_F2P
port of the processing_system7_0 instance.

7-4-1. Double-click on the processing_system7_0 instance to open the re-customization form.

7-4-2. Select the Interrupt in the left pane, click on the Fabric Interrupts check box in the right.

7-4-3. Expand the Fabric Interrupts > PL-PS Interrupt Ports > IRQ_F2P entry in the right, and click the
check-box of IRQ_F2P[15:0].

7-4-4. Click OK.

7-4-5. Add an instance of the concat IP.

7-4-6. Connect the interrupt port of each of the FIR instances to the two input ports of the xlconcat_0
instance.

7-4-7. Connect the output port of the xlconcat_0 instance to the IRQ_F2P port of the
processing_system7_0 instance.

At this stage the design should look like shown below (you may have to click the regenerate
button).

i' X”_INX www.xilinx.com/university Zyng 4-15

Xup@xilinx.com
© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

processing_system?_0

™ DOR
FIXED_IO
1e_t

M_AX1_GPO_ACLE. -
_F2P[1:0) ZYNQ
{5 FOLK_CLK1
ZYNQ7 Processing System
Concat
rst_processing_system?_0_100M '—p(ocﬁsing_sysmm?_ﬂ_a;d_pcriph fir_left
stowest_sync_ck mb_reset - 500_AXT ' c.:!ﬁ.ﬁ‘_n 5 1
ext_reset_in Bus_struet_rese[0:0] I iy #
—|aux_reset_in perigheral_resef0.0) :_I TH[0:0) i
—rily_clebiug_sys rat s [0:aj| 00_ACLK Fir {Pre-Production)
—{dom_locked pevipheral_areseta| 1
- e —— 0_ACLE u fir_right
rocessor System Rese | r _
ARESETHN[D:0] [8 i [oe 5
1_ACLE u | - e A
1_ARESETNID:0] B 3 a
2_ACLK i /
—_—
12_ARESETNID:0) Fir {Pre-Production)
3_ACLE. axi_apia 0
3_ARESETH[:0] -
i GPID
AXI Interconnect :: K GPIO2
AXLGPLO
20el_audio_ctrl_0
| s _axL
- B 5 BOLK
DUTA_L
SDaTA 1y _“:-n‘ moe———— S IRCLK
e 1 _3SDATA O

2ed_audio_dtd

(a) ZedBoard

processing_system?_0

DOR
FIXED_IO
e 1l e 1
M_AXI_GPO_ACLK ™ R =
M_AXT_GPO-
. F20(0:0] ZYNQ A
FOLK_CLKL {3 FOLK_CLK1
Pcut_nfim_"l
Z¥YNQ7 Processing System
Concat
rst_processing_system?_0_100M processing_system?_0_ax_periph fir_left
U = X So_no = :sﬁ_l’l‘_n amads” s)
et _reset_in Bus_struct_resst{0:0] o ‘ p
ux_reset_in perigheral_reseg0:0] :_I TN[0:0] s
mb_debug_sys rst & [0:a] 00_ACLE. e-Production)
clam_lacked peripheral_a il fir_right
0_ACLE u i &
Processar System Reset ARESETNID:) [[il s A i vt v
ek i
1_ACLK 1 | '
1_ARESETM[O:0] il
2 ACLE Fir {Pre-Production)
2_ARESETHID:0]
13_ACLK axi_gpia_0
3_ARESETH]O 0] [
s,
s oL GFIO
AXI Intercannect j“dgm GPIO2
AXI GPIO
zyba_audia_ctrl_0
| s a1 T — T ¥ 14
RECDAT [ECOAT PR PBIRCLK
XL ALK RECLADK~————{ 73 RECLRCLK

_AX]_PRESETN PEOATAE—————————— 3 PEDATA

(b) Zybo

Figure 13. The complete hardware design

Zynq 4-16 www.xilinx.com/university (' XI LINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

