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Abstract. Following Granirer, a Banach algebra A is said to be ex-

tremely non-Arens regular when the quotient space
A∗

WAP(A)
contains

a closed linear subspace which has A∗ as a continuous linear image. We
prove that, for any non-discrete locally compact group G, there is a lin-

ear isometry from L∞(G) into the quotient space
L∞(G)

F(G)
, with F(G)

being any closed subspace of L∞(G) made of continuous functions. This,

together with the known fact that
`∞(G)

WAP(G)
always contains a linearly

isometric copy of `∞(G), proves that L1(G) is extremely non-Arens reg-
ular for every infinite locally compact group.

1. Introduction

The second dual space A∗∗ of a Banach algebra A can be made into
a Banach algebra with two different products, each extending the original
product of A. These products were introduced by Arens in 1951 and are
called the first (or left) Arens product and the second (or right) Arens prod-
uct, see [1] and [2]. We may describe the Arens products explicitly as follows
(although we shall have no need of that): If (µα) and (νβ) are nets in A with
limα µα = µ and limβ νβ = ν, then

µ ◦ ν = lim
α

lim
β
µανβ and µ� ν = lim

β
lim
α
µανβ,

where the limits are taken in the weak*-topology in A∗∗ and the order of
the limits is crucial. Note that µ 7→ µ ◦ ν is continuous in µ for each fixed
ν ∈ A∗∗ and is continuous in ν for each fixed µ ∈ A. In general, it is not
continuous in ν when µ is not A. The topological centre of A∗∗ is defined
by

Z(A∗∗) = {µ ∈ A∗∗ : ν 7→ µ ◦ ν is continuous on A∗∗}
= {µ ∈ A∗∗ : µ ◦ ν = µ� ν for all ν ∈ A∗∗}.

As already noted, A is a subalgebra of Z(A∗∗).
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The same observations and definitions may be given for the second prod-
uct with the roles of the variables reversed.

The algebra A is said to be Arens regular if these two products coincide
or, which is the same as Z(A∗∗) = A∗∗. When A is commutative, it is easy
to check that A is Arens regular if and only if A∗∗ is commutative with
respect to both products.

An interesting criterion for the regularity of A was given by Pym [41]
in 1965. He considered the space WAP(A) of weakly almost periodic func-
tionals on A, defined as the set of all f ∈ A∗ such that the linear map
A→ A∗ : a 7→ f.a is weakly compact, where the action of A on A∗ is given
by

< f.a, b >=< f, ab >, a, b ∈ A, f ∈ A∗.

These are the functionals f ∈ A∗ satisfying Grothendieck’s double limit
criterion limn limm f(anbm) = limm limn f(anbm) for any pair of sequences
(an)n, (bm)m in A for which both limits exist. Pym proved that A is Arens
regular if and only if WAP(A) = A∗, see also [49]. For further details, see
[18].

All C∗-algebras are Arens regular. This fact was first proved (implicitly)
by Sherman [45] and Takeda [46] when they proved that the second conjugate
of a C∗-algebra can be seen as an algebra of operators on a Hilbert space.
Some years later, Civin and Yood [9, Theorem 7.1] reproduced Takeda’s
proof and brought up explicitly the Arens regularity of C∗-algebras. A
different proof of this same fact can also be found in [5, Theorem 38.19].
For more details, see [10], [18] and [11].

The group algebra L1(G) of an infinite locally compact group, however,
is never Arens regular. Arens himself showed that the semigroup algebra
`1 with convolution is non-Arens regular. To prove this fact he produced
two distinct invariant means µ and ν in `1

∗∗
. It is then trivial to see that

νµ = µ 6= ν = µν, which means that Z(`1
∗∗

) 6= `1
∗∗

. In [13], Day used the
same argument to show that L1(G) is non-Arens regular for many infinite
discrete groups, including all Abelian ones. This same approach was followed
in the seminal paper of Civin and Yood [9] where L1(G) was shown to be
non-Arens regular for any infinite locally compact Abelian group. Their
method relied again on Day’s result when the group is discrete. When G is
not discrete, the Hahn Banach theorem provides a non-zero right annihilator
µ of L1(G)∗∗, i.e., L1(G)∗∗µ = {0}, and so µν = µ 6= 0 = νµ for every right
identity ν in L1(G)∗∗.

The general case was finally settled by Young in 1973 in [50]. Young relied
on the criterion proved in [41, Theorem 4.2] (see also [49, Theorem 10]) and
showed how to produce in each infinite locally compact group a function in
L∞(G) that is not in WAP(L1(G)).

It is worthwhile to note that Young’s approach to non-Arens regularity
of L1(G) was essentially different from all previous ones. Young’s approach
passed through WAP(A) while the others passed through the topological
centre Z(A∗∗).

Depending on one’s approach to non-regularity (through Z(A∗∗) or through
WAP(A)), two different ways to tell that a Banach algebra is as non-regular
as possible arise:
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1. According to Dales and Lau [11], the Banach algebra A is said to be
strongly Arens irregular , when Z(A∗∗) = A.

2. According to Granirer [25], A is said to be extremely non-Arens regular

(ENAR) if the quotient space
A∗

WAP(A)
contains a closed linear subspace

which has A∗ as a continuous linear image.
The group algebra is strongly Arens irregular for any infinite locally com-

pact group. This was proved first by Isik, Pym and Ülger [34] when G is
compact, then by Grosser and Losert in [26] when G is Abelian, and finally
in the general case by Lau and Losert in [35]. A number of articles offering
different approaches and various properties related to the topological centres
appeared subsequently, we cite for example [11], [39], [17] and most recently
[6].

