Lab Workbook Improving Performance Lab

Improving Performance Lab

Introduction

This lab introduces various techniques and directives which can be used in Vivado HLS to improve
design performance. The design under consideration accepts an image in a (custom) RGB format,
converts it to the Y'UV color space, applies a filter to the Y’UV image and converts it back to RGB.

Objectives

After completing this lab, you will be able to:

e Add directives in your design

e Understand the effect of INLINE directive

e Improve performance using PIPELINE directive

e Distinguish between DATAFLOW directive and Configuration Command functionality
Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 6 primary steps: You will create a new project using Vivado HLS command prompt,
analyze the created project and generated solution, turn off inlining and apply the TRIPCOUNT,
PIPELINE, and DATAFLOW directives and command configuration, and finally export and implement the
design.

General Flow for this Lab

Step 1:

Create a
Project

=

Step 2:

Analyze
Project and
Results

Step 3:

:> Apply
TRIPCOUNT

Directive

Step 4:

Apply
PIPELINE
Directive

Step 5:

Apply
DATAFLOW
Directive

using CLI

Step 6:

Export &
Implement
the Design

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2015 Xilinx

Zynq 2-1

& XILINX.

Improvin

g Performance Lab

Lab Workbook

Create a Vivado HLS Project from Command Line

Step 1

1-1. Validate your design using Vivado HLS command line window. Create a

n

ew Vivado HLS project from the command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado HLS > Vivado HLS 2015.4 Command Prompt.

1-1-2. Inthe Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab2.

1-1-3. A self-checking program (yuv_filter_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. You can examine the contents of these files and the
project directory. In the Vivado HLS Command Prompt, type make to compile and execute the
program.

F

& Vivado HLS 2015.4 Command Prompt

C:\Xilinx\Uivado_HLS\20815.4>cd c:\xup\hls\labs\lab2

c:\xup\hls\labs\lab2>make
gcc -ggdb -w -I/c/Hilinx/Uivado_HLS/2015.4/include

er.c
gee -ggdb -w -I/c/Xilinx/Uivado_HL$/2015.4/include

_filter_test.c

gcc -ggdb -w -I/c/Hilinx/Uivado_HLS/2015.4/include
.c

gece -lm yuvu_filter.o yuu_filter_test.o image_aux.o
fyuv_filter

Test passed!

c:\xup\hls\labs\lab2>_

igure 1. Validating the design

-¢ -0 yuv_filter.o yuu_filt
-¢ -0 yuv_filter_test.o yuv
-¢c -0 image_aux.c image_aux

-o yuv_filter

Note that the source files (yuv_filter.c, yuv_filter_test.c, and image_aux.c) were compiled, then
yuv_filter executable program was created, and then it was executed. The program tests the
design and outputs Test Passed message.

1-1-4. A Vivado HLS tcl script file (yuv_filter.tcl) is provided and can be used to create a Vivado HLS
project. Type vivado_hls —f zed_yuv_filter.tcl in the Vivado HLS Command Prompt window to
create the project targeting the ZedBoard or type vivado_hls —f zybo_yuv_filter.tcl in the
Vivado HLS Command Prompt window to create the project targeting the Zybo.

The project will be created and Vivado HLS.log file will be generated.

1-1-5. Open the vivado_hls.log file from c:\xup\hls\labs\lab2 using any text editor and observe the
following sections:

o0 Creating directory and project called yuv_filter.prj within it, adding design files to the project,
setting solution name as solutionl, setting target device (Zyng-z020 for ZedBoard or Zyng-
z010 for Zybo), setting desired clock period of 10 ns (for ZedBoard) or 8 ns (for Zybo), and
importing the design and testbench files (Figure 2).

0 Synthesizing (Generating) the design which involves scheduling and binding of each
functions and sub-function (Figure 3).

Zyng 2-2 www.xilinx.com/university i' XILINX

Xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

(0]

Generating RTL of each function and sub-function in SystemC, Verilog, and VHDL languages
(Figure 4).

Vivado (TM) HLS - High-Level Synthesis from C, C++ and SystemC
Version 2015.4

Build 1412921 on Wed Nowv 18 09:58:55 AM 2015

Copyright (C) 2015 Xilinx Inc. All rights reserved.

