Lab Workbook Vivado HLS Design Flow Lab

Vivado HLS Design Flow Lab

Introduction

This lab provides a basic introduction to high-level synthesis using the Vivado HLS tool flow. You will use
Vivado HLS in GUI mode to create a project. You will simulate, synthesize, and implement the provided
design.

Objectives

After completing this lab, you will be able to:

Create a new project using Vivado HLS GUI

Simulate a design

Synthesize a design

Implement a design

Perform design analysis using the Analysis capability of Vivado HLS
Analyze simulator output using Vivado and XSim simulator

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 8 primary steps: You will create a new project in Vivado HLS, run simulation, run
debug, synthesize the design, open an analysis perspective, run RTL co-simulation, view simulation
results using Vivado and XSim, and export and implement the design in Vivado HLS.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:
Creating a Run C Run Synthes_lze Analyze using
New |:> Simulation |:> Debugger :> the design :> Analysis
Project Perspective
Step 6: Step 7: Step 8:
Run C/RTL Viewing Export RTL
Co-Simulation |:> Simulation |:> pand
Results in Implement
Vivado P

i www.xilinx.com/university Zyng 1-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Create a New Project Step 1

1-1.

Create a new project in Vivado HLS targeting Zyng xc7z020clg484-1
(ZedBoard) or xc7z010clg400-1 (Zybo).

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado HLS > Vivado HLS 2015.4
A Getting Started GUI will appear.
y
VIVADO XILINX
HLS ALL PROGRAMMABLE.
Quick Start
47\ el g
Create New Project Open Project Open Example Project
Documentation
m W
Tutorials User Guide Release Motes Guide
Figure 1. Getting Started view of Vivado-HLS
1-1-2. Inthe Getting Started GUI, click on Create New Project. The New Vivado HLS Project wizard
opens.
1-1-3. Click the Browse... button of the Location field and browse to c:\xup\hls\labs\lab1 and then click
OK.
1-1-4. For Project Name, type matrixmul.prj
| /. New Vivado HLS Project __‘ " '
2 = |
Project Configuration AG .
Create Vivado HLS project of selected type |l/__/
Project name: matrixmul.prj|
Location: Clxuphhls\labs\labl Browse...
Figure 2. New Vivado HLS Project wizard
: — . . -
Zyng 1-2 www.xilinx.com/university $4 XILINXS

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

1-1-5.

1-1-6.

1-1-7.

1-1-8.

1-1-9.

1-1-10.

1-1-11.

1-1-12.

1-1-13.

Click Next.

In the Add/Remove Files window, type matrixmul as the Top Function name (the provided
source file contains the function, to be synthesized, called matrixmul).

Click the Add Files... button, select matrixmul.cpp file from the c:\xup\hIs\labs\lab1 folder, and
then click Open.

Click Next.

In the Add/Remove Files for the testbench, click the Add Files... button, select
matrixmul_test.cpp file from the c:\xup\hls\labs\lab1 folder and click Open.

Select the matrixmul_test.cpp in the files list window and click the Edit CFLAG... button, type
-DHW_COSIM, and click OK. (This defines a custom flag that will be used later.)

Click Next.

In the Solution Configuration page, leave Solution Name field as solutionl and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank it will take 1.25 as the
default value for ZedBoard and 1 for Zybo.

Click the ... button in the Part Selection section.

In the Device Selection Dialog page, select Parts Specify field, and select the following filters to
select the xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo) part, and click OK:

o Family: Zynq

o Sub-Family: Zynq

o Package: clg484 (for ZedBoard) or clg400 (for Zybo)

o Speed Grade: -1

Device Selection Dialog %
Select: | Boards | ‘
‘ RTL Tool Filter
Auto - Product Category: | All ~ | Package: clg484 >,
‘ Family: zZynq ~ | Speed grade: -
Sub-Family: zynq - | Temp grade: | All -

| Reset Al Filters |

Search: ¥
Part Family Package Speed SLICE LuT FF DSP BRA
.‘ | i@ xc7z020clg484-1 zynq clg484 -1 13300 53200 106400 220 280]

Cancel

i' XI LINX www.xilinx.com/university Zyng 1-3

Xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

4 Device Selection Dialog ﬂ
Select: [M Boards
RTL Tool Filter
Auto ~ Product Category: | All ~ | Package: clg400 v
! Family: zyng ~ | Speed grade: -
I Sub-Family: Zyng - | Temp grade: All -
" Reset All Filters
Search: =
| part Family Package Speed SUCE LUT FF DSP BRA|
@xc72020cg400-1 zyng clgdo0 -1 13300 53200 106400 220 280
[@xc72010c1g400-1 zyng clgdd -1 4400 17600 35200 80 120
|
4 mn [
]
0K Cancel

Figure 3. Using Parts Specify option in Part Selection Dialog

You can also select the Boards specify option (only for ZedBoard) and select one of the listed
board if the desired target board is listed.

4 Device Selection Dialog ﬂ
Select: | & Parts | | Bl Boards
RTL Tool Filter
Auto ~ Vendor: All b

Display Name: All =

Reset All Filters

Search: =
I Display Name Part Family Vendor &
| Wl Zynq ZC706 Evaluation Board Xc72045fg900-2 zyng xilinwcom =
| B Zyng ZC702 Evaluation Board xc7z020clg484-1 zZyng xilinx.com
! |I§Zed30ard Zynq Evaluation and Development Kit xc7z020clg484-1 zynq em.avnetcom| « | ||

4 L1} 3

oK Cancel

—

Figure 4. Using Boards Specify option in Part Selection Dialog

1-1-14. Click Finish.

You will see the created project in the Explorer view. Expand various sub-folders to see the
entries under each sub-folder.

Zynq 1-4 www.xilinx.com/university (' XI LINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

1-1-15.