Granirer [loc. cit.] himself proved that the Fourier algebras A(R) and
A(T), and therefore L1(R) and `1(Z), are extremely non-Arens regular. In
[30], Hu generalized Granirer’s results and proved that the Fourier algebra
A(G) is extremely non-Arens regular whenever χ(G) ≥ κ(G), where κ(G)
is the minimal number of compact sets required to cover G and χ(G) is the
minimal cardinality of an open base at the identity e of G.

In [23, Theorems 4.1 and 4.7], Fong and Neufang considered infinite,
locally compact, metrizable groups with κ(G) ≥ ω and proved that the
group algebra L1(G) is extremely non-Arens regular when G is σ−compact
and metrizable or it contains an open σ−compact, metrizable, subgroup H
which is either normal or has |H| < |G|.

In [19], Filali and Vedenjuoksu proved, using slowly oscillating functions,
that the semigroup algebra `1(S) is extremely non-Arens regular for any
infinite weakly cancellative discrete semigroup. In particular, this property
is held by the group algebra L1(G) for any infinite discrete group G.

With a different approach, Bouziad and Filali [7] proved that the quotient

space
LUC(G)

WAP(G)
contains a copy of `∞(κ(G)) for every locally compact group

G. Since WAP(G) can be identified with WAP(L1(G)), this implies the full
dual of Hu’s result, i.e., that the group algebra L1(G) is extremely non-
Arens regular whenever κ(G) ≥ χ(G). The same conclusion was obtained
again in [16], drawing upon results of [15], for non-discrete G, using the size

of the quotient space
CB(G)

LUC(G)
.

Here, CB(G) is the space of all bounded, continuous, scalar-valued func-
tions on G, LUC(G) is the space of bounded scalar-valued functions on G
which are uniformly continuous with respect to the right uniformity of G,
and WAP(G) is the space of bounded, continuous, scalar-valued functions
on G which are weakly almost periodic, all with the supremum norm.

In this paper, we prove the full theorem.

Theorem A. The group algebra L1(G) is extremely non-Arens regular for
any infinite locally compact group.
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As already noted, this result was proved in [7] and [19] when G is discrete.
So we are really concerned with the case when G is not discrete. In this case,
in fact, we shall prove the following stronger theorem.

Theorem B. Let F(G) be any closed subspace of CB(G). Then there

exists a linear isometric copy of L∞(G) in the quotient space
L∞(G)

F(G)
for

any infinite, non-discrete, locally compact group G.

As for the Fourier algebra A(G), the situation is even more complex.
When G is an amenable locally compact group, the Fourier algebra A(G) is
Arens regular if and only if G is finite. This was proved in 1989 by Lau and
Wong, see [36]. Further results on Arens regularity of A(G) were published
two years later by Forrest in [24]. The question of whether A(G) is not Arens
regular seems to be still not completely settled for discrete non-amenable
groups. As already mentioned, Hu proved in [30] that A(G) is extremely
non-Arens regular whenever χ(G) ≥ κ(G). Our Theorem A enables us to
omit this condition when G is Abelian.

It may be worthwhile to note that extreme non-Arens regularity in the
sense of Granirer does not imply strong Arens irregularity in the sense of [11]
since A(SO(3)) is extremely non-Arens regular by [30], but it is not strongly
Arens irregular as recently proved by Losert [37]. Neither does strong Arens
irregularity imply extreme non-Arens regularity see, [33].

1.1. Outline of our approach. All the available proofs of extreme non-
Arens regularity of L1(G) proceed in two steps: (1) L∞(G) is embedded in
`∞(m), where m = max{κ(G), χ(G)} is the density character of L1(G), and
(2) if n = max{κ(G), ω}, a collection of n-many open disjoint subsets of G
with special properties is constructed and used to produce a copy of `∞(n)

in the quotient space L∞(G)
WAP(G)

This approach works when κ(G) ≥ χ(G) or when G is metrizable, but fails
for large compact groups: one cannot hope for an uncountable collection
of open disjoint subsets in a compact group G (all compact groups have
countable cellularity, see [3, Corollary 4.18]). Adding poignancy to this
difficulty is the fact, proved by Rosenthal [44, Proposition 4.7, Theorem
4.8], that for κ > ω, `∞(κ) does not embed in L∞(G), for any compact
group G (and hence there is little hope to find such an embedding in the

quotient space L∞(G)
WAP(G) either) regardless of the size of χ(G).

Let w(G) be the weight of the group G, i.e., the the smallest cardinal
number m such that G has a base of cardinality m. Recall that for every
compact group with an uncountable w(G), Theorem 3.1 of [27] together with
Maharam’s theorem (see, e.g., [22, Theorem 331I]) shows that L1(G) is iso-

metrically isomorphic to L1
(
{0, 1}w(G)

)
, and that L∞(G) and L1({0, 1})w(G)

are isomorphic as W∗-algebras. Notwithstanding the strength of Maharam’s
theorem, the problem of extreme non-Arens regularity of L1(G) for G com-

pact cannot be reduced to that of L1({0, 1}w(G)) since the multiplicative
structure of the Banach algebra has to be taken into account. A very simple
example to this effect is provided by the extremely non-Arens regular alge-
bra `1(Z). If its multiplication, i.e. convolution, is replaced by pointwise
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multiplication, the resulting Banach algebra is Arens-regular, [40, 1.4.8 and
1.4.9].