@1

'C
ve

@1

L]

[
@1
@1
@1
@1
@1

L]

[
@1
@1
@1
@1
@1
@1

Fig

[HLS-10] Running
:/¥ilinx/vVivadoe HLS/2015.4/bin/unwrapped/winé4.o/vivade hls.exe’
for user 'parimalp' on host "xsjparimalp3l' (Windows NT amdéd
rsion 6.1) on Wed Dec l6 06:44:24 -0800 2015
in directory 'C:/xup/hls/labs/lab2’
[HLS-10] cCreating and opening project
:/xup/hls/labs/lab2/yuv_filter.prj'.
[HLS-10] Adding design file "yuv filter.c' to the project
[HLS-10] Adding test bench file 'image aux.c' to the project
[HLS-10] Adding test bench file 'yuv filter test.c' to the project
[HL5-10] Adding test bench file 'test data' to the project
[HLS-10] cCreating and opening solution
:/xup/hls/labs/lab2/yuv_filter.prj/solutionl’.
[HLS-10] Cleaning up the solution database.
[HLS-10] Setting target device to 'xc7z020clg484-1"
[SYN-201] Setting up clock 'default' with a period of 10ns.
[HLS-10] Analyzing design file 'yuv filter.c'
[HLS-10] validating synthesis directives
[HLS-10] Starting code transformations

ure 2. Creating project and setting up parameters

£ XILINX www.xilinx.com/university Zynq 2-3

Xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

@I [HLS-10] Starting code transformations

@I [HLS-10] Checking synthesizability ...

@I [XFORM-€0Z] Inlining function 'yuv scale' into "vuv_ filter"
(vuv_filter.c:24) automatically.

@I [XFORM-401] Performing if-conversion on hyperblock from
(yuv_filter.c:92:33) to (yuv_filter.c:9%2:27) in function 'yuvZrgb'...
converting 7 basic blocks.

@T [XFORM-11] Balancing expressions in function 'rgbZyuv'
(yuv_filter.c:30)...11 expression(s) balanced.

@I [HLS-111] Elapsed time: 6€.57 seconds; current memory usage: 91.9 MB.

@I [HLS-10] Starting hardware synthesis ...

@I [HLS-10] Synthesizing 'yuv filter' ...

@T [HLS-10] ———————— ==~~~
@I [HLS-10] -- Scheduling module ‘yuv filter rgb2yuv’

@I [HLS-10] —————————— =~
@I |[SCHED-11]| Starting scheduling ...

@I [[SCHED-11])| Finished scheduling.

@I [HLS-111] Elapsed time: 0.081 seconds; current memory usage: 93.5 MB.

@I [HLS-10] ———————— ===
@I [HLS-10] -- ExXploring micro-architecture for module 'yuv_ filter rgbZyuv'
BT [HLS—10] ———— oo
@I |[BIND-100]| Starting micro-architecture generation ...

@I |[BIND-101]| Performing variable lifetime analysis.

@I |[BIND-101]| Exploring resource sharing.

@I |[[BIND-101]| Binding ...

@T |[BIND-100]| Finished micro-architecture generation.

@I [HLS-111] Elapsed time: 0.056 seconds; current memory usage: 93.5 MB.

@I [HLS-10] ———————— ===
@I [HLS-10] -- Scheduling module ‘yuv_ filter yuva2rgb®'

BT [HLS—10] ———— oo o o
@I [SCHED-11] Starting scheduling ...

@I [SCHED-11] Finished scheduling.

@I [HLS-111] Elapsed time: 0.107 seconds; current memory usage: 94.3 MB.

Figure 3. Synthesizing (Generating) the design

@I [RTGEN-500] Setting interface mode on port 'yuv filter/V scale' to
'ap_none'.

@I [RTGEN-500] Setting interface mode on function 'yuv filter' to

'ap ctrl hs'.

@I [RTGEN-100] Finished creating RTL model for 'yuv filter'.

@I [HLS-111] Elapsed time: 0.342 seconds; current memory usage: 96.3 MB.

@I [RTMG-278] Implementing memory 'yuv_filter p yuv channels chl ram' using
block RAMs.

@I [HLS-10] Finished generating all RTL models.

@I |[[WSYSC-301] Generating RTL SystemC for 'yuv filter'.

@I |[WVHDL-304] Generating RTL VHDL for '"yuv_filter'.

@I |[WVLOG-307] Generating RTL Verilog for 'yuv filter'.