L7 Explorer &3 ¢ = 8

4 =5 matrixmul.prj
> [l Includes

4| = Source

[} matrixmul.cpp
> = Test Bench
4 = solutioni
4 % constraints
% directives.tcl
% script.tel

Figure 5. Explorer Window

Double-click on the matrixmul.cpp under the source folder to open its content in the information
pane.

57 #include "matrixmul.h"

oL

59 void matrixmul(

70 mat_a_t a[MAT_A ROWS][MAT_ A COLS],

71 mat_b_t b[MAT_B_ROWS][MAT B _COLS],

72 result_t res[MAT_A_ROWS][MAT_B_COLS])

73{

74 f/ Iterate over the rows of the A matrix

75 Row: for(int i = @; i < MAT_A ROWS; i++) {

76 // Iterate over the columns of the B matrix

77 Col: for(int j = @; j < MAT_B_COLS; j++) {

78 /f Do the inner product of a row of A and col of B
79 res[1][]j] = @;

1%} Product: for(int k = @; k < MAT_B_ROWS; k++) {
81 res[1][j] += a[1][k] * b[k][3];

82 }

83 }

B4 1}

85}

Figure 6. The Design under consideration

It can be seen that the design is a matrix multiplication implementation, consisting of three nested
loops. The Product loop is the inner most loop performing the actual Matrix elements product and
sum. The Col loop is the outer-loop which feeds the next column element data with the passed
row element data to the Product loop. Finally, Row is the outer-most loop. The res]i][j]=0 (line
79) resets the result every time a new row element is passed and new column element is used.

Run C Simulation Step 2

2-1. Run C simulation to view the expected output.

2-1-1. Select Project > Run C Simulation or click on = from the tools bar buttons, and Click OK in
the C Simulation Dialog window.

2-1-2. The files will be compiled and you will see the output in the Console window.

i' XI LINX www.xilinx.com/university Zyng 1-5

Xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Starting C simulation ...
C:/Xilinx/Vivado_HLS/2015.4/bin/vivado_hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/csim.tcl
@I [HLS-10] Running 'C:/Xilinx/Vivado_HLS/2015.4/bin/unwrapped/win64.o/vivado_hls._exe’
for user 'parimalp’ on host 'xsjparimalp3l’ (Windows NT_ amd64 version 6.1) on Sun Dec 20 ©5:25:38 -080@ 2015
in directory 'C:/xup/hls/labs/labl’
@I [HLS-1@] Opening project 'C:/xup/hls/labs/labl/matrixmul._prj’.
@I [HLS-18] Opening solution '"C:/xup/hls/labs/labl/matrixmul.prj/solutionl’.
@I [SYN-201] Setting up clock 'default' with a period of 16@ns.
@I [HLS-1@] Setting target device to 'xc7z@20clgds84-1'
Compiling ../../../../matrixmul_test.cpp in debug mode
Compiling ../../../../matrixmul.cpp in debug mode
Generating csim.exe

{870,906,942}
{1086,1131,1176}
{1302,1356,1410}

}
@I [SIM-1] CSim done with @ errors.

Figure 7. Program output

2-1-3. Double-click on matrixmul_test.cpp under testbench folder in the Explorer to see the content.

You should see two input matrices initialized with some values and then the code that executes
the algorithm. If HW_COSIM is defined (as was done during the project set-up) then the
matrixmul function is called and compares the output of the computed result with the one returned
from the called function, and prints Test passed if the results match.

If HW_COSIM had not been defined then it will simply output the computed result and not call the
matrixmul function.

Run Debugger Step 3

3-1. Run the application in debugger mode and understand the behavior of the
program.

3-1-1. Select Project > Run C Simulation or click on = from the tools bar buttons. Select the Launch
Debugger option and click OK.

The application will be compiled with —g option to include the debugging information, the compiled
application will be invoked, and the debug perspective will be opened automatically.

3-1-2. The Debug perspective will show the matrixmul_test.cpp in the source view, argc and argv
variables defined in the Variables view, Outline view showing the objects which are in the current
scope, thread created and the program suspended at the main() function entry point.

Zyng 1-6 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

Eile Edit Project Solution Run Window Help

3 N2 eI RifHeE+4ER@ RE B &® \ [35 Debug |[1-] Synthesis 6 Analysis
45 Debug ¢ [Bxplorer | % 8|3 ¥ = 8 |[®= Variables 52 _[% Breakpoints | 11l{ Registers| %% Expressions| i Modules| Seimi
4 [E] matiixmulprj.Debug [C/C++ Application] TIEET e
)
4 5 csim.exe [6420] i T
4 " Thread [1]D (Suspended : Breakpoint) = -
[= main(at matrixmul_test.cpp:77 0x40139d] e L
B i bW argv char
.o s gl.in_mat a char [3]3]
b hw result short [3113]
®- err_cnt int
b (@ in_matb char [313]
> (8 sw_result short 3113]
< >
(6] matrimul.cpp [[matriemul_test.cpp 57 | = 0 |[B= outine 52 S
i -~ = |a 5 <
69 using namespace scd; ‘ SRR
o iostream
= - int main(int arge, char **argv) = matrixmulh
L =
mat_a t in mat_a[3][3] = { ® main(int, char™): int
{11, 1z, 13},
{14, 15, 163,
{17, 18 ,19}
3z
mat_b_t in mat_b[3][3] = (
121,27, 23,
{24, 25, 261,]
} {27, 28, 29}
| BB i v
|
B Console 57 . &) Tasks| [2] Problems| (3 Executables| [Memory| BXkBREEE »Bym-g = 0)

|
 matrixmul.prj.Debug [C/C++ Application] csim.exe I

Writable Smartinsert | 80:20

Figure 8. A Debug perspective

3-1-3. Scroll-down in the source view, and double-click in the blue margin at line 105 where it is about to
output “{* in the output console window. This will set a break-point at line 105. .

