Lab Workbook Improving Area and Resource Utilization Lab

Improving Area and Resource Utilization Lab

Introduction
This lab introduces various techniques and directives which can be used in Vivado HLS to improve

design performance as well as area and resource utilization. The design under consideration performs
discrete cosine transformation (DCT) on an 8x8 block of data.

Objectives

After completing this lab, you will be able to:

e Add directives in your design

e Improve performance using PIPELINE directive

e Distinguish between DATAFLOW directive and Configuration Command functionality
e Apply memory partitions technigues to improve resource utilization

Procedure

This lab is separated into steps that consist of general overview statements that provide information on
the detailed instructions that follow. Follow these detailed instructions to progress through the lab.

This lab comprises 9 primary steps: You will validate the design in Vivado HLS command prompt, create
a new project using Vivado HLS GUI, synthesize the design, run RTL simulation, apply PIPELINE
directive to improve performance, improve the memory bandwidth by applying PARTITION directive,
apply DATAFLOW directive, apply INLINE directive, and finally apply RESHAPE directive.

General Flow for this Lab

Step 1: Step 2: Step 3: Step 4: Step 5:

Validate the Create a Synthesize Run RTL Apply
Design :> new project :> the design :> Simulation :> PIPELINE

directive

Step 6: Step 7: Step 8: Step 9:

Improve the Apply Apply Apply
Memory) |oarartow] = | mime | = RESHAPE

Bandwidth directive directive directive

i www.xilinx.com/university Zynqg 3-1
i‘ Xl LINX Xup@xilinx.com

© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Validate the Design from Command Line Step 1

1-1. Validate your design from Vivado HLS command line.

1-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado HLS > Vivado HLS 2015.4 Command Prompt.

1-1-2. Inthe Vivado HLS Command Prompt, change directory to c:\xup\hls\labs\lab3.

1-1-3. A self-checking program (dct_test.c) is provided. Using that we can validate the design. A
Makefile is also provided. Using the Makefile, the necessary source files can be compiled and
the compiled program can be executed. In the Vivado HLS Command Prompt, type make to
compile and execute the program.

c:\xupi\hls\labs\lab3>make
gce -ggdb -w -I/c/Xilinx/Uivado_HLS/2015.4/include -c¢ -o det.o det.c
gce -1lm -lstde++ det.o det_test.o -0 dect
Sdet
B MM M N
Results are good
B MM M N
c:\xupi\hls\labs\lab3>
Figure 1. Validating the design
Note that the source files (dct.c and dct_test.c are compiled, then dct executable program was
created, and then it was executed. The program tests the design and outputs Results are good
message.

1-1-4. Close the command prompt window by typing exit.

Create a New Project Step 2

2-1. Create a new project in Vivado HLS GUI targeting XC7Z020CLG484-1
(ZedBoard) or XC7Z010CLG400-1 (Zybo).

2-1-1. Launch Vivado HLS: Select Start > All Programs > Xilinx Design Tools > Vivado 2015.4 >
Vivado HLS > Vivado HLS 2015.4

2-1-2. Inthe Vivado HLS GUI, select File > New Project. The New Vivado HLS Project wizard opens.

2-1-3. Click Browse... button of the Location field and browse to c:\xup\hls\labs\lab3 and then click
OK.

2-1-4. For Project Name, type dct.prj

2-1-5. Click Next.

Zyng 3-2 www.xilinx.com/university i' Xl LINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

2-1-6. In the Add/Remove Files for the source files, type dct as the function name (the provided source
file contains the function, to be synthesized, called dct).

2-1-7. Click the Add Files... button, select dct.c file from the c:\xup\hls\labs\lab3 folder, and then click
Open.

2-1-8. Click Next.

2-1-9. Inthe Add/Remove Files for the testbench, click the Add Files... button, select dct_test.c, in.dat,
out.golden.dat files from the c:\xup\hls\labs\lab3 folder and click Open.

2-1-10. Click Next.

2-1-11. In the Solution Configuration page, leave Solution Name field as solution1 and set the clock
period as 10 (for ZedBoard) or 8 (for Zybo). Leave Uncertainty field blank as it will take 1.25 as
the default value for ZedBoard and 1 for Zybo.

2-1-12. Click on Part’'s Browse button, and select the following filters, using the Parts Specify option, to
select xc7z020clg484-1 (ZedBoard) or xc7z010clg400-1 (Zybo), and click OK:

Family: Zynq

Sub-Family: Zynq

Package: clg484 (ZedBoard) or clg400 (Zybo)
Speed Grade: -1

2-1-13. Click Finish.

2-1-14. Double-click on the dct.c under the source folder to open its content in the information pane.
78void dct(short input[N], short output[N])

79 {

80

81 short buf_2d_in[DCT_SIZE][DCT_SIZE];

82 short buf_2d_out[DCT_SIZE][DCT_SIZE];

83

84 // Read input data. Fill the internal buffer.

85 read_data(input, buf_2d in);

86

87 dct_2d(buf 2d in, buf 2d out);

88

89 [/ Write out the results.

90 write data(buf_2d out, output};

91}

Figure 2. The design under consideration

The top-level function dct, is defined at line 78. It implements 2D DCT algorithm by first

processing each row of the input array via a 1D DCT then processing the columns of the resulting

array through the same 1D DCT. It calls read_data, dct_2d, and write_data functions.

The read_data function is defined at line 54 and consists of two loops — RD_Loop_Row and

RD_Loop_Col. The write_data function is defined at line 66 and consists of two loops to perform

writing the result. The dct_2d function, defined at line 23, calls dct_1d function and performs

transpose.

Finally, dct_1d function, defined at line 4, uses dct_coeff_table and performs the required function

by implementing a basic iterative form of the 1D Type-Il DCT algorithm. Following figure shows
i www.xilinx.com/university Zynqg 3-3

t‘ X”-INX Xup@xilinx.com

© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

the function hierarchy on the left-hand side, the loops in the order they are executes and the flow
of data on the right-hand side.

Hierarchy Loops Dataflow
RD_Loop_Row: l
RD_Loop_Col:
}

}
Row_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop: v
}
}
}
Xpose_Row_Outer_Loop:
Xpose Row_Inner_Loop: V¥
}
}
Col_DCT_Loop:
DCT_Outer_Loop:
DCT_Inner_Loop:
}
}
}
Xpose_Col_Outer_Loop:
Xpose_Col_Inner_Loop: ¥
}
}
WR_Loop_Row:
WR_Loop_Col: v

) |

Figure 3. Design hierarchy and dataflow

Synthesize the Design Step 3

3-1. Synthesize the design with the defaults. View the synthesis results and
answer the question listed in the detailed section of this step.

3-1-1. Select Solution > Run C Synthesis > Active Solution or click on the ¥ button to start the
synthesis process.

3-1-2. When synthesis is completed, several report files will become accessible and the Synthesis
Results will be displayed in the information pane.