We need therefore an alternative approach to reach our aim. Our strategy
shall rely on the following three keys:

• We first deal with groups of the form G = M × H, with M a
non-discrete, metrizable locally compact group. For such a group

G, we show in Theorem 3.1 that the quotient L∞(G)
CB(G) contains a

copy of `∞(L∞(H)), a result inspired by [16, Theorem 2.11] whose
ideas date back at least to [8]. This theorem is already used in
Corollary 3.3 to deduce that L1(G) is extremely non-Arens regular
for groups of this form if M is in addition σ-compact. But this
leaves out in particular the case when H = {e} and M is a compact
non-metrizable group, i.e., when our group G is compact and non-
metrizable. Our second main tool takes care of this case.
• The second key is Lemma 4.2 that isolates a set of conditions that,

as a consequence of the work of Grekas and Mercourakis [28], are
known to be satisfied by compact groups. These conditions in par-
ticular imply that every compact group K has a quotient topolog-
ically isomorphic to a product of w(K)-many metrizable factors.
This, together with our first key, will lead to Theorem 5.4 to the

effect that the quotient space L∞(K)
CB(K) contains a linear isometric

copy of L∞(K)) for any infinite compact group. Thus, L1(K) is
extremely non-Arens regular for any infinite compact group K.
• The final step will be based on a theorem of Davis [12], reminiscent

of results of Yamabe [48]. We see that the problem of finding a linear

isometric copy of L∞(G) in
L∞(G)

CB(G)
can be reduced to the problem

of finding an special sort of isometry between L∞(G0) and
L∞(G0)

CB(G0)
for some open subgroup G0 of G. The extreme non-Arens regularity
of the group algebra of any locally compact group is then reduced
to that of L1(Rn ×K), where K is a compact group. Corollary 3.3
and Corollary 5.4 lead then immediately to the proof of Theorem B.
Since we know from [7] or [19] that the group algebra is extremely
non-Arens regular for any infinite discrete group, Theorem A is then
an immediate consequence.

2. Notation and terminology

Being concerned as we are with isometries into quotients of L∞(G)-spaces
we deal with these spaces and their subspaces, with locally compact groups
and their Haar measures and with Banach spaces and isometries between
them. We summarize here our terminology on these subjects.

2.1. Topological groups and Haar measure. We will be considering
several cardinal invariants of a topological group G:

The local weight χ(G) of G is the least cardinality of an open base at the
identity of G. The topological weight w(G) of G is the least cardinality of
an open base of G. The compact covering number κ(G) of G is the least
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cardinality of a compact covering of G. We recall that for an infinite compact
group, w(G) = χ(G).

If G is a locally compact group λG will denote the left Haar measure of
G. The characteristic function of a set V will be denoted by χV .

2.2. Subspaces of L∞(G). We recall that L1(G) is the Banach space made
of all equivalence classes of scalar-valued functions which are integrable with
respect to the Haar measure λG, where as usual, two functions are equivalent
if and only if they differ only on a set of Haar measure zero. By L∞(G) we
understand the Banach dual of L1(G).

Our realization of L∞(G), valid for a general locally compact group, re-
quires the concept of locally null set. A subset A ⊂ G is locally null if A∩K
is of Haar measure zero for every compact set K ⊂ G and two functions
f, g : G→ C are equal locally almost everywhere (l.a.e.), if there is a locally
null subset A such that f(x) = g(x) for all x /∈ A. Following [29, Section
12], [20, Page 46] or [21, Exercises 6.23-26] (and departing from the most
usual definition), we identify L∞(G) with the vector space of all equivalence
classes of essentially bounded and locally measurable functions, two func-
tions being equivalent if and only if they are equal locally almost everywhere,
where the norm may be given by

‖f‖L∞(G) = inf{c : |f(x)| ≤ c l.a.e.}.

Note that (see, for instance, the proof of [29, Theorem 12.18])

‖f‖L∞(G) = sup {‖f χK‖ : K ⊂ G is compact} .

When there is no confusion, we simply write ‖f‖ for the norm of f in L∞(G).
If G is σ-compact (so that Haar measure is σ-finite), a subset A ⊂ G is null
if and only if it is locally null, hence this construction of L∞(G) coincides
with the standard one as L∞(G,λG).

Readers who prefer to define L∞(G) in the standard way with the func-
tions being identified when they are equal almost everywhere are directed
for example to Royden in [43]. Royden uses Radon measures in the sense of
Schwartz and inner regularity rather than outer regularity, as in [29] or [20].

The space CB(G) will stand for the Banach subspace of L∞(G) con-
sisting on all continuous and bounded functions on G. In this paper the
subspace WAP(G) of CB(G) will play a special role. A function f ∈ CB(G)
is in WAP(G), i.e., is weakly almost periodic when the set of its left (or
equivalently, right) translates {fs : s ∈ G} is relatively weakly compact in
CB(G). Grothendieck’s famous iterated limit criterion shows that a function
f ∈ CB(G) is in WAP(G) if and only if, for any sequences (xn) and (ym) in
G,

lim
n→∞

lim
m→∞

f(xnym) = lim
m→∞

lim
n→∞

f(xnym)

whenever these iterated limits exist; see for example [4, Appendix A].
As indicated in the introduction, WAP(A) is the space of all weakly al-

most periodic functionals of a Banach algebra A. Ülger [47] proved that
WAP(L1(G)) equals WAP(G) for every locally compact group G.
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2.3. Banach spaces and isometries. If E is a Banach space and I is
a nonempty index set, `∞(I, E) will denote as usual the linear space of
all families x = (xi)i∈I with xi ∈ E and with sup {‖xi‖E : i ∈ I} < ∞.
Equipped with the norm ‖x‖ = sup {‖xi‖E : i ∈ I}, `∞(I, E) turns into a
Banach space. The particular case `∞(ω,E) will be be denoted simply as
`∞(E). Of course, when |I| = 1, `∞(I, E) is just the Banach space E.
Cardinal numbers will be identified with their initial ordinals, so that the
above definition makes sense for `(α,E) when α is a cardinal number.