The breakpoint is marked with a blue circle, and a tick

Ff Print result matr‘i;d
cout << "{" << endl;

3-1-4. Similarly, set a breakpoint at line 101 on the matrixmul() function

3-1-5. Using the Step Over (F6) button (@‘) several times, observe the execution progress, and
observe the variable values updating, as well as computed software result.

www.xilinx.com/university Zynq 1-7
i: XILINX“’ xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

File Edit Project Solution Run Window Help

I T S =l Bi4 EB@RE®Biaq® * [45 Debug | s | Synthesis 6 Analysis
% Debug &7 [Explorer| % B i% 7 = O |[®- variables 52\ % Breakpoints | !iii Registers| 7' Bxpressions| @ Modules| S
a [E] matrixmul.prj.Debug [C/C++ Application] % B &0 |t~
®
4 B csim.exe [4232] N v ValiE ~
4 Thread [1] 0 (Suspended : Step) 5 7 i
= main) at matrixmul test.cpp:95 0401402 e =
i o o argy char 034678
»al g = k int 1
@ int 0
@i int 0
b (= inmat_a char [3113] Ox28fedf
> (2 hw_result short [3131 Ox28fecd
= err_cnt int 0 &
| [€] matrixmul.cpp | [€] matrixmul_test.cpp &3 = O |(EE Outline 32 =l
[y FEERY e ¥ ¥
& o iostream
Trerac = matrixmulh
for(int i i &
AT = st
LoniAntii il i BT ENLS sl pad © mainint, char™): int

ne ns of the B matrix

for(int k = 0; k < MAT B ROWS: k++) {

sw result[i][j] += in mat afiJfk] * in mat bfk][j]]

v

B Console 33 & Tasks| [Problems| () Executables| [Memory| X ERESE B4 = 0]

3-1-6. Now click the Resume (¥) button or F8 to complete the software computation and stop at line
101.

| matrixmul.prj Debug [C/C++ Appli csim.exe

| Witable | smartinset | 9531

Figure 9. Debugger’s intermediate output view

3-1-7. Observe the following computed software result in the variables view.

(%)= Variables 3 % Breakpointq it Registers | mi) Modules} = 0
tE| &R KTt ¥
Marme Type Value 2
4 bﬁ sw_result short [3][3] 2 8feb?
4 bﬁ sw_result[0] short [3] n28feb2
(9= sw_result short a70
()= sw_result short 906
(=)= sw_result short 042
a4 [= sw_result[1] short [3] O28febd
()= sw_result short 1086
(=)= sw_result short 1131
(9= sw_result short 1176
4 bﬁ sw_result[2] short [3] 2 8febe
(=)= sw_result short 1302
(9= sw_result short 1356
(9= sw_result short 1410 v
< >
Hame : hw result o

Figure 10. Software computed result

3-1-8. Click on the Step Into (F5) button (=) to traverse into the matrixmul module, the one that we
will synthesize, and observe that the execution is paused on line 75 of the module.

Zynq 1-8 www.xilinx.com/university (' XI LINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

3-1-9. Using the Step Over (F6) several times, observe the computed results. Once satisfied, you can
use the Step Return (F7) button to return from the function.
3-1-10. The program execution will suspend at line 105 as we had set a breakpoint. Observe the
software and hardware (function) computed results in the Variables view.
(x)= Yariables 3% 9 Breakpoints | 01ii Registers| @) Modules = O
Tl R
Mame Type Value (]
4 (= hw_result[0] short [3] x28fecd
()= hw_resull short a70
()= hw_resull short 406
(9= hw_resull short 242
- = hw_result[1] short[3] x28feca
- (= hw_result[2] short[3] Ox28fed
(= err_cnt int]
. = in_mat_b char [3][3] x28fedt
4 [= sw_result short [3][3] Ox28feb2
4 = sw_result[0] short[3] Ox28feb2
()= sw_result short 270
()= sw_result short 1]
()= sw_result short 942
o~ nrai [v rm L T T 4
£ >
Figure 11. Computed results
3-1-11. Set a breakpoint on line 134 (return err_cnt;), and click on the Resume button.
The execution will continue until the breakpoint is encountered. The console window will show
the results as seen earlier (Figure 7).
3-1-12. Press the Resume button or Terminate button to finish the debugging session.
Synthesize the Design Step 4
4-1. Switch to Synthesis view and synthesize the design with the defaults. View
the synthesis results and answer the question listed in the detailed section
of this step.
4-1-1. Switch to the Synthesis view by clicking [* | 2¥Mthesis | 5 the tools bar.
4-1-2. Select Solution > Run C Synthesis > Active Solution or click onthe ¥ button to start the
synthesis process.
4-1-3. When synthesis is completed, the Synthesis Results will be displayed along with the Outline pane.

Using the Outline pane, one can navigate to any part of the report with a simple click.

£ XILINX www.xilinx.com/university Zynq 1-9

Xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab

Lab Workbook

=| matrixmul_csim.log Ll matrixmul_test.cpp =0 Synthesis(solutionl) &3

Synthesis Report for ‘matrixmul’

=1 Synthesis(solutionl) &2

Synthesis Report for ‘matrixmul’

General Information

Date:

Version:
Project:
Solution:
Product family:

Target device:

Sun Dec 20 05:35:43 2015

2015.4 (Build 1412921 on Wed Nov 18 09:38:55 AM 20153)
matrixmul.prj

solutionl

Zyng

xc7z020clg484-1

Date: Sun Dec 20 08:45:52 2015

Version: 20154 (Build 1412921 on Wed Nov 18 09:58:35 AM 2015)
Project: matrixmul.prj

Solution: solutionl

Product family: zyng
Target device: xc7z010clg400-1

Performance Estimates

= Timing (ns)

El Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 834 125

= Latency (clock cycles)

= Summary
Latency Interval

min max min max Type

106 106 107 107 none

Performance Estimates

=l Timing (ns)

= Summary
Clock Target Estimated Uncertainty
ap_clk 8.00 6.38 1.00

= Latency (clock cycles)

= Summary
Latency Interval

min max min max Type

133 133 134 134 none

Figure 12. Report view after synthesis is completed

4-1-4,
accessible.