Note that the Synthesis Report section in the Explorer view only shows dct_1d.rpt, dct_2d.rpt,
and dct.rpt entries. The read_data and write_data functions reports are not listed. This is
because these two functions are inlined. Verify this by scrolling up into the Vivado HLS Console
view.

Zynq 3-4 www.xilinx.com/university i' XI LINX

xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab
B Console &3 . 9] Errors| & Warnings
Vivado HLS Console
@I [HLS-10] Analyzing design file 'dct.c’
@I [HLS-10] Validating synthesis directives ...
@I [HLS-1@] Starting code transformations ...
@I [HLS-10] Checking synthesizability ...
@I |[XFORM-6@02] Inlining function "read data' into 'dct' (dct.c:85) automatically.
@I |[XFORM-6@02] Inlining function "write data" into 'dct' (dct.c:98) automatically.
@I |[XFORM-602] Inlining function "read data' into 'dect' (dct.c:85) automatically.

@1
@1

[XFORM-602] Inlining function 'write data' into 'det' (dct.c:9@) automatically.

[HLS-111] Elapsed time: 4.55 seconds:; current memory usage: 69.8 MB.

Figure 4. Inlining of read_data and write_data functions

3-1-3. The Synthesis Report shows the performance and resource estimates as well as estimated
latency in the design. Note that the design is not optimized nor is pipelined.

Performance Estimates

= Timing (ns)

E Summary

Clock Target Estimated Uncertainty

ap.clk 10.00 1.25

- Latency (clock cycles)
E Summary
Latency Interval
min max min max Type
3959 3959 3960 @ 3960 none
E Detail
Instance
i Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target TripCount Pipelined
- RD_Loop_Row 144 144 18 - - 8 no
+ RD_Loop_Col 16 16 2 - - 8 no
- WR_Loop_Row 144 144 18 - - 8 no
+ WR_Loop Col 16 16 2 - - 8 no
Figure 5. Synthesis report
3-1-4. Using scroll bar on the right, scroll down into the report and answer the following question.
Question 1
Estimated clock period:
Worst case Iatency:
Number of DSP48E used:
Number of BRAMSs used:
Number of FFs used:
Number of LUTs used:
www.xilinx.com/university Zynqg 3-5

& XILI

NX.

Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

3-1-5. The report also shows the top-level interface signals generated by the tools.
Interface
- Summary
RTL Ports Dir Bits Protocaol Source Object C Type

ap_clk in 1 ap_ctrl_hs dct return value

ap_rst in 1 ap_ctrl_hs dct return value

ap_start in 1 ap_ctrl_hs dct return value

ap_done out 1 ap_ctrl_hs dct return value

ap_idle out 1 ap_ctrl_hs dct return value

ap_ready out 1 ap_ctrl_hs dct return value

input_r_address0 out 6 ap_memory input_r array

input_r_cel out 1 ap_memory input_r array

input_r_g0 in 16 ap_memory input_r array

output_r_address0 out 6 ap_memory output_r array

output_r_cel out 1 ap_memory output_r array

output_r_wel out 1 ap_memory output_r array

output_r_d0 out 16 ap_memory output_r array
Figure 6. Generated interface signals
You can see ap_clk, ap_rst are automatically added. The ap_start, ap_done, ap_idle, and
ap_ready are top-level signals used as handshaking signals to indicate when the design is able to
accept next computation command (ap_idle), when the next computation is started (ap_start),
and when the computation is completed (ap_done). The top-level function has input and output
arrays, hence an ap_memory interface is generated for each of them.

3-1-6. Open dct_1d.rpt and dct_2d.rpt files either using the Explorer view or by using a hyperlink at the
bottom of the dct.rpt in the information view. The report for dct_2d clearly indicates that most of
this design cycles (3668) are spent doing the row and column DCTs. Also the dct_1d report
indicates that the latency is 209 clock cycles ((24+2)*8+1).

Run Co-Simulation Step 4

4-1. Run the Co-simulation, selecting Verilog. Verify that the simulation passes.

4-1-1. Select Solution > Run C/RTL Cosimulation or click on the | button to open the dialog box so
the desired simulations can be run.

A C/RTL Co-simulation Dialog box will open.
4-1-2. Select the Verilog option, and click OK to run the Verilog simulation using XSIM simulator.

The RTL Co-simulation will run, generating and compiling several files, and then simulating the
design. In the console window you can see the progress and also a message that the test is
passed.

Zyng 3-6 www.xilinx.com/university i' Xl LINX

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Cosimulation Report for "dct’

Result
Latency Interval
RTL Status min avg max min avg max
VHDL NA MNA NA MNA NA NA NA

Verilog Pass 3959 3939 3950 0 0 0

INFO: [Common 17-286] Exiting xsim at Sun Dec 20 21:45:27 2015...

@I [SIM-316] Starting C post checking ...
ko ok Rk ek

Results are good
ko ok Rk ek

@I [SIM-10@8] *** C/RTL co-simulation finished: PASS ***

Figure 7. RTL Co-Simulation results

Apply PIPELINE Directive Step 5

5-1.

5-1-1.

5-1-2.

5-1-3.

5-1-4.

5-1-5.

5-1-6.

5-1-7.

5-1-8.

Create a new solution by copying the previous solution settings. Apply the
PIPELINE directive to DCT_Inner_Loop, Xpose_Row_Inner_Loop,

Xpose_ Col_Inner_Loop, RD_Loop_Col, and WR_Loop_Col. Generate the
solution and analyze the output.

Select Project > New Solution or click on (e) from the tools bar buttons.

A Solution Configuration dialog box will appear. Click the Finish button (with copy from Solutionl
selected).

Make sure that the dct.c source is opened in the information pane and click on the Directive tab.

Select DCT_Inner_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

A pop-up menu shows up listing various directives. Select PIPELINE directive.

Leave Il (Initiation Interval) blank as Vivado HLS will try for an II=1, one new input every clock
cycle.

Click OK.

Similarly, apply the PIPELINE directive to Xpose_Row_Inner_Loop and
Xpose_Col_Inner_Loop of the dct_2d function, and RD_Loop_Col of the read_data function,
and WR_Loop_Col of the write_data function. At this point, the Directive tab should look like as
follows.

£ XILINX www.xilinx.com/university Zynq 3-7

Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab

Lab Workbook

4 @ dct 1d
=1 dct_coeff_table
4§ DCT_Quter_Loop
4 %' DCT_Inner_Loop
% HLS PIPELINE
4 @ dct 2d
=[] row_outbuf

=1 col_outbuf
#[1 col_inbuf
%" Row_DCT_Loop

4 %" Xpose_Row_Quter_Loop

% HLS PIPELINE

a Xpose_Row_Inner_Loop

%" Col_DCT_Loop

4 " Xpose_Col_Outer_Loop

% HLS PIPELINE

4 ' Xpose_Col_Inner_Loop

4 0 read_data
4 5" RD_Loop_Row

4 %' RD_Loop_Col
% HLS PIPELINE

4 @ write data
4" WR_Loop_Row'

4 " WR_Loop_Col
% HLS PIPELINE

4 @ dct

Figure 8. PIPELINE directive applied

5-1-9. Click on the Synthesis button.