7-5. Verify addresses and validate the design. Generate the system_wrapper file,
and add the provided Xilinx Design Contraints (XDC).
7-5-1. Click on the Address Editor, and expand the processing_system7_0 > Data if necessary.
The generated address map should look like as shown below.
%= Diagram X | B Address Editor x
A cel Slave Interface Base Name Offset Address Range High Address
== processing_system?7_0
21| B Data (32 address bits : 4G)
“emm gxi_gpio_0 5 AXI Reg 0x4120_0000 G4K ~ 0x4120 FFFF
= i~ == zed_audio_ctrl_0 S_AXI regl 0x43C0_0000 64K = 0x43C0O_FFFF
o fir_left s_axi_fir_io Reg 0x43C1_0000 64K ~ 0x43C1_FFFF
i fir_right s_a:-(i_fir_in Reg 0x43C2_0000 04K ~ 0x43C2 FFFF
(a) ZedBoard
E= Diagram X | Address Editor x
a, Cell Slave Interface Base Mame Offset Address Range High Address
= —ﬁ processing_system?7_0
= —} M Data (32 address bits : 0x40000000 [1G])
== axi_gpio_D S_AXI Reg 0x4120_0000 64K = 0x4120_FFEF
= == zybo_audio_ctrl_0 S_AXI reg0 0x6000_0000 64K ~ 0x6000_FFEF
fir_left s_axi_fir_io Reg 0x43C0_0000 64K ~ 0x43CO_FFFF
“mm fir right s axi fir io Req 0x43C1 0000 64K v 0x43C1 FFEF
(b) Zybo
Figure 14. Generated address map
7-5-2. Run Design Validation (Tools > Validate Design) and verify there are no errors
7-5-3. In the sources view, right-click on the block diagram file, system.bd, and select Create HDL
Wrapper to update the HDL wrapper file. When prompted, click OK with the Let Vivado manage
wrapper and auto-update option.
7-5-4. Click Add Sources in the Flow Navigator pane, select Add or Create Constraints, and click
Next.
7-5-5. Click the Add Files button, browse to the c:\xup\hls\labs\lab4 folder, select
zed_audio_constraints.xdc or zybo_audio_constraints.xdc
7-5-6. Click Finish to add the file.
7-5-7. Click on the Generate Bitstream in the Flow Navigator to run the synthesis, implementation, and
bitstream generation processes.
7-5-8. Click Save and Yes if prompted to start the process.
7-5-9. When the bit generation is completed, a selection box will be displayed with Open Implemented
Design option selected. Click Cancel.
= www.xilinx.com/universit Zynq 4-17
& XILINX. Y yn

Xup@xilinx.com
© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

Export to SDK and create Application Project Step 8

8-1. Export the hardware along with the generated bitstream to SDK.

8-1-1. Select File > Export > Export Hardware...

8-1-2. Make sure that Include Bitstream option is selected and click OK, leaving the target directory set
to local project directory.

8-1-3. Select File > Launch SDK

8-1-4. Click OK.

8-1-5. In SDK, select File > New > Board Support Package.

8-1-6. Click Finish with the default settings (with standalone operating system).
This will open the Software Platform Settings form showing the OS and libraries selections.

8-1-7. Click OK to accept the default settings, as we want to create a standalone_bsp_0 software
platform project without requiring any additional libraries support.
The library generator will run in the background and will create xparameters.h file in the
C:\xup\his\labs\lab4\audio\audio.sdk\standalone_bsp_O\ps7_cortexa9 O\include\ directory.

8-1-8. Select File > New > Application Project.

8-1-9. Enter TestApp as the Project Name, and for Board Support Package, choose Use Existing
(standalone_bsp should be the only option)

8-1-10. Click Next, and select Empty Application and click Finish

8-1-11. Select TestApp in the project view, right-click the src folder, and select Import.

8-1-12. Expand General category and double-click on File System.

8-1-13. Browse to c:\xup\hls\labs\lab4 folder and click OK

8-1-14. Select both zed_testapp.c and zed_audio.h for ZedBoard or zybo_testapp.c and
zybo_audio.h for Zybo and click Finish to add the file to the project.
The program should compile successfully.