L Explorer &2 = 8

4 2= matrixmul.prj
> [l Includes
> = Source
» flm Test Bench
= solution1
4 % constraints
9 directives.tcl
S script.tel
4 [= csim

[

> (= build
» = report
4 =5 syn

4 (= report

4 = systemc
|.¢| matrixmul_mac_muladd_8s_8s_16ns_16_1.h
L& matrixmul.cpp
|.¢| matrixrmul.h

4 (= verilog
ari! matrixmul_mac_muladd_8s_8s_16ns_16_1.v
it matrixmul.v

a (= vhdl
ari! matrixmul_mac_muladd_8s_8s_16ns_16_1.vhd
wr matrixmul.vhd

If you expand solutionl in Explorer, several generated files including report files will become

Figure 13. Explorer view after the synthesis process

Note that when the syn folder under the Solution1 folder is expanded in the Explorer view, it will
show report, systemC, verilog, and vhdl sub-folders under which report files, and generated
source (vhdl, verilog, header, and cpp) files. By double-clicking any of these entries will open the

corresponding file in the information pane.

Also note that if the target design has hierarchical functions, reports corresponding to lower-level

functions are also created.

4-1-5.
latency in the design.

The Synthesis Report shows the performance and resource estimates as well as estimated

Zyng 1-10

www.xilinx.com/university
Xup@xilinx.com

& XILINX.

© copyright 2015 Xilinx

Lab Workbook

Vivado HLS Design Flow Lab

4-1-6. Using scroll bar on the right, scroll down into the report and answer the following question.

Question 1

Estimated clock period:

Worst case latency:
Number of DSP48E used:
Number of FFs used:

Number of LUTs used:

4-1-7. The report also shows the top-level interface signals generated by the tools.

Interface

ap_clk

ap_rst
ap_start
ap_done
ap_idle
ap_ready
a_address)
a_cel
a_gl
b_address)
b_cel
b_q0
res_address)
res_cel
res_wel)
res_dl

out

Bits

=B B (R (- N R R "= RO - NP RS (PR P (Y Y

Protocol
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_ctrl_hs
ap_memory
ap_memory
ap_mermoery
ap_memory
ap_memory
ap_mermoery
ap_memory
ap_memory
ap_mermory

ap_rnemory

Source Object
matrixmul
matrizxmul
matrixmul
matrixmul
matrizxmul
matrizmul

a

[="]

=i = N = R - T]

res

res

res

res

Figure 14. Generated interface signals

C Type
return value
return value
return value
return value
return value
return value

array
array
array
array
array
array
array
array
array

array

You can see ap_clk, ap_rst and ap_ idle and ap_ready control signals are automatically added to
the design by default. These signals are used as handshaking signals to indicate when the
design is ready to begin the next computation command (ap_ready), when the next computation
is started (ap_start), and when the computation is completed (ap_done). Other signals are
generated based on the input and output signals in the design and their default or specified

interfaces.

Analyze using Analysis Perspective

Step 5

5-1. Switch to the Analysis Perspective and understand the design behavior.

5-1-1. Select Solution > Open Analysis Perspective or click on (

to open the analysis viewer.

%> Debug [s | Synthesis &= Analysis |)

The Analysis perspective consists of 5 panes as shown below. Note that the module and loops
hierarchies are displayed unexpanded by default.

& XILINX.

www.xilinx.com/university
Xup@xilinx.com

© copyright 2015 Xilinx

Zyng 1-11

Vivado HLS Design Flow Lab Lab Workbook

The Module Hierarchy pane shows both the performance and area information for the entire
design and can be used to navigate through the hierarchy. The Performance Profile pane is
visible and shows the performance details for this level of hierarchy. The information in these two
panes is similar to the information reviewed earlier in the synthesis report.

The Performance view is also shown in the right-hand side pane. This view shows how the
operations in this particular block are scheduled into clock cycles.

o0 The left-hand column lists the resources

0 The top row lists the control states (cO to c5) in the design. Control states are the internal
states used by High-Level Synthesis to schedule operations into clock cycles. There is a
close correlation between the control states and the final states in the RTL Finite State
Machine(FSM) but there is no one-to-one mapping

Fle Edit Project Solution Window Help
% SRgG-FRI&® . ¥ Debug |s | Synthesis
#] Module Hierarchy = O |[4) synthesis(solutionl) | Performance(solution1) 4 =0
BRAM DSP FF LUT Latend||
Curren t Module : matrixmul
© matrivmul 0 16 B0 106
| operation\Control Step | co c1 2 e ca cs
1-23 FRow |
< >
Ilgﬁperfwmanc % | Resourcepr| = B
Pipelined Latency Initiation In
4 © matrixmul - 06 107
® Row o 105
; ;

Figure 15. Analysis perspective

5-1-2. Click on loop Row to expand, and then click on sub-loops Col and Product to fully expand the
loop hierarchy.

Zyng 1-12 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook

Vivado HLS Design Flow Lab

5-1-3.

Current Module

: matrixmul

| oneration\Control S. | co | c1 | c2 | 3 | ca | c5 |

[I O B e e e e O R S
NROWONOUAWwNRoPENTARWNE

23 tmp B (+
Figure 16. Performance matrix showing top-level Row operation

- Row
i(phi mux)

i 1(+)
tmp s(-)
SCol

j 1(+)
tmp 2(+)
-IProduct

kE 1(+)

exitcond2 (icmp)

Jj(phi mux)
exitcondl (icmp)

res load(phi...
k(phi mux)

node 40 (write)
exitcond (icmp)

From this we can see that in the first state (C1) of the Row the loop exit condition is checked and
there is an add operation performed. This addition is likely the counter to count the loop iterations,
and we can confirm this.