@I THLS-IIZ] Total ©lapsed time: ©.6BY seconds; peEak memory usage: 96.3 MB.

Figure 4. Generating RTL

1-1-6. Open the created project (in GUI mode) from the Vivado HLS Command Prompt window, by
typing vivado_hls —p yuv_filter.prj.

The Vivado HLS will open in GUI mode and the project will be opened.

Zynq 2-4 www.xilinx.com/university v
Xup@xilinx.com iA XI LINXm

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

Analyze the Created Project and Results Step 2

2-1.

Open the source file and note that three functions are used. Look at the
results and observe that the latencies are undefined (represented by ?).

2-1-1. InVivado HLS GUI, expand the source folder in the Explorer view and double-click yuv_filter.c
to view the content.

0 The design is implemented in 3 functions: rgb2yuv, yuv_scale and yuv2rgb.

o0 Each of these filter functions iterates over the entire source image (which has maximum
dimensions specified in image_aux. h), requiring a single source pixel to produce a pixel in
the result image.

0 The scale function simply applies individual scale factors, supplied as top-level arguments to
the Y’UV components.

o0 Notice that most of the variables are of user-defined (typedef) and aggregate (e.g. structure,
array) types.

0 Also notice that the original source used malloc () to dynamically allocate storage for the
internal image buffers. While appropriate for such large data structures in software, malloc()
is not synthesizable and is not supported by Vivado HLS.

0 A viable workaround is conditionally compiled into the code, leveraging the __ SYNTHESIS
macro. Vivado HLS automatically defines the _ SYNTHESIS _ macro when reading any code.
This ensure the original malloc() code is used outside of synthesis but Vivado HLS will use
the workaround when synthesizing.

2-1-2. Expand the syn > report folder in the Explorer view and double-click yuv_filter_csynh.rpt entry
to open the synthesis report.

2-1-3. Each of the loops in this design has variable bounds — the width and height are defined by
members of input type image_t. When variables bounds are present on loops the total latency of
the loops cannot be determined: this impacts the ability to perform analysis using reports. Hence,
“?" is reported for various latencies.
=) Synthesis(solutionl) = €] yuv_filter.c = Synthesis(solutionl) &2

Synthesis Report for "yuv_filter' Synthesis Report for ‘yuv filter'
General Information General Information
Date: Wed Dec 16 06:44:32 2015 Date: Fri Dec 18 09:18:30 2015
Version: 2015.4 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015) Version: 2015.4 (Build 1412921 on Wed Nov 18 09:58:55 AM 2015)
Project: yuv_filter.prj Project: yuv_filter.prj
Solution: solutionl Solution: solutionl
Product family: zynq Product family: zyng
Target device: xc7z020clg484-1 Target device: xc7z010clg400-1
Performance Estimates Performance Estimates
= Timing (ns) = Timing (ns)
= Summary = Summary
Clock = Target Estimated = Uncertainty Clock Target Estimated Uncertainty
ap_clk 10.00 846 1.25 ap_clk 8.00 697 1.00
= Latency (clock cycles) = Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min__max min _max Type min max min max Type
| ? ? ? ? none | [7 ? 7 none |
(a) ZedBoard (b) Zybo
Figure 5. Latency computation
i www.xilinx.com/university Zynq 2-5
& XILINX.

Xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook

Apply TRIPCOUNT Pragma Step 3

3-1. Open the source file and uncomment pragma lines, re-synthesize, and
observe the resources used as well as estimated latencies. Answer the
guestions listed in the detailed section of this step.

3-1-1. To assist in providing loop-latency estimates, Vivado HLS provides a TRIPCOUNT directive
which allows limits on the variables bounds to be specified by the user. In this design, such
directives have been embedded in the source code, in the form of #pragma statements.

3-1-2. Uncomment the #pragma lines (50, 53, 90, 93, 130, 133) to define the loop bounds and save the
file.

3-1-3. Synthesize the design by selecting Solution > Run C Synthesis > Active Solution. View the
synthesis report when the process is completed.

Performance Estimates i
Performance Estimates

-l Timing (ns)

=1 Timing (ns)
- Summary 5 Summary
Clock Target | Estimated | Uncertainty Clock Target Estimated Uncertainty
ap_clk 10.00 846 125 ap_clk 8.00 6.97 1.00
= Latency (clock cycles) =1 Latency (clock cycles)
= Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
881205 54078725 881206 54078726 none 921205 56536325 921206 56536326 none
(a) ZedBoard (b) Zybo

Figure 6. Latency computation after applying TRIPCOUNT pragma

3-1-4. Looking at the report, and answer the following question.