Zyng 4-18 www.xilinx.com/university i' X”_INX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

Verify the Design in Hardware Step 9

9-1.

Zybo: Make sure that the JP7 is set to select USB power.

Connect a micro-usb cable between a PC and the JTAG port of the board.
Connect an audio patch cable between the Line In jack and the speaker
(headphone) out jack of a PC. Connect a headphone to the Line Out jack
(ZedBoard) or HPH OUT (Zybo) on the board. Power ON the board.

9-1-1. Zybo only: Make sure that the JP7 is set to select USB power.

9-1-2. Connect a micro-usb cable between a PC and the JTAG port of the board.

9-1-3. Connect an audio patch cable between the Line In jack and the speaker (headphone) out jack of
aPC.

9-1-4. Connect a headphone to the Line Out jack on ZedBoard or HPH Out jack on Zybo board. Power
ON the board.

9-1-5. Select Xilinx Tools > Program FPGA.

9-1-6. Make sure that the system_wrapper.bit bitstream is selected and the BMM file field is blank.

9-1-7. Click Program.
This will configure the FPGA.

9-1-8. Double-click corrupted_music_4KHz.wav or some other wave file of interest to play it using the
installed media player. Place it in the continuous play mode.

9-1-9. Right-click on the TestApp in the Project Explorer pane and select Run As > Launch On
Hardware (GDB).
The program will be downloaded and run. If you want to listen to corrupted signal then set the
SWO0 OFF. To listened the filtered signal set the SWO0 ON.

9-1-10. When done, terminate the program by clicking the Terminate (Red square) button in the Console
tab of the SDK. power OFF the board, and exit SDK and Vivado using File > Exit.

i' X”_INX www.xilinx.com/university Zyng 4-19

Xup@xilinx.com
© copyright 2015 Xilinx

Creating a Processor System Lab Lab Workbook

Conclusion

In this lab, you added RESOURCE directive to create an IP-XACT adapter. You generated the IP-XACT
adapter during the implementation phase. You then created a processor system using IP Integrator,
integrated the generated IP-XACT adapter, and tested the system with the provided application.

Answers

1. Answer the following questions:

Estimated clock period: 6.38 ns
Worst case latency: 175 clock cycles
Number of DSP48E used: 3
Number of BRAMs used: 0
Number of FFs used: 168
Number of LUTs used: 106

Appendix

Create a Project using Vivado GUI Step 10

10-1. Launch Vivado and create an empty project targeting the Zedboard (having
xc7z020clg484-1 device) or Zybo (having xc7z010clg400-1 device) and
using the Verilog language.

10-1-1. Open Vivado by selecting Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado 2015.4

10-1-2. Click Create New Project to start the wizard. You will see the Create a New Vivado Project
dialog box. Click Next.

10-1-3. Click the Browse button of the Project Location field of the New Project form, browse to
c:\xup\hls\labs\lab4, and click Select.

10-1-4. Enter audio in the Project Name field. Make sure that the Create Project Subdirectory box is
checked. Click Next.

Zyng 4-20 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

. Project Name

Enter a name for your project and specify a directory where the project data files ':l,
will be stored

| Project name:

Project location: |C:jxupfh[sf|absflab4| E]

Create project subdirectory l|

Project will be created at: C:/xup/hls/labs/lab4/audio !

< Back ” Next > Finish

\ = s J

Figure A-1. Project Name entry

10-1-5. Select RTL Project in the Project Type form, and click Next.

10-1-6. Select Verilog as the Target language and Simulator Language in the Add Sources form, and
click Next.