5-1-10. When the synthesis is completed, select Project > Compare Reports... or click on 5 to

compare the two solutions.

5-1-11. Select Solution1 and Solution2 from the Available Reports, click on the Add>> button, and then

click OK.

5-1-12. Observe that the latency reduced from 3959 to 1850 clock cycles (ZedBoard) and from 3959 to

1854 (Zybo).

Zynq 3-8

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook Improving Area and Resource Utilization Lab

Performance Estimates Performance Estimates
=l Timing (ns) = Timing (ns)
Clock solution2 solutionl Clock solution? solutionl
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 7.68 6.38 Estimated 6.60 6.38
= Latency (clock cycles) = Latency (clock cycles)
solution2 solutionl solution2 solutionl
Latency min 1850 3959 Latency min 1854 3959
max 1850 3959 max 1854 39859
Interval min 1851 3960 Interval min 1855 3960
max 1851 3960 max 1855 3960
(a) ZedBoard (b) Zybo

Figure 9. Performance comparison after pipelining

5-1-13. Scroll down in the comparison report to view the resources utilization. Observe that the FFs
and/or LUTSs utilization increased whereas BRAM and DSP48E remained same.

Utilization Estimates Utilization Estimates
solutionZ2 solutionl solution? solutionl
BRAM_18K 5 5 BRAM_18K 5 5
DSP48E 1 1 DSPASE 1 1
FF 255 278 FF 289 278
LUT 458 354 LUT 462 354
(a) ZedBoard (b) Zybo

Figure 10. Resources utilization after pipelining

5-2. Open the Analysis perspective and determine where most of the clock
cycles are spend, i.e. where the large latencies are.

5-2-1. Click on the Analysis perspective button.

5-2-2. In the Module Hierarchy, select the dct entry and observe the RD_Loop_Row_ RD Loop_Col and
WR_Loop_Row_WR_Loop_Col entries. These are two nested loops flattened and given the new
names formed by appending inner loop name to the out loop name. You can also verify this by
looking in the Console view message.

@I [XFORM-602] Inlining function ‘read_data' into 'dct’ (dct.c:85) automatically.

@I [XFORM-6082] Inlining function 'write data' into 'dct' (dct.c:98) automatically.

@I [XFORM-541] Flattening a loop nest 'Xpose Row Outer loop® (dct.c:38:1) in function 'det_2d'.

@I [XFORM-541] Flattening a loop nest 'Xpose_Col_Outer loop® (dct.c:49:1) in function 'dct_2d'.

@W [XFORM-542] Cannot flatten a loop nest 'DCT_Outer_lLoop' (dct.c:13:67) in function ‘'dect_1d' :

the outer loop is not a perfect loop because there is nontrivial logic in the loop latch.

@I [XFORM-541] Flattening a loop nest 'RD_Loop Row' (dct.c:59:67) in function "dct’.

@I [XFORM-541] Flattening a loop nest 'WR_Loop Row' (dct.c:71:67) in function ‘"dct’'.

Figure 11. The console view content indicating loops flattening

i www.xilinx.com/university Zynqg 3-9
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

£zl Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 @ dct 3 1 255 458 1850 1851 none
> @ dct_dct_2d 3 1 194 320 1717 1717 none
EF Performance Profile 2 . | . Resource Profile ¥ B = O

Pipelined Latency Initiation Interval Iteration Latenc

4 ® dct - 1850 1851 -
@ RD_lLoop_Row RD_Loop_Col yes b4 1
@ WER_Loop_Row_WR_Loop_Col yes 64 1
(a) ZedBoard
¥ Module Hierarchy ¥ 5 T O
BRAM DSP FF LUT Latency Interval Pipeline type i
4| ® dct 5 1 289 462 1854 1855 none =
4 @ dct_dct_2d 3 1 214 322 1719 1719 none
® dct dct_1d2 0 1 117 122 97 97 none -
| Resource Profile =

£F Performance Profile 2

Pipelined Latency Initiation Interval Iteration Latenc

4 ® dct - 1854 1855 -
@ RD_Loop_Row_RD_Loop_Col yes 65 1
e WR_Loop_Row_WR_Loop_Caol yes 65 1
(b) Zybo

Figure 12. The performance profile at the dct function level

5-2-3. In the Module Hierarchy tab, expand dct > dct_2d > dct_1d. Notice that the most of the latency
occurs is in dct_2d function.
5-2-4. In the Module Hierarchy tab, notice that there still hierarchy exists in the dct_2d module. Expand
dct >dct_2d > dct_1d, and select the dct_1d entry.
tzl Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 ® dct 5 1 255 458 1850 1851 none
4 ® dct_dct_2d 3 1 194 320 1717 1717 none
@ dct dct 1d2 |0 1 117 122 97 97 none
EF Performance Profile 2 . | . Resource Profile ¥ B = O
Pipelined Latency Initiation Interval Iteration Latency Trip cour
4 e dct_dct_1d2; - 97 97 - -
4 o DCT_Outer_Loop no 96 - 12
@ DCT_Inner_Loc yes 9 1 3 8 @)
ZedBoard
Zynq 3-10 Xilinx.com/universit =
ynq www.xilinx university iA XILINX;;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

£ Module Hierarchy H B T B
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 3 1 289 462 1854 1855 none
4 @ dct _dct 2d 3 1 214 322 1719 1719 none
® dct det_1d2 0O 1 117 122 97 97 none
£° Performance Profile 2 . | . Resource Profile B T O

Pipelined Latency Initiation Interval Iteration Latency Trip cour

4 o dct_dct_1d2 - a7 97 - -
4 o DCT_Outer_Loop no 96 - 12
@ DCT_Inner_Loc yes g 1 3
(b) Zybo

Figure 13. The dct_1d function performance profile

5-2-5. In the Performance Profile tab, select the DCT_Inner_Loop entry, right-click on the node_60
(write) block in the C3 state in the Performance view, and select Goto Source. Notice that line 19
is highlighted which is preventing the flattening of the DCT_Outer_Loop.