By an isometry between two Banach spaces E1 and E2 we understand a
map T1 : E1 → E2 with ‖T (v)‖E2 = ‖v‖E1 for all v ∈ E1, i.e. we do not
assume that isometries are onto.

We record here an elementary fact, and the concept it relates to, that will
be often used to find isometries into quotients. We omit its straightforward
proof.

Definition 2.1. Let T : E → F be a linear isometry between Banach spaces.
If G is a closed subspace of F , we say that T is preserved by G when the
following property holds:

‖Tξ − φ‖ ≥ ‖ξ‖, for all φ ∈ G and ξ ∈ E .(∗)

Lemma 2.2. Let T : E → F be an isometry between Banach spaces and let

H, G be closed linear subspaces of F with H ⊆ G. Denote by Q : F → F
H

the quotient map. If T is preserved by G, then the map Q ◦ T : E → F
H

is a

linear isometry.

Next we observe how extreme non-Arens regularity of a locally compact
group can be lifted from open subgroups.

3. Groups with a metrizable factor

In this Section we deal with locally compact groups of the form G = M ×
H, with M metrizable and H any locally compact group. Two key results
are proved. In our first key theorem, metrizability and non-discreteness of
the factor group M are used to get a copy of `∞(L∞(H)) in the quotient

space L∞(M×H)
CB(M×H) . The second result shows in particular that L∞(M × H)

is contained in `∞(L∞(H)) when M is also σ-compact. Non-discreteness is
not necessary for the second result.

3.1.
L∞(M ×H)

CB(M ×H)

L∞(M ×H)

CB(M ×H)

L∞(M ×H)

CB(M ×H)
contains `∞(L∞(H))`∞(L∞(H))`∞(L∞(H)). For our first key result, both

metrizability and non-discreteness of M are needed.

Theorem 3.1. Let H be a locally compact group and let M be a non-discrete
metrizable locally compact group. Then there exists a linear isometry

Ψ: `∞(L∞(H))→ L∞(M ×H)

that is preserved by CB(M ×H).

Proof. Let {Un}n∈N denote a basis of neighborhoods of the identity in M
with U2

n+1 ⊂ Un for every n ∈ N. Put, for each n ∈ N, Vn = Un \ Un+1, and
consider the disjoint family of open sets in M given by {Vn : n ∈ N}. Next,
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partition N into ω-many subsets Im each of cardinality ω. Enumerate each
Im as Im = {mn : n ∈ N}, with mn < mn+1.

For each m ∈ N, define fm : M ×H → C as

fm(s, t) =


1, if s ∈ Vm2n ,

−1, if s ∈ Vm2n+1 ,

0, otherwise.

Then fm ∈ L∞(M ×H), note that fm is simply

fm = χ
(
⋃
n Vm2n )×H − χ(

⋃
n Vm2n+1)×H .

Define now for each ξ = (ξm)m<ω ∈ `∞(L∞(H)), the function fξ ∈
L∞(M ×H) by

fξ(s, t) =
∑
m<ω

ξm(t)fm(s, t).

Observe that fξ is well-defined; in fact depending on where the variable s
is, fξ(s, t) = ξm(t),−ξm(t) or 0.

Then, consider the map Ψ: `∞(L∞(H))→ L∞(M ×H) given by

Ψ (ξ) = fξ.

It is easily observed that Ψ is linear and ‖Ψ(ξ)‖ = ‖fξ‖ ≤ ‖ξ‖ for every
ξ = (ξn)n<ω ∈ `∞(L∞(H)).

Moreover, since for each s ∈ Vm2n , fξ(s, t) = ξm(t), we deduce that

‖Ψ(ξ)‖ = ‖fξ‖ = ‖ξ‖.
We now prove that Ψ is preserved by CB(M ×H). Since Ψ is linear, it

will be enough to show that

‖fξ − φ‖ ≥ 1 for every ξ ∈ `∞(L∞(H)) with ‖ξ‖ = 1 and φ ∈ CB(M ×H).

Suppose, otherwise, that for some ε > 0 and some φ ∈ CB(M ×H), we have

(1) ‖fξ − φ‖ < 1− ε.
Since ‖ξ‖ = sup{‖ξm‖ : m ∈ N} = 1, and for each m,

‖ξm‖ = sup {‖ξm χK‖ : K ⊂ H is compact} ,
we may fix m ∈ N and K ⊂ H such that

(2) ‖ξm χK‖ > 1− ε/2.
By (1), the set

D = {(s, t) ∈ U0 ×K : |fξ(s, t)− φ(s, t)| ≥ 1− ε}
is null and, by Fubini’s theorem, there is a null set A ⊂ M such that
s ∈M \A implies that the set

Cs = {t ∈ H : (s, t) ∈ D}
is null. The set A can actually be described as

A = {s ∈ G : λH (Cs) > 0}.
Let now n ∈ N be picked arbitrarily.
Being null, A cannot contain either of the open sets Vm2n or Vm2n+1 . We

then choose sm2n ∈ Vm2n \ A and sm2n+1 ∈ Vm2n+1 \ A. Since fm takes the
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value 1 on Vm2n ×H and the value -1 on Vm2n+1 ×H, we see that, for every
t ∈ K \ (Bsm2n

∪Bsm2n+1
):

|ξm(t)− φ(sm2n , t)| < 1− ε, and(3) ∣∣ξm(t) + φ(sm2n+1 , t)
∣∣ < 1− ε.(4)

On the other hand, by our assumption (2), we may pick t ∈ C \
⋃
k Bsmk

such that

(5) |ξm(t)| ≥ 1− ε

2
,

and we may suppose that ξm(t) > 0.
Then, by (3), (4) and (5), we have for every n ∈ N,

φ(sm2n , t) > ε/2 while φ(sm2n+1 , t) < −ε/2.