[Add Sources

Specify HDL and netlist files, or directories containing HDL and netlist files, to add ‘:_,
to your project. Create a new source file on disk and add it to your project. You

[Add Files...] [Add Directories...] [Create File...]
Scan and add RTL include files into project
Copy sources into project L
Add sources from subdirectories L]

Target language: Simulator language:

|§ < Back ;” Next >] Finish I

Figure A-2. Add sources to new project

10-1-7. Click Next two times to skip Adding Existing IP and Add Constraints dialog boxes

10-1-8. In the Default Part form, select Boards, and either select Zedboard Zynq Evaluation and
Development Kit or Zybo. Click Next.

If you don't see Zybo entry and wants to target Zybo board then please read readme_zybo.docx file and
install the zybo board files in the Vivado installation directory.

i' XI LINX www.xilinx.com/university Zynq 4-21

xup@xilinx.com
© copyright 2015 Xilinx

Creating a Processor System Lab

Lab Workbook

4~ New Project E
Default Part
Choose a default Xilinx part or board for your project. This can be changed later. '
Select: @ Parts :I Boards
4 Filter
Vendor: All s
Display Name: All -
Board Rev: Latest A
Reset All Filters
Search: Q-
" Choose Zybo or ZedBoard)
Display Name Vendor Board Rev
_EE_F.E-
@ MicroZed Board em amet com f @ xc72010clg400-1 400 1.1 |
|= ZedBoard Zynq Evaluation and Development Kit|em.avnet.com d @ xc72020clg484-1 484 1.2
Artix-7 AC701 Evaluation Platform xilinx.com 1.1 @ xc7a200tfbg676-2 676 1.1
@ Basys 3 Evaluation Platform xlinx.com 1.0 @ xc7a35tcpg236-1 236 1.0
@ Kintex-7 KC705 IIEr\:aIuation Platform xilinx.com 1.1 @ xc7k325tffa900-2 900 Lr T
< L=
< Back ” Next > Finish Cancel |

Figure A-3. Boards and Parts selection

10-1-9. Check the Project Summary and click Finish to create an empty Vivado project.

Creating the System Using the IP Integrator

Step 11

11-1. Use the IP Integrator to create a new Block Design, and generate the ARM

Cortex-A9 processor based hardware system.

11-1-1. In the Flow Navigator, click Create Block Design under IP Integrator

Flow Navigator

Az

| 4 Project Manager
iﬁ Project Settings
&% Add Sources
1F 1P Catalog

4 TP Integrator

|¢% Create Block Design

¥ Open Block Design
& Generate Block Design

Figure A-4. Create IP Integrator Block Diagram

11-1-2. Enter system for the design name and click OK

zZynq 4-22 www.xilinx.com/university
xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook

Creating a Processor System Lab

11-1-3. IP from the catalog can be added in differer =" ays. Click on Add IP in the message at the top of

the Diagram panel, or click the Add IP icon

right-click anywhere in the Diagram workspace and select Add IP.

in the block diagram side bar, press Ctrl + 1, or

11-1-4. Once the IP Catalog is open, type “zy” into the Search bar, find and double click on ZYNQ7
Processing System entry, or click on the entry and hit the Enter key to add it to the design.

The Zynq block will be added.

&= Diagram X [Address Editor X

| &, system

X [Designer Assistance available. Run Block Automation

o
¥
I§

kg P&

L

'\‘JJ-—-':_-l

4

processing_system7_0

oDR 4= |||
FIXED_10+ |||

M_AXI_GPO_ACLK ZYNO‘ M_AXI_GPO<: |||

FCLK_CLKO
FCLK_RESETO_N

ZYNQY Processing System

Figure A-5. The Zynq IP Block

11-1-5. Notice the message at the top of the Diagram window that Designer Assistance available. Click
on Run Block Automation and select /processing_system7_0

11-1-6. Click OK when prompted to run automation.