Current Medule : dct > dct dect 24 > det det 1d2

|Oneration\Contral S| co | c1 | 2 | e3 | ca |
tmp 21 read(read)
tmp 2 read(read)

-DCT Quter Loop
k(phi mux)
exitcondl (icmp)
k 1(+)
tmp 9(+)

8-... EDCT Inner Loop
19 tmp s (+)

20 | node 60(write) /1

Performance | Resource

N A W N

[T Properties | [£ C Source &2
File: C\xup\hls\labs\lab3\dct.c

18}

19 dstfk] = DESCALE(tmp, CONST_BITS):
20)

21}

22

23 void dct_2d(dct_data_t in_block[DCT_SIZE][DCT_SIZE],

24 dct_data_t out_block[DCT_SIZE][DCT_SIZE])

25{

26 dct_data_t row_outbuf[DCT_SIZE][DCT_SIZE];

27 dct_data_t col_outhuflDCT_SIZE][DCT_SIZE], col_inbuf[DCT_SIZE][DCT_SIZE];
28 unsignedi, j;

Figure 14. Understanding what is preventing DCT_Outer_Loop flattening

5-2-6. Switch to the Synthesis perspective.

i www.xilinx.com/university Zyng 3-11
f‘ XI LINX& Xup@xilinx.com

© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

5-3. Create a new solution by copying the previous solution settings. Apply
fine-grain parallelism of performing multiply and add operations of the
inner loop of dct_1d using PIPELINE directive by moving the PIPELINE
directive from inner loop to the outer loop of dct_1d. Generate the solution
and analyze the output.

5-3-1. Select Project > New Solution.

5-3-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution2 selected).

5-3-3. Select PIPELINE directive of DCT_Inner_Loop of the dct_1d function in the Directive pane,
right-click on it and select Remove Directive.

5-3-4. Select DCT_Outer_Loop of the dct_1d function in the Directive pane, right-click on it and select
Insert Directive...

5-3-5. A pop-up menu shows up listing various directives. Select PIPELINE directive.

5-3-6. Click OK.

@ dct_1d
#[1 dct_coeff_table
%" DCT_Outer_Loop
% HLS PIPELINE
%' DCT Inner_Loop
Figure 15. PIPELINE directive applied to DCT_Outer_Loop
By pipelining an outer loop, all inner loops will be unrolled automatically (if legal), so there is no
need to explicitly apply an UNROLL directive to DCT_Inner_Loop. Simply move the pipeline to
the outer loop: the nested loop will still be pipelined but the operations in the inner-loop body will
operate concurrently.

5-3-7. Click on the Synthesis button.

5-3-8. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.

5-3-9. Select Solution2 and Solution3 from the Available Reports, click on the Add>> button, and then
click OK.

5-3-10. Observe that the latency reduced from 1850 to 874 clock cycles for ZedBoard (1854 to 878 for
Zybo).

- — - - -
Zyng 3-12 www.xilinx.com/university i; X".INX;

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Performance Estimates Performance Estimates
=l Timing (ns) - Timing (ns)
Clock solution3 solution2 Clock solution3 solution?2
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 940 7.68 Estimated 9.40 6.60
= Latency (clock cycles) - Latency (clock cycles)
solution3 solution2 solution3 solution2
Latency min 874 1850 Latency min 878 1854
max 874 1850 max 878 1854
Interval min 875 1851 Interval min 879 1855
max 875 1851 max 879 1855
(a) ZedBoard (b) Zybo

Figure 16. Performance comparison after pipelining

5-3-11. Scroll down in the comparison report to view the resources utilization. Observe that the utilization
of all resources (except BRAM) increased. Since the DCT_Inner_Loop was unrolled, the parallel
computation requires 8 DSP48E.

Utilization Estimates Utilization Estimates
solutiond solution2 solution3 solution2
BRAM_18K 5 5 BRAM_18K 5 5
DSP48E 8 1 DSPA8E 8 1
FF 677 255 FF 711 289
LUT 520 458 LUT 524 462
(a) ZedBoard (b) Zybo
Figure 17. Resources utilization after pipelining

5-3-12. Open dct_1d report and observe that the pipeline initiation interval (Il) is four (4) cycles, not one

(1) as might be hoped and there are now 8 BRAMs being used for the coefficient table.
Looking closely at the synthesis log, notice that the coefficient table was automatically partitioned,
resulting in 8 separate ROMs: this helped reduce the latency by keeping the unrolled computation
loop fed, however the input arrays to the dct_1d function were not automatically partitioned.
The reason the Il is four (4) rather than the eight (8) one might expect, is because Vivado HLS
automatically uses dual-port RAMs, when beneficial to scheduling operations.
= www.xilinx.com/universit Zynq 3-13
& XILINX. y yn

Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Performance Estimates
= Timing (ns)
E Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 9.40 1.25
= Latency (clock cycles)
E Summary
Latency Interval

min max min max Type
36 36 36 36 none

El Detail
& Instance
= Loop
Latency Initiation Interval
Loop Name min max Iteration Latency achieved target Trip Count Pipelined
- DCT_Outer_Loop 34 34 7 4 1 8 yes
Utilization Estimates
- Summary
MName BRAM_18K DSP48E FF LUT
DsP - 8 - -
Expression - - 0 128
FIFO - - - -
Instance - - - -
Memory 0 - 119 16
Multiplexer - - - 21
Register - - 420 -
Total 0 8 539 165
Available 280 220 106400 53200
Utilization (%) 0 3 ~0 ~0

Figure 18. Increased resource utilization of dct_1d

@I [HLS-18] Starting code transformations ...

@I [HLS-18] Checking synthesizability ...

@T [XFORM-602] TInlining function 'read_data' into 'dct’ (dct.c:85) automatically.

@I [XFORM-6082] Inlining function 'write_data' into "dct’ (dct.c:98) automatically.

@I [XFORM-582] Unrolling all sub-loops inside loop 'DCT_Outer_lLoop' (dct.c:13) in function ‘dct_1d' for pipelining.
@I [XFORM-581] Unrolling loop 'DCT Inner Loop' (dct.c:15) in function 'dct 1d' completely.

@I [XFORM-102]|Partitioning array 'dct_coeff_table' in dimension 2 automatically.|

@I [XFORM-682] Inlining function 'read_data' into 'dct' (dct.c:85) automatically.

@I [XFORM-6082] Inlining function 'write_data’ into "dct’ (dct.c:98) automatically.

@I [XFORM-11] Balancing expressions in function 'dct 1d" (dct.c:4)...8 expression(s) balanced.
@T [XFORM-541] Flattening a loop nest "Xpose_Row_Outer_loop’ (dct.c:38:1) in function "det_2d°.
@I [XFORM-541] Flattening a loop nest "Xpose_Col Outer_Loop' (dct.c:49:1) in function "dct_2d°.
@I [XFORM-541] Flattening & loop nest "RD_Loop_Row' (dct.c:59:67) in function ‘dct’.

@I [XFORM-541] Flattening a loop nest "WR_Loop_Row' (dct.c:71:67) in function ‘dct’.

@I [HLS-111] Elapsed time: 5.291 seconds; current memory usage: 92.4 MB.

Figure 19. Automatic partitioning of dct_coeff_table

Zyng 3-14 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX@

© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

@I [HLS-18] ---------mmmmmm oo mm oo oo

@I [HLS-18] -- Scheduling module "dct_dct_1d2°'

@ [HLS-10] —-mmmmmmmmmm o

@T [SCHED-11] Starting scheduling ...

@I [SCHED-61] Pipelining loop 'DCT Outer Loop'.