Question 1

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of BRAMSs used:

Number of FFs used:
Number of LUTs used:

3-1-5. Scroll the Console window and note that yuv_scale function is automatically inline into the
yuv_filter function.

Zynq 2-6 www.xilinx.com/university v
Xup@xilinx.com (A XI I—INXm

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

@I
@I
@I
@I [XFORM-11] Balancing expressions in function ‘rgb2yuv' (yuv filter.c:3@)...11 expression(s) balanced.
@I [HLS-111] Elapsed time: 6.992 seconds; current memory usage: 92.1 MB.

HLS-10] Checking synthesizability ...

Figure 7. Vivado HLS automatically inlining function

3-1-6. Observe that there are three entries — rgb2yuv.rpt, yuv_filter.rpt, and yuv2rgb.rpt under the syn
report folder in the Explorer view. There is no entry for yuv_scale.rpt since the function was
inlined into the yuv_filter function.

You can access lower level module’s report by either traversing down in the top-level report under
components (under Utilization Estimates > Details > Component) or from the reports container in
the project explorer.

3-1-7. Expand the Summary of loop latency and note the latency and trip count numbers for the
yuv_scale function. Note that the YUV_SCALE_LOOP_Y loop latency is 7X the specified
TRIPCOUNT, implying that 7 cycles are used for each of the iteration of the loop.

-l Latency (clock cycles)
= Summary
Latency Interval

min max min max Type
280401 17207041 280401 17207041 none

=l Detail
Instance
& Loop
Latency Initiation Interval
Loop Name min max I[teration Latency achieved target Trip Count Pipelined
- RGB2YUV_LOOP_X 280400 17207040 1402 ~ 8962 - - 200 ~ 1920 no
+ RGB2YUV_LOOP_Y 1400 8960 7 - - 200 ~ 1280 no
(a) ZedBoard
Performance Estimates
=l Timing (ns)
=l Summary
Clock Target Estimated Uncertainty
ap_clk 8.00 6.97 1.00
= Latency (clock cycles)
=1 Summary
Latency Interval
min max min max Type

320401 19664641 320401 19664641 none

= Detail
Instance
& Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- YUVZRGB_LOOP_X 320400 19664640 1602 ~ 10242 - - 200 ~ 1920 no
+ YUVZRGB_LOOP_Y 1600 10240 8 5 - 200 ~ 1280 no
(b) Zybo

i www.xilinx.com/university Zynq 2-7
i‘ XI LINXJ‘ Xup@xilinx.com

© Copyright 2015 Xilinx

XFORM-602] Inlining function 'yuv scale' into '"yuv filter' (yuv filter.c:24) automatically.
XFORM-401] Per‘?ormlng If-conversion on Hyper‘EIocE Trom vuy filter.c:92:33) to (yuv filter.c:92:27) in function 'yuv2rgb'... converting 7 basic blocks.

Improving Performance Lab Lab Workbook

Figure 8. Loop latency

3-1-8. You can verify this by opening an analysis perspective view, expanding the
YUV_SCALE_LOOP_X entry, and then expanding the YUV_SCALE_LOOP_Y entry.

Current Module : yuv filter

loneration\Controls._ | co | c1 | c2 |l ec3 |l ca | 5 | c6 | cz | c8 | co

in width read(r...

in height read(...

yuv filter rgb2...

V scale read(read)

U scale read(read)
Y scale read(read)

-IYUV SCALE LOOP X
% i(phi mux)
exitcondl i(icmp)
X (+)

11 tmp 2(+)

12 | BEYOV SCALE LOOP Y

13 v i(phi mux)

14 exitcond i(icmp)

15 v (+)

16 tmp 3(+)

17 Y (read)

18 U(read)

19 V (read)

20 tmp 7 i(¥)

21 tmp 1(*)

22 tmp 8 i (¥)

BEoo~Nouhwne

23 node 8% (write)
24 node 91 (write)
25 node 93 (write)

26 | vuv filter yuva...
27 node 102 (write)
28 | node 104 (write)

Figure 9. Design analysis view of the YUV_SCALE_LOOP_Y loop

3-1-9. In the report tab, expand Detail > Instance section of the Utilization Estimates and click on the
grp_rgb2yuv_fu_244 (rgb2yuv) entry to open the report.