If we observe that, by construction, (smn) converges to e, we find that these
last inequalities go against the continuity of φ at (e, t). If ξm(t) < 0, a
similar argument leads to the same contradiction.

�

3.2. L∞(M×H) is contained in `̀̀∞(L∞(H)). For our second main lemma,
we recall that, for any given locally compact group, d(Lp(G)) ≤ max{κ(G), χ(G)},
if 1 ≤ p < ∞, see [32, Lemma 7.3]. In particular, d(L1(G)) = ω when G is
an infinite, σ-compact, metrizable locally compact group.

Lemma 3.2. Let M and H be locally compact groups and put d = d(L1(M)).
There is then a linear isometry of L∞(M ×H) into `∞(d, L∞(H)).

Proof. Let {ui : i < d} be a norm dense subset in the unit ball of L1(M).
Let λM and λH be fixed left Haar measures on M and H, respectively. We
define a map:

Ψ : L∞(M ×H)→ `∞(d, L∞(H))

f 7→ (Ψ(f)i)i<d,

where Ψ(f)i is given for every v ∈ L1(H) by

< Ψ(f)i, v >=

∫
M

(∫
H
f(s, t)ui(s)v(t)dλH(t)

)
dλM (s).

We claim than Ψ is a linear isometry of L∞(M ×H) into `∞(d, L∞(H)).
Ψ(f)i defines obviously a linear functional on L1(H) for each i < d. In

addition,

|< Ψ(f)i, v >| ≤
∫
M

(∫
H
|f(s, t)| · |ui(s)| · |v(t)|dλH(t)

)
dλM (s)

≤ ‖f‖
L∞(M×H)

·
(∫

M
|ui(s)|dλM (s)

)
·
(∫

H
|v(t)|dλH(t)

)
≤ ‖f‖

L∞(M×H)
‖v‖L1(H).

(6)

Being a continuous linear functional on L1(H), Ψ(f)i can indeed be identi-
fied with an element of L∞(H).
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Inequality (6) actually gives:

‖Ψ(f)‖`∞(d,L∞(H)) ≤ ‖f‖L∞(M×H) .

We now check the converse inequality. For every i < d and every function
v in the unit ball of L1(H), we have

‖Ψ(f)‖`∞(d,L∞(H)) = sup
i<d
‖Ψ(f)i‖L∞(H)

= sup
i<d

sup
{
| < Ψ(f)i, w > | : ‖w‖L1(H) ≤ 1

}
≥ | < Ψ(f)i, v > |

=

∣∣∣∣∫
M

(∫
H
f(s, t)ui(s)v(t)dλH(t)

)
dλM (s)

∣∣∣∣ .
Accordingly,

‖Ψ(f)‖`∞(d,L∞(H)) ≥
∣∣∣∣∫
M

(∫
H
f(s, t)u(s)v(t)dλH(t)

)
dλM (s)

∣∣∣∣
for every u and v in the unit balls of L1(M) and L1(H), respectively.

Now, the set of maps

{(s, t) 7→ u(s)v(t) : u ∈ L1(M) and v ∈ L1(H) with ‖u‖L1(M) ≤ 1, ‖v‖L1(H) ≤ 1}

is dense in the unit ball of L1(M×H) (it contains the characteristic function
of every measurable rectangle of integrable sides). Therefore,

‖Ψ(f)‖`∞(d,L∞(H)) ≥
∣∣∣∣∫
M

(∫
H
f(s, t)h(s, t)dλH(t)

)
dλM (s)

∣∣∣∣
for every h in the unit ball of L1(M ×H). In other words,

‖Ψ(f)‖`∞(d,L∞(H)) ≥ ‖f‖L∞(M×H),

as required for the first statement. �

We can already give the first consequence on the extreme non-Arens reg-
ularity of the group algebra for some locally compact groups.

Corollary 3.3. Let G = H ×M be a locally compact group with M non-
discrete, σ-compact and metrizable. Then there exists a linear isometry from
L∞(G) into L∞(G) which is preserved by CB(G). In particular, the group
algebra L1(G) is extremely non-Arens regular.

Proof. Let Ψ1 denote the isometry preserved by CB(M × H) constructed
in Lemma 3.1 and denote by Ψ2 the isometry obtained in 3.2 for d =
d(L1(M)) = ω,

L∞(M ×H)
Ψ2−−→ `∞(L∞(H))

Ψ1−−→ L∞(M ×H).

The composition T = Ψ1◦Ψ2, is then an isometry preserved by CB(M×H):

‖Tξ − φ‖ = ‖Ψ1(Ψ2ξ)− φ‖ ≥ ‖Ψ2ξ‖ = ‖ξ‖.