@W [SCHED-69] Unable to schedule 'load' operation ('src_load_5', dct.c:17) on array 'src' due to limited memory ports.
@I [SCHED-61] Pipelining result: Target II: 1, Final II: 4, Depth: 7.

@I [SCHED-11] Finished scheduling.

Figure 20. Initiation interval of 4

5-4. Perform design analysis by switching to the Analysis perspective and
looking at the dct_1d performance view.

5-4-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_1d
entry.

5-4-2. Expand, if necessary, the Profile tab entries and notice that the DCT_Outer_Loop is now
pipelined and there is no DCT_Inner_Loop entry.

t= Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 @ dct 5 8 677 520 874 875 none
4 o dct dct_2d 3 8 616 381 741 741 none
@ dct dct 1d2| 0 8 539 165 36 36 none
EF Performance Profile 2 .| . Resource Profile ¥ B = O

Pipelined Latency InitiationInterval Iteration Latency Trip cou
4 o dct_dct_1d2 - 36 36 - -
e DCT_Outer_Loop yes 34 4 7 8

(a) ZedBoard

¥ Module Hierarchy H B T B
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 3 3 711 524 878 879 none
4 @ dct_dct 2d 3 8 636 383 743 743 none
® dct det_1d2| 0 3 539 165 36 36 none
£F Performance Profile & .| . Resource Profile B T O

Pipelined Latency Initiation Interval Iteration Latency Trip cour

4 o dct_dct_1d2 - 36 36 - -
e DCT_Outer_Loop yes 34 4 7 8
(b) Zybo

Figure 21. DCT_Outer_Loop flattening

5-4-3. Select the dct_1d entry in the Module Hierarchy tab and observe that the DCT_Outer_Loop
spans over eight states in the Performance view.

i www.xilinx.com/university Zyng 3-15
i‘ XI LINXJ‘ Xup@xilinx.com

© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab

Lab Workbook

5-4-4.

Current Mcocdule : dct

| Obperation\Contral S. ..

> det det 2d > det det 1d2

co | c1 |

C3

| c6 | cz

tmp
tmp
tmp

21 read(read)
2 read(read)
10(1)

tmp 12(])
tmp 14 (1)
tmp 16(1)
tmp 18(1)
tmp 20(1)
tmp 23(1)

1... ®DCT Outer Loop

Figure 22. The Performance view of the DCT_Outer_Loop function

eRie-RLNRle RIW RN OV SRy

Select the Resource tab, expand the Memory Ports entry and observe that the memory accesses
on BRAM src are being used to the maximum in every clock cycle. (At most a BRAM can be dual-
port and both ports are being used). This is a good indication the design may be bandwidth
limited by the memory resource.

Current Module : dct > dect dct 24 > det det 1d2

'Resource\Control Sten] 0 | c1 | 2 | ca |l ca |l 5 | c6 | c7 |
1-6 ®1/0 Ports
7 EMemory Ports
8 src(p0) read read read
9 dct coeff tabl... read
10 dct coeff tabl... read
i1 srcipl) read read read
12 dct coeff tabl... read
13 dct coeff tabl... read
14 dct coeff tabl... read
15 dct coeff tabl... read
i6 dct coeff tabl... read
17 dct coeff tabl... read
18 dst (p0) write
1... ¥Expressions
Performance
Figure 23. The Resource tab
5-4-5. Switch to the Synthesis perspective.
Improve Memory Bandwidth Step 6

6-1.

Create a new solution by copying the previous solution (Solution3) settings.
Apply ARRAY_PARTITION directive to buf_2d_in of dct (since the
bottleneck was on src port of the dct_1d function, which was passed via
in_block of the dct_2d function, which in turn was passed via buf_2d_in of
the dct function) and col_inbuf of dct_2d. Generate the solution.

Zyng 3-16

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook Improving Area and Resource Utilization Lab

6-1-1. Select Project > New Solution to create a new solution.
6-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution3 selected).

6-1-3. With dct.c open, select buf_2d_in array of the dct function in the Directive pane, right-click on it
and select Insert Directive...

The buf_2d_in array is selected since the bottleneck was on src port of the dct_1d function, which
was passed via in_block of the dct_2d function, which in turn was passed via buf_2d_in of the dct
function).

6-1-4. A pop-up menu shows up listing various directives. Select ARRAY_PARTITION directive.

6-1-5. Make sure that the type is complete. Enter 2 in the dimension field and click OK.

Vivado HLS Directive Editor

—_— . -

Type
Directive: | ARRAY_PARTITION "

Destination
Source File

Q@) Directive File

Options
variable (required): buf_2d_in

type (optional): \complete -

factor (optional):

dimension (optional): 2

Figure 24. Applying ARRAY_PARTITION directive to memory buffer
6-1-6. Similarly, apply the ARRAY_PARTITION directive with dimension of 2 to the col_inbuf array.
6-1-7. Click on the Synthesis button.

6-1-8. When the synthesis is completed, select Project > Compare Reports... to compare the two
solutions.

6-1-9. Select Solution3 and Solution4 from the Available Reports, and click on the Add>> button.

6-1-10. Observe that the latency reduced from 874 to 508 clock cycles for ZedBoard (878 to 512 for
Zybo).

i www.xilinx.com/university Zynq 3-17
i‘ XILINXJ‘ Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

Performance Estimates Performance Estimates
-1 Timing (ns) =1 Timing (ns)
Clock solutiond solution3 Clock solutiond solution?
ap_clk Target 10.00 10.00 ap_clk Target 8.00 8.00
Estimated 10.79 9.40 Estimated 9.40 9.40
-1 Latency (clock cycles) -1 Latency (clock cycles)
solutiond solution3 solutiond solution3
Latency min 508 874 Latency min 512 878
max 508 874 max 512 878
Interval min 509 875 Interval min 513 879
max 509 875 max 513 879
(a) ZedBoard (b) Zybo

Figure 25. Performance comparison after array partitioning

6-1-11. Scroll down in the comparison report to view the resources utilization. Observe the increase in
the FF resource utilization (almost double).

Utilization Estimates Utilization Estimates
solutiond solution3 solutiond solution3
BRAM_18K 3 5 BRAM_18K 3 5
DSP48E 8 8 DSP48E 8 8
FF 1243 677 FF 1284 711
LUT 634 520 LUT 638 524
(a) ZedBoard (b) Zybo

Figure 26. Resources utilization after array partitioning

6-1-12. Expand the Loop entry in the dct.rpt entry and observe that the Pipeline Il is now 1.

6-2. Perform resource analysis by switching to the Analysis perspective and
looking at the dct resources profile view.

6-2-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct entry.
6-2-2. Select the Resource Profile tab.

6-2-3. Expand the Memories and Expressions entries and observe that the most of the resources are
consumed by instances. The buf_2d_in array is partitioned into multiple memories and most of
the operations are done in addition and comparison.