The operations resulting from the loops are colored yellow, the standard operations are colored
purple, and sub-blocks will be colored green (in our case we don’t have any lower-level functions).

Select the purple block for the adder in state C1, right-click and select Goto Source.

The source code pane will be opened, highlighting line 75 where the Row loop index is being
tested and incremented. In the next state (C2) it starts to execute the Col loop.

& XILINX.

www.xilinx.com/university Zyng 1-13
Xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Current Module : matrixmul

| Oneration\Contral S...| co | | c2 |l ca |l ca |l cs
1 EHRow
2 i(phi mux)
3 exitcond?2 (icmp)

i 1(+)

5 tmp s(-)
6 SCol
7 j (phi mux)
8 exitcondl (icmp)
9 J 1(+)
10 tmp 2 (+)
11 SIProduct
12 res load(phi...
13 k(phi mux)
14 node 40 (write)
15 exitcond (icmp)
16 k 1(+)
17 tmp 4 (+)
18 tmp 11(-)
19 tmp 12 (+)
20 a load(read)
21 b load(read)
22 tmp 7 (*)
23 tmp 8 (+)

Performance | Resource
[T Properties | [£ C Source &2

File: C\xup\hls\labs\labl\matrixmul.cpp

73
74 [/ lterate over the rows of the A matrix
75 Row: for(inti =0; i < MAT_A ROWS:; i++){

76 // Iterate over the columns of the B matrix
77 Col: for(intj = 0;] < MAT_B_COLS; j++) {
78 // Do the inner product of a row of A and col of B

79 res[i][jl = 0;

80 Product: for(int k = 0; k < MAT_B_ROWS; k++) {
81 res[i]fi] += a[illk] * blk][];

g2 1

83 1}

84 }

Figure 17. Cross probing into the source file

5-1-4. In C2, click on the purple blocks for the operations (e.g. p_addr8) in the Col loop to see the
source code highlighting (line 79) update.

5-1-5. Expand the Performance Profile hierarchy and note iteration latencies, Trip counts, and overall
latencies for each of the nested loops.

Zyng 1-14 www.xilinx.com/university i
Xup@xilinx.com iA XI LINxs

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

£F Performance Profile 22 | . Resource Profile =

Pipelined Latency Initiation Interval [teration Latency Trip count

4 @ matrixmul - 106 107 - -
4 o Row no 105 - 35 3

4 o (ol no 33 - 11 3

@ Product no 9 - 3 3

Figure 18. The Performance Profile output

The number of iterations can also be noted by holding the mouse over the loop in the
Performance view (a dialog box shows the loop statistics).

S Product

res load(phi... Property Value
k(phi mux) Pipelined: no

node 40 (write)

: = Latency: 9
exitcond (1cmp)

Initiation Interval:

k 1(+)

tmp 4 (+) Iteration Latency: 3
tmp 11 (-) Trip count: 3
tmp 12 (+)

(
a load(read)
b load(read)

Figure 19. Loop information

Note that the initiation interval does not have a number as this loop is not pipelined.

5-1-6. Click next to the matrixmul entry in the Module Hierarchy and observe that the entry is not
expanded, since there are no lower-level functions defined in the design.

5-1-7. Select the Resource Profile tab and observe various resources and where they have been used.
You can expand Expressions and Registers sections to see how the resources are being used by
which operations.

£" Performance Profile || . Resource Profile 23 B T O
BRAJI:A DSP FF LUT BitsPO BitsPl BitsP2 Banks/Depth
4 ® matrixmul; 0 1 61 67
- g2k [/O Ports(3) 32
T2 Instances(0) 0 0 0 0
B Memories(D) 0 0 0 0 0
: Y, Expressions{13) 0 1 0 44 61 58 0
- i Registers(13) 61 64
FIFO(O) 0 0 0 0 0
- Multiplexers(5) 0 0o 23 23 0
Figure 20. The Resource Profile tab view

5-1-8. In the Performance Matrix tab, select the Resource tab (at the bottom of the page), and expand
Expressions, 1/0 Ports, and Memory Ports entries to view the type of operations, resources
used, and in which state they are being used.

= www.xilinx.com/universit Zynq 1-15

& XILINX. Y yn

Xup@xilinx.com
© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

|Resource\Control Sten| co | c¢1 | c2 | c3 | ca | cs
i EI/0 Ports
2 a(pl) read
3 res (p0) write
4 b(p0) read
5 EMemory Ports
6 b (p0) read
7 a (p0) read
8 res (p0) write
g HExpressions
10 il fu 127 =
11 i phi fu 79 phi mux
12 tmp s fu 1495 =
13 exitcond2 fu 121 icmp
14 tmp 2 fu 171 +
15 j 1 fu 16l
16 j phi fu 90 phi mux
17 exitcondl fu 155 icmp
18 k 1 fu 187 =
19 tmp 12 fu 225 +
20 tmp 4 fu 197 +
21 k phi fu 114 phi mux
22 res load phi f£... phi mux
23 tmp 11 fu 2195 =
24 exitcond fu 181 icmp
25 tmp 8 fu 247 +
26 tmp 7 fu 241 w

Performance | Resource

Figure 21. The Resource tab

5-1-9. Click on the Synthesis tool bar button to switch back to the Synthesis view.

Run C/RTL Co-simulation Step 6

6-1. Run the C/RTL Co-simulation with the default settings of VHDL. Verify that
the simulation passes.

6-1-1. Select Solution > Run C/RTL Cosimulation or if you are in the synthesis view, click on the
toolbar button to open the dialog box so the desired simulations can be selected and run.

A C/RTL Co-simulation Dialog box will open.

6-1-2. Make sure the VHDL option is selected.