3-1-10. Answer the following question pertaining to rgb2yuv function.

Question 2

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

3-1-11. Similarly, open the yuv2rgb report.

3-1-12. Answer the following question pertaining to yuv2rgb function.

Zyng 2-8 www.xilinx.com/university v
Xup@xilinx.com (A XI I_INX_,,

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

Question 3

3-1-13.

3-1-14.

Turn

Estimated clock period:

Worst case latency:

Number of DSP48E used:

Number of FFs used:

Number of LUTs used:

For the rgb2yuv function, in case of ZedBoard, the worst case latency is reported as 17207040
clock cycles. The reported latency can be estimated as follows.

0 RGB2YUV_LOOP_Y total loop latency = 7 x 1280 = 8960 cycles

0 1entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 8962 cycles

0 RGB2YUV_LOOP_X loop body latency = 8962 cycles

0 RGB2YUV_LOOP_X total loop latency = 8962 x 1920 =17207040 cycles

For the rgh2yuv function, in case of ZYBO, the worst case latency is reported as 19664640 clock
cycles. The reported latency can be estimated as follows.

0 RGB2YUV_LOOP_Y total loop latency = 8 x 1280 = 10240 cycles

0 1entry and 1 exit clock for loop RGB2YUV_LOOP_Y = 10242 cycles

0 RGB2YUV_LOOP_X loop body latency = 10242 cycles

0 RGB2YUV_LOOP_X total loop latency = 10242 x 1920 =19664640 cycles

OFF INLINE and Apply PIPELINE Directive Step 4

4-1.

4-1-1.

4-1-2.

Create a new solution by copying the previous solution settings. Prevent
the automatic INLINE and apply PIPELINE directive. Generate the solution
and understand the output.

Select Project > New Solution or click on (8) from the tools bar buttons.

A Solution Configuration dialog box will appear. Note that the check boxes of Copy existing
directives from solution and Copy custom constraints directives from solution are checked with
Solutionl selected. Click the Finish button to create a new solution with the default settings.

£ XILINX www.xilinx.com/university Zynq 2-9

Xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab Lab Workbook
4 Solution Wizard # Solution Wizard L@éj
Solution Configuration Solution Configuration L
Create Vivado HLS solution for selected technology Create Vivado HLS solution for selected technology o
Solution Name: IsolutionE Solution Name: kolunonz
Clock
o Period: 8 Uncertainty:
Period: 10 Uncertainty:
Part Selection
PR SIS T part: XcT2010clgd00-1 =

Part: xc72020clg484-1

Options

Copy directives and constraints from solution: solutionl

Options
Copy directives and constraints from solution: solutionl

Finish] [Cancel

(a) ZedBoard

(b) Zybo

Figure 10. Creating a new Solution after copying the existing solution

4-1-3. Make sure that the yuv_filter.c source is opened and visible in the information pane, and click on

the Directive tab.

4-1-4. Select function yuv_scale in the directives pane, right-click on it and select Insert Directive...

4-1-5. Click on the drop-down button of the Directive field. A pop-up menu shows up listing various

directives. Select INLINE directive.

4-1-6. Inthe Vivado HLS Directive Editor dialog box, click on the off option to turn OFF the automatic

inlining. Make sure that the Directive File is selected as destination. Click OK.

Directive
IMLINE
Destination

() Source File

Options

regicn (optional):]
recursive (optional):]

off (optional): |

Cancel

Figure 11. Turning OFF the inlining function

0 When an object (function or loop) is pipelined, all the loops below it, down through the

hierarchy, will be automatically unrolled.

Zyng 2-10

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2015 Xilinx

& XILINX.

Lab Workbook

Improving Performance Lab

4-1-7.

4-1-8.

4-1-9.

4-1-10.

In order for a loop to be unrolled it must have fixed bounds: all the loops in this design have

variable bounds, defined by an input argument variable to the top-level function.

0 Note that the TRIPCOUNT directive on the loops only influences reporting, it does not set

bounds for synthesis.

o0 Neither the top-level function nor any of the sub-functions are pipelined in this example.