Zyng 3-18 www.xilinx.com/university i
Xup@xilinx.com i. XI LINXs

© copyright 2015 Xilinx

Lab Workbook

Improving Area and Resource Utilization Lab

t=] Module Hierarchy

4 o dct

BRAM DSP FF LUT Latency

3

» @ dct_dect_2d 2
® dct read data 0

£° Performance Profile ||

4 @ dct

8 1243 634 508
8 923 453 373
0 28 54 66

Resource Profile &2

BRAM | DSP FF LUT

3

g2 [/O Ports(2)
- T2 Instances(2) 2
a m Memories(9) 1

%

i | ==
=

¢

o« 9 P L $ 9 b b

-

buf 2d out U 1
buf 2d_in_6 L 0
buf 2d_in 5 L 0
buf 2d_in 4 L 0
buf 2d_in_3.L 0
buf 2d_in_7 L 0
buf 2d_in_2_L 0
buf 2d_in_1.L 0
buf 2d_in 0_L 0

¥pressions(9) 0
egisters(11)
FIFO(0) 0

- [@ Multiplexers(33) 0
(a) ZedBoard

8 1243 634

8 951 507
256
0
32
32
32
32
32
32
32
32

0 0
36
0 0
0 69

| % T LSS I NS T N Y N R AN T (6 T NI e B)
[=3]

B
[

Bits PO Bits P1 Bits P2 Banks/Depi

32

144
16
16
16
16
16
16
16
16
16
36
36
0
69

Interval
509
373

66

41

Pipeline type

e e -]

& XILINX.

www.xilinx.com/university

Xup@xilinx.com
© copyright 2015 Xilinx

Zynqg 3-19

Improving Area and Resource Utilization Lab

Lab Workbook

t Module Hierarchy

BRAM DSP FF LUT Latency Interval

4 ® dct 3 3 1284 638 512 513
» @ dct_dct_2d 2 8 947 455 375 375
® dct read data 0 0 38 55 67 67

EF Performance Profile || . Resource Profile &2

+|

Pipeline type
none
none
none

+|

BRAM DSP FF LUT BitsPO BitsP1 Bits P2

4 @ dct 3 8 1284 638
» g2t IfO Parts(2) 32
- T2 Instances(2) 2 8 935 510
a m Memories(9) 1 256 16 144
4 buf_2d_out U 1 0 0 16
4 buf 2d_in_6_U 0 32 2 16
4 buf_2d_in5.U 0 32 2 16
¢ buf 2d_in_4_ U 0 32 2 16
4 buf_2d_in_3.U 0 32 2 16
4 buf 2d_in_7_U 0 32 2 16
4 buf_2d_in_.2 U 0 32 2 16
¢ buf 2d_in_1_.U 0 32 2 16
4 buf_2d_in.0U 0 32 2 16
. '3, Expressions(9) 0 0 0 42 36
> i Registers(15) 43 43
we FIFO(0) 0 0 0 0
- [@ Multiplexers(34) 0 0 70 70

(b) Zybo

Figure 27. Resource profile after partitioning buffers

6-2-4. Switch to the Synthesis perspective.

Apply DATAFLOW Directive

41

= O

= O

Banks/De

T e T]

Step 7

7-1. Create a new solution by copying the previous solution (Solution4) settings.
Apply the DATAFLOW directive to improve the throughput. Generate the

solution and analyze the output.

7-1-1. Select Project > New Solution.

7-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution4 selected).

7-1-3. Close all inactive solution windows by selecting Project > Close Inactive Solution Tabs.

7-1-4. Select function dct in the directives pane, right-click on it and select Insert Directive...

7-1-5. Select DATAFLOW directive to improve the throughput.

Zyng 3-20 www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

& XILINX.

Lab Workbook

Improving Area and Resource Utilization Lab

7-1-6.

Click on the Synthesis button.

7-1-7. When the synthesis is completed, the synthesis report is automatically opened.

7-1-8. Observe that dataflow type pipeline throughput is listed in the Performance Estimates.

Performance Estimates

Performance Estimates

=l Timing (ns) -1 Timing (ns)
= Summary = Summary
Clock Target Estimated Uncertainty Clock Target Estimated Uncertainty
ap_clk 10.00 10.79 125 ap_clk 3.00 9.40 100
-1 Latency (clock cycles) -I Latency (clock cycles)
= Summary - Summary
Latency Interval Latency Interval
min max min max Type min max min max Type
507 507 374 374 dataflow 511 311 276 376 dataflow
(a) ZedBoard (b) Zybo

Figure 28. Performance estimate after DATAFLOW directive applied

o0 The Dataflow pipeline throughput indicates the number of clock cycles between each set of
inputs reads (interval parameter). If this value is less than the design latency it indicates the
design can start processing new inputs before the currents input data are output.

0 Note that the dataflow is only supported for the functions and loops at the top-level, not those
which are down through the design hierarchy. Only loops and functions exposed at the top-
level of the design will get benefit from dataflow optimization.

7-1-9.

Scrolling down into the Area Estimates, observe that the number of BRAM_18K required at the

top-level has increased from 3 to 4.

Utilization Estimates

Utilization Estimates

= Summary = Summary

Name BRAM_18K DSP48E FF LUT Name BRAM_18K DSP48E FF LUT
DSP DSP
Expression - - 0 1 Expression - - 0 1
FIFO FIFO
Instance 3 985 572 Instance 2 8 1026 576
Memory 512 32 Memory 2 512 32
Multiplexer 16 Multiplexer 16
Register 12 - Register 12
Total 8 1509 621 Total 4 8 1550 625
Available 220 106400 33200 Available 120 80 35200 17600
Utilization (%) 3 1 1 Utilization (%) 3 10 4 3

(a) ZedBoard (b) Zybo

Figure 29. Resource estimate with DATAFLOW directive applied

7-1-10. Look at the console view and notice that dct_coeff_table is automatically partitioned in dimension
2. The buf_2d_in and col_inbuf arrays are partitioned as we had applied the directive in the

& XILINX.

www.xilinx.com/university
Xup@xilinx.com
© copyright 2015 Xilinx

Zynqg 3-21

Improving Area and Resource Utilization Lab Lab Workbook

previous run. The dataflow is applied at the top-level which created channels between top-level
functions read_data, dct_2d, and write_data.