Lemma 2.2 proves that L1(G) is extremely non-Arens regular. �
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4. One more lemma

Our second key lemma in this section isolates a set of conditions, which
suffice to guarantee a linear isometric copy of L∞(G) in the quotient space
L∞(G)

CB(G)
, and so the extreme non-Arens regularity of the group algebra. As

a consequence of the work of Grekas and Mercourakis [28], these conditions
are know to be satisfied by compact groups which will be the subject of our
next section. We begin with a lemma that brings out a tool usually related
to Weil formula, essential in the construction of Haar measure on quotients.
Our arguments here draw upon Section 20 of [29], Section 3.4 of [42] and
Section 2.6 of [20].

Lemma 4.1. Let G and H be two locally compact groups and let ϕ : G→ H
be a continuous and open surjective homomorphism with compact kernel N .
Then every φ ∈ L∞(G) induces a function TNφ ∈ L∞(H) with the following
properties:

(i) ‖TNφ‖ ≤ ‖φ‖.
(ii) TN (ξ ◦ ϕ) = ξ for every ξ ∈ L∞(H).
(iii) If φ ∈ CB(G), then TNφ ∈ CB(H).

Proof. Let λN be the normalized Haar measure on N . For φ ∈ L∞(G), we
define a function Nφ on G by

Nφ(x) =

∫
N
φ(xn)dλN (n) for x ∈ G.

Regarding λN as a Borel bounded measure on G, and following [29, Theorem
20.13], we may write Nφ = φ ∗ λN , so that Nφ ∈ L∞(G) and ‖Nφ‖ ≤ ‖φ‖.
Due to the invariance of λN on N , Nφ is constant on each coset of N. It
follows that Nφ induces a function TNφ on H by setting

TNφ(y) = TNφ(ϕ(x)) = Nφ(x) for every y = ϕ(x) ∈ H.
We check now that TNφ ∈ L∞(H) for every φ ∈ L∞(G). Let to that end
c > 0 be such that {x ∈ G : |Nφ(x)| > c} is locally null. We claim that the
set {y ∈ H : |TNφ(y)| > c} is locally null. So let A be any compact subset
of H. Then ϕ−1(A) is compact as well (continuous homomorphisms with
compact kernel are proper maps) and, by assumption, the set

ϕ−1({ϕ(x) ∈ A : |Nφ(x)| > c}) = {x ∈ ϕ−1(A) : |Nφ(x)| > c}
is null. Using [24, Theorem 2.64] and writing each y ∈ H as ϕ(x) for some
x ∈ G, we deduce that the set

{y ∈ A : |TNφ(y)| > c} = {ϕ(x) ∈ A : |Nφ(x)| > c},
is also null. Therefore, ‖TNφ‖ ≤ ‖Nφ‖ ≤ ‖φ|, as required.

Let now ξ ∈ L∞(H), we check then that TN (ξ ◦ ϕ) = ξ. Let y ∈ H and
pick x ∈ G with ϕ(x) = y. Then

TN (ξ ◦ ϕ)(y) =

∫
N
ξ (ϕ(xn)) dλ(n)

=

∫
N
ξ(ϕ(x)ϕ(n))dλ(n) =

∫
N
ξ(ϕ(x))dλ(n) = ξ(ϕ(x)) = ξ(y).
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If φ ∈ CB(G), the continuity of Nφ follows easily from the continuity of
the function x 7→ Fx, x ∈ G, where Fx ∈ CB(N) is defined as Fx(n) = φ(xn)
for every n ∈ N . The continuity of the latter follows from the compactness
of the group N.

To see now that TNφ, we use continuity and openness of ϕ. so let ε >
0, y ∈ H and x ∈ G such that ϕ(x) = y be arbitrarily chosen. Take a
neighbourhood U of x in G such that |Nφ(u)−Nφ(x)| < ε for every u ∈ U.
Since ϕ is open, we may take V = ϕ(U) as a neighbourhood of y in H,

and so |T φN (z) − T φN (y)| = |Nφ(u) −Nφ(x)| < ε for every z = ϕ(u) ∈ V, as
required. �

Here is now our second key lemma. The mapping ϕ of Lemma 4.2, that
will be explicitly produced in Theorem 5.4, induce the rest of the isometries.

Lemma 4.2. Let K be a locally compact group and suppose that two locally
compact groups H and M can be found such that:

(i) M is metrizable, σ−compact and non-discrete,
(ii) there exists a linear isometry Ψ1 : L∞(K)→ L∞(M ×H),

(iii) there exists a continuous and open surjective homomorphism K
ϕ // M ×H .

Then there exists a linear isometry of L∞(K) into L∞(K) that is preserved
by CB(K).

Proof. The desired isometry will be obtained as the composition of four
isometries, the first of them being the one hypothesized in (ii).

The second and third isometries are obtained from Lemma 3.2 and The-
orem 3.1 as in Corollary 3.3.

Ψ2 : L∞(M ×H)→ `∞ (L∞(H))

Ψ3 : `∞(L∞(H)) −→ L∞(M ×H).

Recall that Ψ3 is preserved by CB(M ×H).
The map ϕ induces the fourth linear isometry:

Ψ4 : L∞(M ×H) // L∞(K)

in the obvious way: Ψ4(ξ) = ξ ◦ ϕ.
Putting everything together, we obtain the following chain of isometries:

L∞(K)
Ψ1−−−−→ L∞(M ×H)xΨ4

yΨ2

L∞(M ×H)
Ψ3←−−−− `∞(L∞(H))

We finally check that the composition of all four isometries is preserved
by CB(K). It will be enough to check that Ψ4 ◦Ψ3 is preserved by CB(K).