0 The pipeline directive must be applied to the inner-most loop in each function — the inner-
most loops have no variable-bounded loops inside of them which are required to be unrolled

and the outer loop will simply keep the inner loop fed with data

Expand the yuv_scale in the Directives tab, right-click on YUV_SCALE_LOOP_Y object and

select insert directives ..., and select PIPELINE as the directive.

Leave Il (Initiation Interval) blank as Vivado HLS will try for an [I=1, one new input every clock

cycle.

Click OK.

Similarly, apply the PIPELINE directive to YUV2RGB_LOOP_Y and RGB2YUV_LOOP_Y objects.

At this point, the Directive tab should look like as follows.

4 @ rgb2yuv
® x
Oy
P T N SR

L
*[1 Wrgb
4 %' RGB2YUV_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %' RGB2YUV_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

4 @ yuv2rgb
O x

OE
*[1 Wyuv
4 %' YUV2RGB_LOOP_X
HLS loop_tripcount min=200 max=1920
4 %' YUV2RGB_LOOP_Y
% HLS PIPELINE

HLS loop_tripcount min=200 max=1280

& XILINX.

www.xilinx.com/university
xup@xilinx.com
© Copyright 2015 Xilinx

Zyng 2-11

Improving Performance Lab Lab Workbook

4 @ yuv_scale
% HLS INLINE off
© x

® vn
4 1" YUV_SCALE_LOOP_X
HLS loop_tripcount min=200 max=1920
4 % YUV_SCALE_LOOP_Y
% HLS PIPELINE
HLS loop_tripcount min=200 max=1280

Figure 12. PIPELINE directive applied

4-1-11. Click on the Synthesis button.

4-1-12. When the synthesis is completed, select Project > Compare Reports... or click on E to
compare the two solutions.

4-1-13. Select Solutionl and Solution2 from the Available Reports, and click on the Add>> button.

4-1-14. Observe that the latency reduced from 56536325 to 7372831 clock cycles.

All Compared Solutions All Compared Solutions
solution?: xc7z020clg484-1 solution2: xc7z010clg400-1
solutionl: xc7z020clg484-1 solutiond: xc7z010clg400-1
Performance Estimates Performance Estimates
=l Timing (ns) =l Timing (ns)
Clock solution2 solutionl Clock solution2 solutionl
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 899 8.46 Estimated 899 6.97
-l Latency (clock cycles) =l Latency (clock cycles)
solution2 solutionl solution2 solutionl
Latency min 120030 881205 Latency min = 120031 921205
max 7372830 54078725 max 7372831 56536325
Interval min 120031 881206 Interval min 120032 921206
max 7372831 54078726 max 7372832 56536326
(a) ZedBoard (b) Zybo

Figure 13. Performance comparison after pipelining

In Solutionl1, the total loop latency of the inner-most loop was loop_body_latency x loop iteration
count, whereas in Solution2 the new total loop latency of the inner-most loop is
loop_body_latency + loop iteration count.

Zynq 2-12 www.xilinx.com/university v
xup@xilinx.com iA XI LINXm

© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

4-1-15. Scroll down in the comparison report to view the resources utilization. Observe that the FFs,

LUTs, and DSP48E utilization increased whereas BRAM remained same.

Utilization Estimates Utilization Estimates
solution2 solutionl solution2 solutionl
BRAM_18K 12288 12288 BRAM_18K 12288 12288
DSPASE 15 12 DSPA8E 15 12
FF 1003 761 FF 1114 809
LUT 1234 849 LUT 1234 349
(a) ZedBoard (b) Zybo

Figure 14. Resources utilization after pipelining

Apply DATAFLOW Directive and Configuration Command Step 5

5-1.

Create a new solution by copying the previous solution (Solution2) settings.
Apply DATAFLOW directive. Generate the solution and understand the
output.

5-1-1. Select Project > New Solution or click on (e) from the tools bar buttons.

5-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solution2
selected).

5-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

5-1-4. Mzgke sure that the yuv_filter.c source is opened in the information pane and select the Directive
tab.

5-1-5. Select function yuv_filter in the directives pane, right-click on it and select Insert Directive...

5-1-6. A pop-up menu shows up listing various directives. Select DATAFLOW directive and click OK.

5-1-7. Click on the Synthesis button.

5-1-8. When the synthesis is completed, the synthesis report is automatically opened.