@I [HLS-18] Checking synthesizability ...
@I [XFORM-502] Unrolling all sub-loops inside loop 'DCT_Outer_Loop' (dct.c:13) in function 'dct_1d' for pipelining.
@I [XFORM-501] Unrolling loop 'DCT_Inner_Loop' (dct.c:15) in function ‘'dct_1d' completely.
@I [XFORM-102] Partitioning array 'dct coeff table' in dimension 2 automatically.
@I [XFORM-1@1] Partitioning array 'buf_2d_in' (dct.c:81) in dimension 2 completely.
@I [XFORM-1@1] Partitioning array 'col_inbuf' (dct.c:27) in dimension 2 completely.
@I [XFORM-712] Applying dataflow to function 'dect' (dct.c:78), detected/extracted 3 process function(s):
"read_data’
"dct_2d"
'write data’.
@I [XFORM-11] Balancing expressions in function '"dct_1d' (dct.c:4)...8 expression(s) balanced.
@I [XFORM-541] Flattening a loop nest "WR_Loop_Row' (dct.c:71:67) in function 'write_data’.
@I [XFORM-541] Flattening a loop nest 'Xpose_Row Outer_Loop’ (dct.c:38:2) in function "dct_2d'.
@I [XFORM-541] Flattening a loop nest 'Xpose Col Outer Loop' (dct.c:49:2) in function "dect_2d'.
@I [XFORM-541] Flattening a loop nest "RD_Loop_Row' (dct.c:59:67) in function 'read_data’.
@I [HLS-111] Elapsed time: 4.52 seconds; current memory usage: 89.2 MB.
@I [HLS-18] Starting hardware synthesis ...
@I [HLS-1@] Synthesizing "dct' ...

Figure 30. Console view of synthesis process after DATAFLOW directive applied

7-2. Perform performance analysis by switching to the Analysis perspective
and looking at the dct performance profile view.
7-2-1. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct_2d
entry.
7-2-2. Select the Performance Profile tab.
Observe that most of the latency and interval (throughput) is caused by the dct_2d function. The
interval of the top-level function dct, is less than the sum of the intervals of the read_data, dct_2d,
and write_data functions indicating that they operate in parallel and dct_2d is the limiting factor.
From the Performance Profile tab it can be seen that dct_2d is not completely operating in
parallel as Row_DCT_Loop and Col DCT_Loop were not pipelined.
t Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 4 8 1509 621 507 374 dataflow
® dct_read_data 0] 28 55 66 66 none
» @ dct dect 2d 2 8 924 454 373 373 none
® dct_write_data 0] 32 63 66 66 none
£° Performance Profile 22 . | . Resource Profile =
Pipelined Latency Initiation Interv:
4 o dct dct_2d - 373 373
@ Row_DCT_Loop no 120 -
e Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes b4 1
@ Col_DCT_Loop no 120 -
e Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes b4 1
(a) ZedBoard
: — - - -
Zyng 3-22 www.xilinx.com/university i‘ XILINXﬁ

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

¥ Module Hierarchy =
BRAM DSP FF LUT Latency Interval Pipeline type
4 o dct 4 8 1550 625 511 376 dataflow
® dct_read_data 0] 38 56 67 67 none
| ® dct_dct_2d 2 8 948 456 375 375 none
® dct_write_data 0] 38 64 67 67 none
£F Performance Profile 22 | . Resource Profile =

Pipelined Latency Initiation Interv:

4 o dct_dct_2d - 375 375
@ Row_DCT_Loop no 120 -
e Xpose_Row_Outer_Loop_Xpose_Row_Inner_Loop yes 65 1
@ Col_DCT_Loop no 120 -
e Xpose_Col_Outer_Loop_Xpose_Col_Inner_Loop yes 65 1
(b) Zybo

Figure 31. Performance analysis after the DATAFLOW directive

One of the limitations of the dataflow optimization is that it only works on top-level loops and
functions. One way to have the blocks in dct_2d operate in parallel would be to pipeline the entire
function. This however would unroll all the loops and can sometimes lead to a large area increase.
An alternative is to raise these loops up to the top-level of hierarchy, where dataflow optimization
can be applied, by removing the dct_2d hierarchy, i.e. inline the dct_2d function.

7-2-3. Switch to the Synthesis perspective.

Apply INLINE Directive Step 8

8-1. Create a new solution by copying the previous solution (Solution5) settings.
Apply INLINE directive to dct_2d. Generate the solution and analyze the
output.

8-1-1. Select Project > New Solution.

8-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution5 selected).

8-1-3. Select the function dct_2d in the directives pane, right-click on it and select Insert Directive...

8-1-4. A pop-up menu shows up listing various directives. Select INLINE directive.
The INLINE directive causes the function to which it is applied to be inlined: its hierarchy is
dissolved.

8-1-5. Click on the Synthesis button.

8-1-6. When the synthesis is completed, the synthesis report will be opened.

t' X”_INX www.xilinx.com/university Zynq 3-23

Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

8-1-7. Observe that the latency reduced from 507 to 479 clock cycles for ZedBoard (511 to 483 clock
cycles for Zybo), and the Dataflow pipeline throughput drastically reduced from 374 to 106 clock
cycles (376 to 106 clock cycles for Zybo).

8-1-8. Examine the synthesis log to see what transformations were applied automatically.

0 The dct_1d function calls are now automatically inlined into the loops from which they are
called, which allows the loop nesting to be flattened automatically.

o0 Note also that the DSP48E usage has doubled (from 8 to 16). This is because, previously a
single instance of dct_1d was used to do both row and column processing; now that the row
and column loops are executing concurrently, this can no longer be the case and two copies
of dct_1d are required: Vivado HLS will seek to minimize the number of clocks, even if it
means increasing the area.

0 BRAM usage has increased once again (from 4 to 6), due to ping-pong buffering between
more dataflow processes.

@I [HLS-1@] Starting code transformations ...
@I [XFORM-6@83] Inlining function 'dct_2d' into ‘'dect' (dct.c:87).
@I [HLS-1@] Checking synthesizability ...
@I [XFORM-562] Unrolling all sub-loops inside loop 'DCT_Outer_Loop' (dct.c:13) in function 'dect_1d' for pipelining.
@I [XFORM-581] Unrolling loop 'DCT_Inner Loop® (dct.c:15) in function 'dct_1d" completely.
@I [XFORM-1@2] Partitioning array 'dct_coeff_table' in dimension 2 automatically.
@I [XFORM-1@1] Partitioning array 'buf_2d_in' (dct.c:81) in dimension 2 completely.
@I [XFORM-1@1] Partitioning array 'col_inbuf' (dct.c:27) in dimension 2 completely.
@I [XFORM-721] Changing loop 'lLoop_Row DCT_lLoop_proc' (dct.c:32) to a process function for dataflow in function "det’.
@I [XFORM-721] Changing loop 'Loop_Xpose_Row_Outer_Loop_proc’ (dct.c:38) to a process function for dataflow in function ‘'dct’'.
@I [XFORM-721] Changing loop 'Loop_Col_DCT_Loop_proc' (dct.c:43) to a process function for dataflow in function "dect’.
@I [XFORM-721] Changing loop 'Loop_Xpose Col Outer Loop proc’ (dct.c:49) to a process function for dataflow in function ‘dct’.
@I [XFORM-712] Applying dataflow to function 'dct' (dct.c:78), detected/extracted 6 process function(s):
'read_data’
"Loop_Row_DCT_Loop_proc’
'Loop_Xpose_Row_Outer_lLoop_proc'
"Loop_Col_DCT_Loop_proc’
"Loop_Xpose_Col_Outer_Loop_proc’
‘write data’.
@I [XFORM-6@2] Inlining function 'dct_1d' into 'Loop_Row DCT_Loop_proc' (dct.c:33-»dct.c:87) automatically.
@I [XFORM-602]|Inlining function 'dct 1d' into 'Loop Col DCT Loop proc' (dct.c:44->dct.c:87) automatically.|
@I [XFORM-11] Balancing expressions in function '"Loop_Row_DCT_Loop proc' (dct.c:13:61)...8 expression(s) balanced.
@I [XFORM-11] Balancing expressions in function 'Loop_Col_DCT_Loop_proc' (dct.c:13:61)...8 expression(s) balanced.