Notice that external ports have been automatically added for the DDR and Fixed 10 once Block
Automation has been complete; some of the other default ports are also added to the block.

processing_system7_0

M_AX_GPO_ACLK ZYNQ#

(a) ZedBoard

ZYNQ7 Processing System

processing_system7_0

PTP_ETHERNET 0<% || PTP_ETHERNET_0 4 ||
DOR4- [|——{3 DDR DDR < ||——3 DDR
FIXED_104 ||——[_) FIXED_IO FIXED 1O [|—— 3 FIXED_IO
USBIND_04F ||| usi?;(;‘zi H
nLvelEfiRi] | =M_AXI_GPO_ACLK ZYNO‘ M_AXI_G;D+
TTCO_WAVED_OUT " TTCO_WAVED_OUT
TTCO_WAVEL_OUT TTCO_WAVEL OUT
TTCO_WAVEZ_OUT TTCO_WAVE2_OUT
FCLK_CLKO FCLK_CLKD
FCLK_RESETO_N FCLK_RESETO_N
ZYNQ7 Processing System
(b) Zybo

Figure A-6. Zynqg Block with DDR and Fixed IO ports

11-1-7. In the block diagram, double click on the Zynq block to open the Customization window for the
Zyng processing system.

A block diagram of the Zyng should now be open, showing various configurable blocks of the

Processing System.

& XILINX.

www.xilinx.com/university

Xup@xilinx.com
© copyright 2015 Xilinx

Zynq 4-23

Creating a Processor System Lab Lab Workbook

At this stage, the designer can click on various configurable blocks (highlighted in green) and
change the system configuration.

11-2. Configure I/O Peripherals block to use UART 1 and 12C 1 peripherals,
disabling other unwanted peripherals. Uncheck Timer 0. Enable
FCLK_CLK1, the PL fabric clock and set its frequency either to 10.000 MHz
for the ZedBoard or to 12.288 MHz for the Zybo.

11-2-1. Select the MIO Configuration tab on the left to open the configuration form and expand 1/O
Peripheral in the right pane.

11-2-2. Click on the check box of the 12C 1 peripheral. Uncheck USBO, SD 0, ENET 0, GPIO > GPIO
MIO as we don’t need them.

11-2-3. Expand the Application Processing Unit group in the Select the MIO Configuration tab and
uncheck the Timer 0.

11-2-4. Select the Clock Configuration in the left pane, expand the PL Fabric Clocks entry in the right,
and click the check-box of FCLK_CLK1.

11-2-5. Change the Requested Frequency value of FCLK_CLK1 to 10.000 MHz for the ZedBoard or
12.288 MHz for the Zybo.

Peripheral /O Fins Component Clock Source Requested Frequ...

wi | Ik

[+ Processor/Memory Clocks

MIO Configuration :
[+ 10 Peripheral Clocks

Clock Configuration E} PL Fabric Clocks
- . [¥] Fowk_ciko 10 PLL 100.000000
DDR. Configuration _ b v:
FCLK_CLK1 I0 PLL w | 10.000000 ‘
SMC Timing Calculation T ; '
D FCLK_CLK2 10 PLL 50.000000
Interrupts - [FoLK_cLK3 10 PLL 50
(a) ZedBoard
-1
Component Clock Source Requested Frequ... Actual Frequency... Range(MHz)

wi | 1B

- Timers
System Debug Clocks
[Processor/Memary Clocks

D FCLK_CLK3 10 PLL 50 50.000000 0.100000 : 250.000000

D FCLK_CLK2 10 PLL 50 50.000000 0.100000 : 250.000000
FCLK_CLK1 10 PLL w 112.288 12.280702 0.100000 : 250.000000
""" FCLK_CLKD 10 PLL w100 100.000000 0.100000 : 250.000000

(b) Zybo
Figure A-7. Enabling and setting the frequency of FCLK_CLK1

11-2-6. Click OK.

Zyng 4-24 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook

Creating a Processor System Lab

Notice that the Zyng block only shows the necessary ports.

11-3. Add the provided 12C-based either zed_audio_ctrl IP for the ZedBoard or
zybo_audio_ctrl IP for the Zybo to the IP Catalog

11-3-1. In the Flow Navigator pane, click IP Catalog under Project Manager.

11-3-2.