5-1-9. Observe additional information, Dataflow Type, in the Performance Estimates section is
mentioned.

t: X”_INX www.xilinx.com/university Zyng 2-13

Xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab

Lab Workbook

Performance Estimates

Performance Estimates

-1 Timing (ns) -1 Timing (ns)
= Summary = Summary
Clock Target Estimated Uncertainty Clock Target Estimated Uncertainty
ap_clk 10.00 8.99 125 ap_clk 8.00 8.99 1.00
-1 Latency (clock cycles) -1 Latency (clock cycles)
- Summary = Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
120027 7372827 40010 2457610 120028 7372828 40010 2457610
(a) ZedBoard (b) Zybo

Figure 15. Performance estimate after DATAFLOW directive applied

o0 The Dataflow pipeline throughput indicates the number of clocks cycles between each set of
inputs reads. If this throughput value is less than the design latency it indicates the design
can start processing new inputs before the currents input data are output.

o While the overall latencies haven't changed significantly, the dataflow throughput is showing
that the design can achieve close to the theoretical limit (1920x1280 = 2457600) of
processing one pixel every clock cycle.

5-1-10. Scrolling down into the Utilization Estimates, observe that the number of BRAMs required has
doubled. This is due to the default dataflow ping-pong buffering.

Utilization Estimates Utilization Estimates

- Summary = Summary

Name BRAM_18K DSP48E FF LuT Name BRAM_18K DSP48E FF LuT
DSP - - - - DSP - - - -
Expression - - 0 2 Expression - - 0 2
FIFO 0 - 35 172 FIFO 0 35 172
Instance 15 930 1194 Instance - 15 1047 1194
Memory 24576 - 192 0 Memory 24576 192 0
Multiplexer - - 20 Multiplexer - - - 20
Register - - 14 - Register - 14 -
Total 24576 15 1171 1388 Total 24576 15 1288 1388
Available 280 220 106400 53200 Available 120 80 35200 17600
Utilization (%) 8777 6 1 2 Utilization (%) 20480 18 3 7

(a) ZedBoard (b) Zybo

Figure 16. Resource estimate with DATAFLOW directive applied

o0 When DATAFLOW optimization is performed, memory buffers are automatically inserted
between the functions to ensure the next function can begin operation before the previous
function has finished. The default memory buffers are ping-pong buffers sized to fully
accommodate the largest producer or consumer array.

o0 Vivado HLS allows the memory buffers to be the default ping-pong buffers or FIFOs. Since
this design has data accesses which are fully sequential, FIFOs can be used. Another
advantage to using FIFOs is that the size of the FIFOs can be directly controlled (not possible
in ping-pong buffers where random accesses are allowed).

5-1-11. The memory buffers type can be selected using Vivado HLS Configuration command.
Zynq 2-14 www.xilinx.com/universit 3
ynd / & XILINX.

Xup@xilinx.com
© Copyright 2015 Xilinx

Lab Workbook Improving Performance Lab

5-2. Apply Dataflow configuration command, generate the solution, and
observe the improved resources utilization.

5-2-1. Select Solution > Solution Settings... or click on “ to access the configuration command
settings.

5-2-2. In the Configuration Settings dialog box, select General and click the Add... button.

5-2-3. Select config_dataflow as the command using the drop-down button and fifo as the
default_channel. Enter 2 as the fifo_depth. Click OK.

Add Command

Command:

config_dataflow V]

Parameters

default_channel fifo V]

fifo_depth 2

Figure 17. Selecting Dataflow configuration command and FIFO as buffer
5-2-4. Click OK again.
5-2-5. Click on the Synthesis button.
5-2-6. When the synthesis is completed, the synthesis report is automatically opened.

5-2-7. Note that the performance parameter has not changed; however, resource estimates show that
the design is not using any BRAM and other resources (FF, LUT) usage has also reduced.