Let to that end ξ ∈ `∞(L∞(H)) and φ ∈ CB(K). Let TNφ ∈ CB(H ×M)
be the function provided in Lemma 4.1 for φ and ϕ. Using the properties
deduced in that Lemma and that Ψ3 is preserved by CB(K) we have that,
for every ξ ∈ `∞(L∞(H)),

‖Ψ4 (Ψ3(ξ))− φ‖ ≥ ‖TN
(
Ψ4 (Ψ3(ξ))− φ

)
‖ = ‖Ψ3(ξ)− TNφ‖ ≥ ‖ξ‖.

The isometry Ψ4 ◦Ψ3 is therefore preserved by CB(K). �
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5. The compact case.

In view of Corollary 3.3, the main obstacle towards a complete proof is
in compact non-metrizable groups. Our main tool to solve this case will be
the results of Grekas and Mercourakis in [28], where it is proved that every
compact group K may be sandwiched, from the measure and topological
point of view, between two groups of the form M ×H with M non-discrete
and metrizable.

Following [28], we say that two locally compact groups groups G1 and
G2 with Haar measures λ1 and λ2, respectively, are Haar homeomorphic
when there exists a homeomorphism ψ : G1 → G2 such that A ⊂ G1 is
λ1-measurable if and only if ψ(A) is λ2-measurable and λ1(A) = λ2(ψ(A)).
Note that in this situation, the map f 7→ f ◦ψ establishes a linear isometry
between the group algebras L∞(G1) and L∞(G2) as well as between the
C∗-algebras CB(G1) and CB(G2), and so these spaces may be identified.

We start by recalling Grekas and Mercourakis results, which will help us
to deal with non-metrizable compact groups. For our first Lemma we do not
need the full force of the corresponding Theorems in [28]. Even if Lemma
5.1 in this form follows easily from [31, Corollary 9.25] and the structure of
Abelian groups, we find it more convenient to lean on Theorem 1.1 of [28]
which already contains these arguments.

Lemma 5.1. [28, Theorems 1.1(1) and 1.4(1)] Let K be a non-trivial com-
pact, connected group. There are two families of compact non-trivial con-
nected metrizable groups {Mi : i ∈ I} and {Ni : i ∈ I} and two continuous
and open surjective homomorphisms ϕ1 and ϕ2 as follows:∏

i

Mi
ϕ2−→ K

ϕ1−→
∏
i

Ni.

Lemma 5.2. [28, Theorem 1.1 (2)] Let K be a totally disconnected, compact
group. There is a Haar homeomorphism φ : K →

∏
i Fi, where each Fi a

finite group.

We first observe the that the existence of self-isometries of L∞(K) pre-
served by CB(K) is preserved by Haar homeomorphism.

Lemma 5.3. Let G and H be Haar homeomorphic groups. Suppose that
ΨH : L∞(H) → L∞(H) is a linear isometry that preserves CB(H). Then
ΨH induces a linear isometry ΨG : L∞(G)→ L∞(G) that preserves CB(G).

Proof. If j : H → G denotes a Haar homeomorphism, the required isometry
will be given by ΨGξ = ΨH (ξ ◦ j) ◦ j−1. Since φ ◦ j ∈ CB(H) for every
φ ∈ CB(G), the proof is straightforward. �

Theorem 5.4. Let K be a compact group. If K is infinite, then there exists
a linear isometric copy of L∞(K) into L∞(K) that is preserved by CB(K).
The group algebra L1(K) is, in particular, extremely non-Arens regular.

Proof. If K is metrizable, Corollary 3.3 with K = M and H = {e} yields
the theorem.

Suppose now that K is not metrizable. As a compact group, K is Haar
homeomorphic to K0×(K/K0), where K0 denotes the connected component
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of K (see [28, Theorem (B) and the remarks thereafter], see also [38, Theo-
rem 8]). By Lemma 5.3, it is sufficient to prove the theorem for K0×(K/K0).
Note that either K0 or K/K0 is not metrizable.

We suppose first that K/K0 is metrizable. Then K0 is non-metrizable. By
Lemma 5.1 we have two collections of compact connected metrizable groups

{Mi : i ∈ I} and {Ni : i ∈ I}

and two continuous and open surjective homomorphisms ϕ1 and ϕ2∏
iNi

ϕ2 // K0
ϕ1 //

∏
iMi

We check that K0 × (K/K0) satisfies the conditions of Lemma 4.2.
We start by fixing any i ∈ I. The groups Mi× (K/K0) and Ni× (K/K0)

are then metrizable and non-discrete. Then let J = I \ {i} and put

M = Mi × (K/K0),

H =
∏
i∈J

Mi,

K0 ×K/K0
ϕ−−−→

∏
i∈I

Mi × (K/K0) = M ×H,

where ϕ is defined as ϕ = ϕ1 × idK/K0
. Condition (i) of Lemma 4.2 is

trivially fulfilled. As to Condition (ii), since I is infinite and the groups in
both collections are metrizable, we have

|I| = w(
∏
i∈I

Ni) ≥ w(K0) ≥ w(
∏
i∈I

Mi) = |I|.

Since K/K0 is metrizable, this gives w(K0 ×K/K0) = w(K0) = |I|. There-
fore, by Theorem 3.1 of [27] (and Maharam’s theorem, see, e.g., [22, Theorem
331I]), both spaces L∞(M ×H) = L∞(

∏
i∈IMi) and L∞(K0 ×K/K0) are

linearly isometric to L∞({0, 1}|I|), whence the existence of the linear isom-
etry Ψ1 : L∞(K0 × K/K0) → L∞(M × H) required in Condition (ii) of
Lemma 4.2.