This allows the simulation to be performed using VHDL. To perform the verification using Verilog,
you can select Verilog and choose the simulator from the drop-down menu or let the tools use the
first simulator that appears in the PATH variable.

Zyng 1-16 www.xilinx.com/university i
Xup@xilinx.com i; Xl LINX;

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

g Co-simulation Dialog &J

C/RTL Co-simulation

Verilog/VHDL Simulator Selection

Auto -

RTL Selection
() Verilog (@ VHDL

Options
[Setup Only

Dump Trace

["] Optimizing Compile

["] Reduce Diskspace

|
Compiled Library Location

Input Arguments

[] Do not show this dialog box again.

l oK] l Cancel

b

Figure 22. A C/RTL Co-simulation Dialog

6-1-3. Click OK to run the VHDL simulation.

The C/RTL Co-simulation will run, generating and compiling several files, and then simulating the
design. It goes through three stages.

o First, the VHDL test bench is executed to generate input stimuli for the RTL design

« Second, an RTL test bench with newly generated input stimuli is created and the RTL
simulation is then performed

. Finally, the output from the RTL is re-applied to the VHDL test bench to check the results

In the console window you can see the progress and also a message that the test is passed.
This eliminates writing a separate testbench for the synthesized design.

i www.xilinx.com/university Zyng 1-17
f‘ XI LINX& Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

Starting C/RTL cosimulation ...
C:/Xilinx/Vivado HLS/2015.4/bin/vivado_hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/cosim.tcl
@I [HLS-10] Running 'C:/Xilinx/Vivado HLS/2015.4/bin/unwrapped/winéd.o/vivado_hls.exe’
for user ‘parimalp’ on host ‘xsjparimalp31’ (Windows NT_amd64 version 6.1) on Sun Dec 20
in directory 'C:/xup/hls/labs/labl’
@I [HLS-18] Opening project 'C:/xup/hls/labs/labl/matrixmul.prj’.
@I [HLS-18] Opening solution 'C:/xup/hls/labs/labl/matrixmul.prj/solutionl”.
@I [SYN-201] Setting up clock 'default' with a period of 1@ns.
@I [HLS-18] Setting target device to 'xc7z020clgd84-1"
@I [SIM-47] Using XSIM for RTL simulation.
@I [SIM-14] Instrumenting C test bench ...
Build using "C:/Xilinx/Vivado HLS/2015.4/msys/bin/g++.exe"
Compiling apatb_matrixmul.cpp
Compiling matrixmul.cpp pre.cpp.tb.cpp
Compiling matrixmul test.cpp_pre.cpp.-tb.cpp
Generating cosim.tv.exe
@I [SIM-302] Starting C TB testing ...

{

{870,906,942}
{1086,1131,1176}
{1302,1356,1410}

}
Test passed.

wRRRER yoim v2015.4 (64-bit)
#%%% SW Build 1412921 on Wed Nov 18 ©9:43:45 MST 2015
#%%% TP Build 1412160 on Tue Nov 17 13:47:24 MST 2015
** Copyright 1986-2015 Xilinx, Inc. All Rights Reserved.

source xsim.dir/matrixmul/xsim_script.tcl

xsim {matrixmul} -maxdeltaid 18000 -autoloadwcfg -tclbatch {matrixmul.tcl}
Vivado Simulator 2015.4

Time resolution is 1 ps

source matrixmul.tcl

run all

Note: simulation done!

Time: 1245 ns TIteration: 1 Process: /apatb_matrixmul top/generate_sim_done_proc
Failure: MORMAL EXIT (note: failure is to force the simulator to stop)

Time: 1245 ns TIteration: 1 Process: /apatb_matrixmul top/generate_sim_done_proc
$finish called at time : 1245 ns

quit

INFO: [Common 17-286] Exiting xsim at Sun Dec 20 06:04:02 2015...

@I [SIM-316] Starting C post checking ...

{

{870,906,942}

{1086,1131,1176}

{1302,1356,1410}

¥

Test passed.

@I [SIM-10@8] *** C/RTL co-simulation finished: PASS ***

Figure 23. Console view showing simulation progress
6-1-4. Once the simulation verification is completed, the simulation report tab will open showing the

results. The report indicates if the simulation passed or failed. In addition, the report indicates the
measured latency and interval.

Zyng 1-18 www.xilinx.com/university i
Xup@xilinx.com iA XI LINxs

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

Since we have selected only VHDL, the result shows the latencies and interval (initiation) which
indicates after how many clock cycles later the next input can be provided. Since the design is
not pipelined, it will be latency+1 clock cycles.

Cosimulation Report for 'matrixmul’ Cosimulation Report for ‘matrixmul’
Result Result
Latency Interval Latency Interval
RTL Status min avg max min avg max RTL Status min avg max min avg max
VHDL Pass 106 106 106 O O 0| VHDL Pass 133 133 133 0 O 0
Verilog NA NA NA NA NA NA Na | Verilog NA ~ NA NA NA NA NA NA
(a) ZedBoard (b) ZYBO

Figure 24. Co-simulation results

Viewing Simulation Results in Vivado Step 7

7-1. Run Verilog simulation with Dump Trace option selected.

7-1-1. Select Solution > Run C/RTL Cosimulation or click on the ¥ button in the Synthesis view to
open the dialog box so the desired simulations can be run.

7-1-2. Click on the Verilog RTL Selection option, leaving Verilog/VHDL Simulator Section option to Auto.

Optionally, you can click on the drop-down button and select the desired simulator from the
available list of XSim, 1Sim, ModelSim, and Riviera.

7-1-3. Select All for the Dump Trace option and click OK.