Utilization Estimates Utilization Estimates

= Summary = Summary
Name BRAM_18K DSP48E FF LUT Name BRAM_18K DSP48E FF LUT

DSP - -) _ DSP - B) _
Expression - - - _ Expression - - - -
FIFO 0 - 65 292 FIFO 0 - 65 292
Instance - 15 746 915 Instance - 15 895 915
Memory - - - - Memory - - - -
Multiplexer - - - - Multiplexer - - - -
Register - - 6 - Register - - 6 -
Total 0 15 817 1207 Total 0 15 96 1207
Available 280 220 106400 53200 Available 120 80 35200 17600
Utilization (%) 0 6 ~0 2 Utilization (%) 0 18 2 6

(a) ZedBoard (b) Zybo

Figure 18. Resource estimation after Dataflow configuration command

t' XlLlNX www.xilinx.com/university Zynq 2-15
-~ L]

Xup@xilinx.com
© Copyright 2015 Xilinx

Improving Performance Lab

Lab Workbook

Export and Implement the Design in Vivado HLS

Step 6

6-1.

6-1-1.

6-1-2.

6-1-3.

In Vivado HLS, export the design, selecting VHDL as a language, and run
the implementation by selecting Evaluate option.

In Vivado HLS, select Solution > Export RTL or click on the & button to open the dialog box so
the desired implementation can be run.

An Export RTL Dialog box will open.

Click on the drop-down button of the Option field and select VHDL as the language and tick
Evaluate.

Click OK and the implementation run will begin. You can observe the progress in the Vivado HLS
Console window. When the run is completed the implementation report will be displayed in the
information pane.

Export Report for 'yuv_filter' Export Report for "yuv filter

. General Information
General Information

Report date:

Device target:

Fri Dec 18 09:48:16 -0800 2015
x%c7z010clg400-1
Implementation tool: Xilinx Vivado v.2015.4

Report date: Fri Dec 18 06:27:15 -0800 2015
xc7z020clg484-1

Implementation tool: Xilinx Vivado v.2015.4

Device target:

Resource Usage
Resource Usage 9

VHDL VHDL
SUCE 375 SUCE | 389
LT 976 Lut 950
FF 717 FF 812
DSP 4 DSP 4
BRAM 0 BRAM 0
SRL 70 SRL 70
Final Timing Final Timing
VHDL VHDL
CPrequired 10.000 CPrequired 8000
CP achieved CP achieved

[Fiming met]

(a) ZedBoard

[Timing met

(b) Zybo
Figure 19. Implementation results in Vivado HLS

Note that the implementation was successful in case of ZedBoard but failed in case of Zybo.

6-1-4. Close Vivado HLS by selecting File > Exit.

Zyng 2-16

www.xilinx.com/university
Xup@xilinx.com
© Copyright 2015 Xilinx

& XILINX.

Lab Workbook Improving Performance Lab

Conclusion

In this lab, you learned that even though this design could not be pipelined at the top-level, a strategy of
pipelining the individual loops and then using dataflow optimization to make the functions operate in
parallel was able to achieve the same high throughput, processing one pixel per clock. When
DATAFLOW directive is applied, the default memory buffers (of ping-pong type) are automatically
inserted between the functions. Using the fact that the design used only sequential (streaming) data
accesses allowed the costly memory buffers associated with dataflow optimization to be replaced with
simple 2 element FIFOs using the Dataflow command configuration.

Answers

1. Answer the following questions for yuv_filter:

Estimated clock period: 8.46 ns (ZedBoard) 6.97 ns (Zybo)

Worst case latency: 54078725 (ZedBoard) 56536325 (Zybo) clock cycles
Number of DSP48E used: 12

Number of BRAMSs used: 12288

Number of FFs used: 761 (ZedBoard) 809 (Zybo)

Number of LUTs used: 849 (ZedBoard) 849 (Zybo)

2. Answer the following questions rgb2yuv:

Estimated clock period: 8.34 ns (ZedBoard) 6.38 ns (Zybo)

Worst case latency: 17207041 (ZedBoard) 19664641 (Zybo) clock cycles
Number of DSP48E used: 5

Number of FFs used: 246 (ZedBoard) 257 (Zybo)

Number of LUTs used: 282 (ZedBoard) 282 (Zybo)

3. Answer the following questions for yuv2rgb:

Estimated clock period: 8.46 ns (ZedBoard) 6.97 ns (Zybo)
Worst case latency: 19664641 (ZedBoard) 19664641 (Zybo) clock cycles
Number of DSP48E used: 4
Number of FFs used: 200 (ZedBoard) 237 (Zybo)
Number of LUTs used: 289 (ZedBoard) 289 (Zybo)
i: X”_INX www.xilinx.com/university Zynq 2-17

Xup@xilinx.com
© Copyright 2015 Xilinx