Since the map ϕ clearly satisfies Condition (iii) of Lemma 4.2, we can
conclude with it that there is a linear isometry of L∞(K0 × K/K0) into
L∞(K0 ×K/K0) preserved by CB(K0 ×K/K0). The existence of a linear
isometry of L∞(K) into L∞(K) preserved by CB(K) follows from Lemma
5.3.

Assume now that K/K0 is not metrizable. By Lemma 5.2 we have now
an uncountable collection of finite groups {Fi : i ∈ I} and a Haar homeo-
morphism ϕ : K/K0 −→

∏
i∈I Fi. Fix an infinite countable subset J of I

and let

M =
∏
i∈J

Fi and H = K0 ×
∏
i∈I\J

Fi.

Then M is a compact, non-discrete and metrizable subgroup of K and K
is Haar homeomorphic to M ×H. Corollary 3.3 and Lemma 5.3 yield the
desired claim. �
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6. The final step. Putting things together

After having dealt with metrizable groups and compact groups, we will
now use a classic theorem of Davis, reminiscient of a basic structural result
of Yamabe [48], to the effect that every locally compact group has an open
subgroup Haar homeomorphic to the product Rn ×K with K compact.

We first observe how extreme non-Arens regularity of a locally compact
group can be lifted from open subgroups.

Lemma 6.1. Let G be a locally compact group and G0 be an open subgroup
of G. Suppose that T : L∞(G0) → L∞(G0) is an isometry preserved by
CB(G0). Then T extends to an isometry Ψ : L∞(G) → L∞(G) that is
preserved by CB(G).

Proof. Let α = |G : G0| and {xη : η < α} be a system of representatives of
the right cosets of G0 in G.

For any ξ ∈ L∞(G) and each η < α, define ξη ∈ L∞(G0) by ξη(s) =
ξ(xηs). Since A ⊂ G is locally null if and only if A∩ xηG0 is locally null for
every η < α (see [20, Page 46]), the correspondence

S : L∞(G) −→ `∞ (α,L∞(G0))

ξ 7−→ (ξη)η<α

is a well-defined linear isometry.
Now let αT : `∞ (α,L∞(G0)) → `∞ (α,L∞(G0)) denote the natural ex-

tension of T to `∞ (α,L∞(G0)) given by

αT ((ξη)η<α) = (Tξη)η<α for (ξη)η<α ∈ `∞ (α,L∞(G0)) .

We then define

Ψ = S−1 ◦ αT ◦ S : L∞(G)→ L∞(G).

If ξ ∈ L∞(G) and φ ∈ CB(G), observing that φη ∈ CB(G0) for every η < α,
we have that

‖Ψ(ξ)− φ‖
L∞(G)

= ‖((αT ) ◦ S) (ξ)− S(φ)‖
`∞(α,L∞(G0))

= max
η<α
‖T (ξη)− φη‖

L∞(G0)

≥ max
η<α
‖ξη‖L∞(G0)

= ‖S(ξ)‖
`∞(α,L∞(G0))

= ‖ξ‖
L∞(G)

.

�

This is the theorem of Davis mentioned before:

Lemma 6.2 (Davis, [12]). Every locally compact group G contains an open
subgroup H which is Haar homeomorphic to Rn ×K where K is a compact
group.

Proof. This follows directly from the Theorem in [12] and its proof. �

We reach now our aim. We start with Theorem B.

Theorem 6.3. Let F(G) be any closed subspace of CB(G). Then there exists

a linear isometric copy of L∞(G) in the quotient space
L∞(G)

F(G)
for any

infinite, non-discrete, locally compact group G.
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Proof. By the previous lemma, G contains an open subgroup G0 which is
Haar homeomorphic to Rn ×K.

If n 6= 0, we apply Corollary 3.3 to Rn ×K (with H = K). Lemma 5.3
and Lemma 6.1 then prove the existence of a linear isometry of L∞(G) into
L∞(G) that is preserved by CB(G) and we obtain the desired isometry from

L∞(G) into
L∞(G)

F(G)
(via Lemma 2.2).

If n = 0 we follow the same path replacing Corollary 3.3 by Theorem 5.4.
�

And here is Theorem A.

Theorem 6.4. Let G be an infinite locally compact group. Then L1(G) is
extremely non-Arens regular.

Proof. If G is non-discrete, this is an immediate consequence of Theorem
6.3. If G is discrete, the claim was proved in [19] or [7]. �

Let A(G) be the Fourier algebra, consisting of all functions u ∈ C0(G) of

the form f ∗ ǧ (x ∈ G), where f, g ∈ L2(G) and ǧ(x) = g(x−1). The norm in
A(G) is given by

‖u‖ = inf{‖f‖2‖g‖2 : u = f ∗ ǧ, f, g ∈ L2(G)}
(see Eymard [14]). In harmonic analysis, A(G) is seen as the dual object of
the group algebra L1(G). In fact when G is abelian, the Fourier transform

is an isometric algebra isomorphism from L1(Ĝ) onto A(G).
As already noted at the begining of the paper, the extreme non-Arens

regularity of the Fourier algebra A(G) was proved by Hu in [30] when χ(G) ≥
κ(G). The question of whether A(G) is extremely non-Arens regular for any
infinite locally compact group remains open. But when G is Abelian, we
can omit the condition χ(G) ≥ κ(G).

Corollary 6.5. If G is an infinite locally compact Abelian group, then the
Fourier algebra A(G) is extremely non-Arens regular
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