11-3-3.

The IP Catalog will open.

Flow Navigator

M 5 opg
A ey

4 Project Manager
% Project Settings
% Add Sources

1F 1P catalog

4 1P Integrator
F Create Block Design
5% Open Block Design
&% Generate Block Design

Figure A-8. Invoking IP Catalog

Click on the IP Settings button in the IP Catalog.

&= Diagram X | B Address Editor x |iFIP Catalog X

| search: |
(=5 |
=41 Name AXTA
g
== Alliance Partners
ﬁ = Automnotive & Industrial
.. | 5 AXI Infrastructure
a ' BaselP
k ' Basic Elements

' Communication & Metworking
' Debug & Verification

' Digital Signal Processing

' Embedded Processing

' FPGA Features and Design

' Math Functions

' Memories & Storage Elements
' Standard Bus Interfaces

' Video & Image Processing

£ e))

Figure A-9. Invoking IP Settings

Click on the Add Repository... button. Browse to c:\xup\hls\labs\lab4\ip_repo directory, and

click Select.

Notice that the zed_audio_ctrl and the zybo_audio_ctrl entries are displayed in the IP in Selected

Repository field.

& XILINX.

Xup@xilinx.com
© copyright 2015 Xilinx

www.xilinx.com/university

Zynqg 4-25

Creating a Processor System Lab Lab Workbook

11-3-4.

¢~ Project Settings ﬂ
o P
@ _ Repository Manager = Packager
General (0 Add directories to the list of repositories. You may then add additional TP
@ to a selected repository. If an IP is disabled then a tool-tip will alert you to
the reason.
Simulation IP Repositories
& c:/xup/hls/labs/lab4/ip_repo (Project) +
Synthesis £ L |
[) [Add Repository... | | RefreshAll |
Implementation IPin Selected Repository
-%| zed_audio_ctrl (alimx.com:user idio_ctrl:1.0 ol
. zybo_audio_ctrl (xilinx.com:xilinx:zybo_audio_ctrl:1.0 —
Bitstream
g Add IP...] [Refresh Repository]
P)
[ok [concel] [_zowy]

Figure A-10. Adding IP repository for the provided 12C based cores

Click OK to accept the settings.

11-4. ZedBoard: Instantiate zed_audio_ctrl and GPIO with width of 2 bits on
channel 1 and width of 1 bit input only on channel 2.
Zybo: Instantiate zybo_audio_ctrl and GPIO with width of 1 bit output only
on channel 1 and width of 1 bit input only on channel 2.
Run connection automation to connect them.

11-4-1. Click the Add IP button ﬁ' if the IP Catalog is not open and search for AXI GPIO in the catalog by
typing gpi and double-click on the AXI GPIO entry to add an instance.

11-4-2. Click on the Add IP to Block Design button.

11-4-3. Double-click on the added instance and the Re-Customize IP GUI will be displayed.

11-4-4. Change the Channel 1 width to 2 for the ZedBoard or width of 1 output only for the Zybo.

11-4-5. Check the Enable Dual Channel box, set the width to 1 input only, and click OK.

11-4-6. Similarly add an instance of either the zed_audio_ctrl for the ZedBoard or the the zybo_audio_ctrl
for the Zybo.

Zyng 4-26 www.xilinx.com/university i' XILINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Creating a Processor System Lab

11-4-7. Notice that Design assistance is available. Click on Run Connection Automation, and select
Jaxi_gpio_0/S_AXI

11-4-8. Click OK to connect it to the M_AXI_GPO interface.

Notice two additional blocks, Proc Sys Reset, and AXI Interconnect have automatically been
added to the design.

11-4-9. Similarly, click on Run Connection Automation, and select either /zed_audio_ctrl_0/S_AXI for
the ZedBoard or the /zybo_audio_ctrl_0/S_AXI for the Zybo and click OK.

11-5. Make IlIC_1, GPIO, FCLK_CLK1, and either zed_audio_ctrl or
zybo_audio_ctrl ports external.