¢ Co-simulation Dialog &J

C/RTL Co-simulation

-

Verilog/VHDL Simulator Selection

Auto -

RTL Selection

@ Verilog () VHDL
Options

[Setup Only

Dump Trace |all b

Figure 25. Setting up for Verilog simulation and dump trace

When RTL verification completes the co-simulation report automatically opens showing the
Verilog simulation has passed (and the measured latency and interval). In addition, because the
Dump Trace option was used and Verilog was selected, two trace files entries can be seen in the
Verilog simulation directory

i www.xilinx.com/university Zyng 1-19
f‘ XI LINX Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

4 = 5im

> 1= autowrap

: = report

=

4 (= verilog
sl AESL_automem_av
rrd AESL automem_b.v
sl AESL_automem_res.v
' check_sim.tcl
st matrixmul.autotb.v
E matrixmul.performance.result.transactionxml
= matrixmul.prj
=| matrixmul.result.lat.rb
A matrixmul.tcl
sl matrixmul.v
=| matrixmul.wdb
i run_sim.tcl
= run_xsim.bat
=| sim.bat
=| xelab.log
=| xelab.pb
=| xsim.jou

¥xsim.log

» (= xsim.dir

Figure 26. Explorer view after the Verilog RTL co-simulation run

The Cosimulation report shows the test was passed for Verilog along with latency and Interval
results. It also shows the SystemC results of the previous run.

Cosimulation Report for ‘'matrixmul’ Cosimulation Report for ‘'matrixmul’
Result Result
Latency Interval Latency Interval
RTL Status min avg max min avg max RTL Status min avg max min avg max
VHDL Pass 106 106 106 0 0 0 VHDL Pass 133 133 133 0 0 0
Verilog ~ Pass 106 106 106 0 0 0| werilog Pass 133 133 133 0 0 0
(a) ZedBoard (b) ZYBO

Figure 27. Cosimulation report

7-2. Start Vivado 2015.4 and enter Tcl commands to open and view the dumped
traces.

7-2-1. Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 > Vivado 2015.4 to start
the Vivado Design Suite program.

7-2-2. In the Vivado Tcl console, enter the following commands one by one:

cd c:/xup/hls/labs/labl/matrixmul.prj/solution1/sim/Verilog
current_fileset

Zyng 1-20 www.xilinx.com/university i
Xup@xilinx.com iA XI LINXs

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

open_wave_database matrixmul.wdb
create_wave_config
add_wave /

The above commands will load the project, simulation results, and open the waveform.

7-2-3. In the waveform window, click on the full zoom tool button (=) to see the entire simulation of
one iteration.

7-2-4. Select a_address0 in the waveform window, right-click and select Radix > Unsigned Decimal.
Similarly, do the same for b_address0 and res_address0 signals.

7-2-5. Similarly, set the a_g0, b_q0, and res_dO0 radix to Signed Decimal.

7-2-6. Scroll the waveform little, so you can view the main interface signals (ap_*).

E matrixmulwcfg® x o
1,215,400 ns

Figure 28. Full waveform showing iteration worth simulation
Note that as soon as ap_start is asserted, ap_idle has been de-asserted indicating that the

design is in computation mode. The ap_idle signal remains de-asserted until ap_done is
asserted, indicating completion of the process. This indicates 106 clock cycles latency.

7-2-7. Using the Zoom In button, view area of ~120 ns and ~550 ns.

i www.xilinx.com/university Zyng 1-21
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

" a_address0[3:0]
1 a_ce0

™ a_qo

" b_addr

% b_ced

Figure 29. Zoomed view

Observe that the design expects element data by providing a_address0, a_ceo, b_address0,
b_ceo signals and outputs result using res_dO0, res_we0, and res_ce0.

7-2-8. View various part of the simulation and try to understand how the design works.
7-2-9. When done, close Vivado by selecting File > Exit. Click OK if prompted, and then Discard to
close the program without saving.
Export RTL and Implement Step 8
8-1. In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.
8-1-1. In Vivado-HLS, select Solution > Export RTL or click on the # putton to open the dialog box so
the desired implementation can be run.
An Export RTL Dialog box will open.
Export RTL
Format Selection
IP Catalog i v | Configuration...
Options
[Evaluate | Verilog
[Do not show this dialog box again.
Figure 30. A Export RTL Dialog box
With default settings (shown above), the IP packaging process will run and create a package for
the Vivado IP Catalog. Other options, available from the drop-down menu, are to create IP
Zynq 1-22 www.xilinx.com/universit =
ynd / & XILINX.

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

packages for System Generator for DSP/System Generator for DSP using ISE, create a pcore for
Xilinx Platform Studio, or create a Synthesized checkpoint.

8-1-2. Click on the drop-down menu of the Options field, and select VHDL and click on the Evaluate
check box as the preferred language and to run the implementation tool.

8-1-3. Click OK and the implementation run will begin.

You can observe the progress in the Vivado HLS Console window. It goes through several
phases:
0 Exporting RTL as an IP in the IP-XACT format
0 RTL evaluation, since we selected Evaluate option
0 Goes through Synthesis
0 Goes through Placement and Routing

Starting export RTL ...

C:/Xilinx/Vivado HLS/2015.4/bin/vivado_hls.bat C:/xup/hls/labs/labl/matrixmul.prj/solutionl/export.tcl

@I [HLS-18] Running 'C:/Xilinx/Vivado HLS/2015.4/bin/unwrapped/win64.o/vivado_hls.exe’
for user ‘parimalp’ on host 'xsjparimalp31’ (Windows NT_amd64 version 6.1) on Sun Dec 20 @
in directory 'C:/xup/hls/labs/labl’

@I [HLS-18] Opening project 'C:/xup/hls/labs/labl/matrixmul.prj’.

@I [HLS-1@] Opening solution 'C:/xup/hls/labs/labl/matrixmul.prj/solutionl’.

@I [SYN-201] Setting up clock 'default’ with a period of 1@ns.

@I [HLS-1@8] Setting target device to 'xc7z020clgd84-1"

@I [IMPL-8] Exporting RTL as an IP in IP-XACT.