Figure 32. Console view after INLINE directive applied to dct_2d

8-1-9. Switch to the Analysis perspective, expand the Module Hierarchy entries, and select the dct entry.

Observe that the dct_2d entry is now replaced with dct Loop_Row DCT_Loop_proc,
dct_Loop_Xpose Row_Outer_Loop_proc, dct_Loop_Col _DCT_Loop_proc, and
dct_Loop_Xpose Col_Outer_Loop_proc since the dct_2d function is inlined. Also observe that all
the functions are operating in parallel, yielding the top-level function interval (throughput) of 106

clock cycles.
Module Hierarchy H B T B
BRAM DSP FF LUT Latency Interval
4 ® dct 6 16 2367 566 479 106
® dct read data 0 0 29 55 b6 66
@ dct_Loop_Row_DCT_Loop_proc] 8 600 114 105 105
@ dct_Loop_Xpose_Row_Outer_Loop_proc 0 0 29 57 b6 66
@ dct_Loop_Col_DCT_Loop_proc] 8 600 114 105 105
@ dct_Loop_Xpose_Col_Outer_Loop_proc 0 0 30 65 b6 66
® dct_write_data]] 32 63 66 66
(a) ZedBoard
Zynq 3-24 www.xilinx.com/universit i
yng 4 & XILINX.

Xup@xilinx.com
© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

#3 Module Hierarchy H B T B
BRAM DSP FF LUT Latency Interval

4 o dct 6 16 2410 570 483 106

® dct_read_data]] 38 56 67 67

@ dct_Loop_Row_DCT_Loop_proc 0 8 602 114 105 105

@ dct_Loop_Xpose Row_Outer_Loop_proc 0] 41 58 67 67

e dct_Loop_Col_DCT_Loop_proc 0 8 602 114 105 105

@ dct_Loop_Xpose_Col_Outer_Loop_proc 0] 40 66 67 67

e dct write_data 0 0 39 64 67 67

(b) Zybo

Figure 33. Performance analysis after the INLINE directive

8-1-10. Switch to the Synthesis perspective.

Apply RESHAPE Directive Step 9

9-1.

Create a new solution by copying the previous solution (Solution6) settings.
Apply the RESHAPE directive. Generate the solution and understand the
output.

9-1-1. Select Project > New Solution.

9-1-2. A Solution Configuration dialog box will appear. Click the Finish button (with Solution6 selected).

9-1-3. Select PARTITION directive applied to the buf_2d_in array of the dct function in the Directive
pane, right-click, and select Modify Directive. Select ARRAY_RESHAPE directive, enter 2 as
the dimension, and click OK.

9-1-4. Similarly, change PARTITION directive applied to the col_inbuf array of the dct_2d function in
the Directive pane, to ARRAY_RESHAPE with the dimension of 2.

9-1-5. Assign the ARRAY_RESHAPE directive with dimension of 2 to the dct_coeff_table array.

t' X”_INX www.xilinx.com/university Zynqg 3-25

Xup@xilinx.com
© copyright 2015 Xilinx

Improving Area and Resource Utilization Lab Lab Workbook

4 @ det_1d
“[1 dct_coeff table
I % HLS ARRAY_RESHAPE variable=dct_coeff_table complete dim=2 I
- %" DCT_Outer_Loop
4 @ dct_2d
9 HLS INLINE
=1 row_outbuf

1 col_outbuf
“[1 caol_inbuf
I% HLS ARRAY_RESHAPE variable=col_inbuf complete dim=2 I
%" Row_DCT_Loop
- %" Xpose_Row_Outer Loop
%" Col_DCT_Loop
- %" Xpose_Col_Outer_Loop
+ @ read_data
+ @ write_data
4 @ dct
90 HLS DATAFLOW
@ input
@ output
=1 buf_2d_in
|% HLS ARRAY RESHAPE variable=buf 2d_in complete dim=2 |
=[] buf_2d_out

Figure 34. RESHAPE directive applied

9-1-6. Click on the Synthesis button.

9-1-7. When the synthesis is completed, the synthesis report is automatically opened.

9-1-8. Observe that both latency (increased from 479 to 607 for ZedBoard and from 483 to 611 for
Zybo) and Dataflow pipeline throughput (increased from 106 to 131 for ZedBoard and 106 to 132
for Zybo) has regressed. The BRAM resource utilization increased from 6 to 22 for both
ZedBoard and Zybo.

0 Reviewing the synthesis log will provide some clues. There are warnings in the scheduling
phase for read_data stating that II=1 could not be achieved. In fact, read_data complains
about the conflict of read and write operations.

o0 The problem here is due to the fact that an update to a single element in a reshaped array
requires that the entire word be read, the single element updated and the entire word written
back: an array that has been reshaped requires a read-modify-write cycle (Vivado HLS does
not implement byte-masking on writes).

0 This operation negatively impacts the maximum write bandwidth for such an array.

9-1-9. Thus it can be seen the directives have to be applied carefully.

9-1-10. Close Vivado HLS by selecting File > Exit.

Zyng 3-26 www.xilinx.com/university i
Xup@xilinx.com iA XI LINX.»

© copyright 2015 Xilinx

Lab Workbook Improving Area and Resource Utilization Lab

Conclusion

In this lab, you learned various techniques to improve the performance and balance resource utilization.
PIPELINE directive when applied to outer loop will automatically cause the inner loop to unroll. When a
loop is unrolled, resources utilization increases as operations are done concurrently. Partitioning memory
may improve performance but will increase BRAM utilization. When INLINE directive is applied to a
function, the lower level hierarchy is automatically dissolved. When DATAFLOW directive is applied, the
default memory buffers (of ping-pong type) are automatically inserted between the top-level functions and
loops. The RESHAPE directive will allow multiple accesses to BRAM, however, care should be taken if a
single element requires modification as it will result in read-modify-write operation for the entire word. The
Analysis perspective and console logs can provide insight on what is going on.

Answers

1. Answer the following questions for dct:

Estimated clock period: 6.38 ns
Worst case latency: 3959 clock cycles
Number of DSP48E used: 1
Number of BRAMSs used: 5
Number of FFs used: 278
Number of LUTSs used: 354
i: X”_INX www.xilinx.com/university Zynq 3-27

Xup@xilinx.com
© copyright 2015 Xilinx