11-5-1. Select the GPIO interface of the axi_gpio_0 instance, right-click on it and select Make External to
create an external port. This will create the external port named GPIO and connect it to the
peripheral.

11-5-2. Select the GPIO2 interface of the axi_gpio_0 instance, right-click on it and select Make External
to create the external port.

11-5-3. Similarly, selecting one port at a time either of the zed_audio_ctrl_0 instance or the
zybo_audio_ctrl_0 instance, make them external.

11-5-4. Similarly, make the IIC_1 interface and FCLK_CLK1 port of the processing_system7_0 instance
external.

At this stage the design should look like shown below (you may have to click the regenerate | @]

button).
processing_system7_0
DDR- || =" DDR
FIXED_I0 4 ||| "3 FIXED_IO
M_AXT_GPO MCLKZYNQ‘ M AXIH((S:;éz l et
: FCLK_CLKOf-
FCLK_CLK1] [FCLK_CLK1
FCLK_RESETO_N ka
ZYNQ7 Processing System
SDATA_L
I] axi_gpio_0
rst_processing_system7_0_100M processing_system7_0_axi_periph
%slowst_sync_dk mb_reset 1 su s = Ta;?ék GPIO<R "—D GPIO
ext_reset_in bus_struct_reset[0:0] A acik i aresetn STIO2F | P GPIO2
aux_reset_in peripheral_reset{0:0] RESETN
Rl - TR N s
m_| peripheral_aresetn[0:| g 500_ARESETN D§D MOI}XH}: _. zed_audio_ctri_f
Processor System Reset LT AN R UL e sA BCLK = — [BCLK
p—MO0_ARESETN 1SDATA_I LRCLK LRCLK
D
MO1_ACLK S AXI_ACLK
iy e SDATA_Ofp———————————[
j——101_ARESETN 5 AXI_ARESETN B SDATAO
AXT Interconnect Zed_audio_ctrl

Figure A-11. Block design after I2C based zed_audio_ctrl core added and connections
made for the ZedBoard

i www.xilinx.com/university Zynq 4-27
f‘ XI LINX Xup@xilinx.com

© copyright 2015 Xilinx

Creating a Processor System Lab

Lab Workbook

processing_system7_0

DDR (|3 DDR

FIXED_10<k FIXED_IO
nc_id Ic 1

M_AXI_GPO_ACLK ZYNO‘ M_AXI_GPD o | ey

FCLK_RESETO_N

FCLK_CLKO p=—y
FCLK_CLK1

[FCLK_CLK:

ZYNQ7 Processing System

RECDAT D
rst_processing_system?7_0_100M
lowest_sync_clk mb_reset s
L reset_in bus_struct reset[0:0]
-

m—aux_reset_in peripheral_reset[0:0]

=dcm_locked peripheral_aresetn[0:0]

—mb_debug sys_ rst interconnect_aresetn[0:0] mma—d

)

i 4-500_ax1

ACLK

ARESETN

S00_ACLK [z

Processor System Reset

f——500_ARESETN [
MOD ACLK
MOD_ARESETN

MO1_ACLK
1M01_ARESETN

AXI Interconnect

processing_system?_0_axi_periph
rocessing_system/_1_axl_peri|

axi_gpio_0

AXI GPIO
zybo_audio_ctrl_0

| des_axt BCLK
RECDAT PBLRCLK
S AXIACLK RECLRCLK
S_AXI_ARESETN PBDATA

::1’},5_1\)([GPIOR '—' ;GP[O
s_axi_adk
GPIO24F '—DGP[QZ
;_axi_aresetn

BCLK
PBLRCLK

———
- [RECIRCIK
- [PEDATA

zybo_audio_ctrl

Figure A-11. Block design after I12C based zybo_audio_ctrl core added and connections

made for the Zybo

Zynqg 4-28

© copyright 2015 Xilinx

www.xilinx.com/university

Xup@xilinx.com

& XILINX.