@I [IMPL-8] Starting RTL evaluation using Vivado ...
C:\xup\hls\labs\labl\matrixmul.prj\solutionl\impl\vhdl»>vivado -notrace -mode batch -source run_vivado.tcl

wrpsk% Vivado v2015.4 (64-bit)
#%%% Gl Build 1412921 on Wed Nov 18 89:43:45 MST 2015
#*k%% TP Build 1412160 on Tue Nov 17 13:47:24 MST 2015
** Copyright 1986-2015 Xilinx, Inc. All Rights Reserved.

source run_vivado.tcl -notrace

[Sun Dec 20 ©6:55:30 2015] Launched synth_1...
Run output will be captured here: C:/xup/hls/labs/labl/matrixmul.prj/solutionl/impl/vhdl/project.runs/synt

Implementation tool: Xilinx Vivado v.20815.4

Device target: xc7z020c1g484-1
Report date: Sun Dec 20 06:57:47 -0800 2015
#=== Resource usage ===

SLICE: 34

LUT: 107

FF: 60

DSP: e

BRAM: e

SRL: e

#=== Final timing ===

CP required: 10.000

CP achieved: 7.522

Timing met
INFO: [Common 17-286] Exiting Vivado at Sun Dec 20 B6:57:47 2815...

Figure 31. Console view

When the run is completed the implementation report will be displayed in the information pane.

i www.xilinx.com/university Zyng 1-23
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab

Lab Workbook

Export Report for ‘matrixmul’

General Information

Report date:
Device target:

Sun Dec 20 06:57:47 -0800 2015
| xc7z020cig48a-1 |
Implementation tool: Xilinx Vivado v.2015.4

Resource Usage

VHDL
SLICE 34
LUT 107
FF 60
DSP
BRAM
SRL

Final Timing
VHDL

CPrequired 10.000

CP achieved 7.522

(&) ZedBoard

Export Report for ‘'matrixmul’

General Information

Report date:
Device target:

Sun Dec 20 09:02:20 -0800 2015
xc7z010clg400-1
Implementation tool: Xilinx Vivado v.2015.4

Resource Usage

VHDL
SLICE 35
LUT 107
FF 77
DSP
BRAM
SRL

Final Timing
VHDL

CP required 8.000

CP achieved | 5.943

(b) ZYBO

Figure 32. Implementation results in Vivado HLS (Zedboard and Zybo)

Observe that the timing constraint was met, the achieved period (7.522 [ZedBoard], 5.943 [Zybo]

ns), and the type and amount of resources used.

Xup@xilinx.com

8-1-4. Collapse the Explorer view and observe that impl folder is created under which ip, report, Verilog,
and vhdl sub-folders are created.
[Explorer &3
4 =5 matrixmul.prj
» m Includes
+ S Source
> fi= Test Bench
a4 Y= solution1
- & constraints
s = csim
= impl
s = sim
» = syn
Figure 33. Explorer view after the RTL Export run
8-1-5. Expand the Verilog and vhdl sub-folders and observe that the Verilog sub-folder only has the rtl
file whereas the vhdl sub-folder has several files and sub-folders as the synthesis and
implementation runs were made for it.
It includes project.xpr file (the Vivado project file), matrixmul.xdc file (timing constraint file),
project.runs folder (which includes synth_1 and impl_1 sub-folders created by the synthesis and
implementation runs) among others.
Zyng 1-24 www.xilinx.com/university

& XILINX.

© copyright 2015 Xilinx

Lab Workbook Vivado HLS Design Flow Lab

a4 = solution1
- 4 constraints
» = csim
4 = impl
=21
» = report
+ = verilog
4 (= yhdl
El autoimpl.log
W extraction.tcl
impl.bat

rid matrixmul_mac_muladd_8s_8s_16ns_16_1.vhd
= matrixmul.result.rb
it matrixmul.vhd

= matrixmul.xdc

projectxpr
4 run_vivado.icl
W

settings.icl
=| vivado.jou
El vivado.log

: = project.cache
> = projecthw

4 (= project.runs
» = impl_1
» = synth_1

4 = report
=l matrixmul_timing_routed.rpt

£l matrixmul_timing_synth.rpt
=l matrixmul_utilization_routed.rpt

=l matrixmul_utilization_synth.rpt
» = sim_ths

Figure 34. The implementation directory

8-1-6. Expand the ip folder and observe the IP packaged as a zip file
(xilinx_com_hls_matrixmul_1_0.zip), ready for adding to the Vivado IP catalog.

i www.xilinx.com/university Zyng 1-25
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Vivado HLS Design Flow Lab Lab Workbook

4 Y= solution1
- 4 constraints
: = csim
4 = impl
4 (= 1p
|5l autoimpl.log
= auxiliary.xmil
|=l componentxml
=| pack.bat
" run_ippack.icl

=| vivado.jou
vivado.log
= wilinx_com_hls_matrixmul_1_0.zip

I

constraints
bd

doc

- example
hdl

misc

(VT VT T VT R VT

- subcore
» = xgui

» = report

+ = verilog

» (= vhdl

Figure 35. The ip folder content

8-1-7. Close Vivado HLS by selecting File > EXxit.

Conclusion

In this lab, you completed the major steps of the high-level synthesis design flow using Vivado HLS. You
created a project, adding source files, synthesized the design, simulated the design, and implemented the
design. You also learned how to use the Analysis capability to understand the scheduling and binding.

Answers

1. Answer the following questions:

Estimated clock period: 8.34 ns (ZedBoard) / 6.38 ns
Worst case latency: 106 clock cycles (ZedBoard) / 133 clock cycles (ZYBO)
Number of DSP48E used: 1
Number of FFs used: 61 (ZedBoard) / 78 (ZYBO)
Number of LUTs used: 68 (ZedBoard) / 69 (ZYBO)
Zyng 1-26 www.xilinx.com/university i: X".INX;

Xup@xilinx.com
© copyright 2015 Xilinx

