
Approximate Subtree Identification
in Heterogeneous XML Documents Collections

Ismael Sanz1, Marco Mesiti2, Giovanna Guerrini3, and Rafael Berlanga Llavori1

1 Universitat Jaume I, Castellón, Spain
{berlanga,Ismael.Sanz}@uji.es

2 Università di Milano, Italy
mesiti@dico.unimi.it

3 Università di Pisa, Italy
guerrini@di.unipi.it

Abstract. Due to the heterogeneous nature of XML data for internet
applications exact matching of queries is often inadequate. The need
arises to quickly identify subtrees of XML documents in a collection
that are similar to a given pattern. In this paper we discuss different
similarity measures between a pattern and subtrees of documents in the
collection. An efficient algorithm for the identification of document sub-
trees, approximately conforming to the pattern, by indexing structures
is then introduced.

1 Introduction

The importance of tree-modeled data has spectacularly grown with the emer-
gence of semistructured and XML-based databases. Nowadays, interoperabil-
ity between systems is achieved through the interchange of XML files, which
can represent a great variety of information resources: semi-structured objects,
database schemas, concept taxonomies, ontologies, etc. As their underlying data
structures use to be tree based, there is a great interest in designing mechanisms
for retrieving subtrees according to user requests. In the case of heterogeneous
XML collections, these mechanisms must also be approximate, that is, they must
retrieve document subtrees that best fit the user requests.

Document heterogeneity poses several challenges to these retrieval systems.
Firstly, they must face the problem of dealing with vocabulary discrepancies in
the element names (e.g., synonymy, polysemy, etc.). Two elements should match
also when their tags are similar relying on a given Thesaurus. Secondly, they
must deal with the structural heterogeneity produced by the different DTDs or
Schemas behind the stored XML documents. The common assumption of simply
weakening the father-children relationships (e.g., the address element can be
a child or a descendant of the person element) is not enough. They should
consider the possibility that the father-children relationship is inverted (e.g.,
the person element is a child/descendant of the address element) or that the
two elements appear as siblings. Moreover, as schemas can also include optional
and complex components, structural heterogeneity can appear even for a single

S. Bressan et al. (Eds.): XSym 2005, LNCS 3671, pp. 192–206, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Approximate Subtree Identification 193

schema collection. For these reasons, a user query could be answered by a set of
subtrees presenting different structures as well as slight variations in their labels.

In this paper, we stress the structure and tag heterogeneity of XML document
collections that can lead to search a very large amount of documents exhibiting
weak similarity to a given pattern and we propose an approach for identifying the
portions of documents that are similar to the pattern. A pattern is an abstract
representation of a user request whose structural constraints are not taken into
account in identifying the portions of the target documents in which the nodes
of the pattern appear. The structural similarity between the pattern and the
identified portions of the target is evaluated as a second step, allowing to rank
the identified portions and producing the result.

The proposed approach is thus highly flexible and allows one to choose the
desired structural and tag constraints to be taken into account. The problem is
however how to perform the first step efficiently, that is, how to efficiently identify
fragments, i.e. portions of the target containing labels similar to those of the
pattern, without relying on strict structural constraints. Our approach employs
an ad-hoc data structure, an inverted index of the target and a pattern index
extracted on the fly from the inverted index relying on the pattern labels. By the
inverted index, nodes in the target with labels similar to those of the pattern
are identified and organized in the levels in which they appear in the target.
Fragments are generated by considering the ancestor-descendant relationship
among such vertices. Moreover, identified fragments are combined in regions,
allowing for the occurrence of nodes with labels not appearing in the pattern,
if the region shows a higher structural similarity with the pattern than the
fragments it is originated from. However, some heuristics are needed to avoid
considering all the possible ways of merging fragments into regions and for the
efficient computation of similarity.

In the paper, we formally define the notions of fragments and regions and
propose the algorithms allowing their identification, relying on our pattern index
structure. The use in the approach of different structural similarity functions
taking into account different structural constraints (e.g. ancestor-descendant and
sibling order) is discussed. The practical applicability of the approach is finally
demonstrated by providing experimental results. The contribution of the paper
can thus be summarized as follows: (i) characterization of different similarity
measures between a pattern and regions in a collection of heterogeneous tree
structured data; (ii) specification of an approach for the efficient identification of
regions by specifically tailored indexing structures; (iii) realization of a prototype
and experimental validation of the approach.

The remainder of the paper is organized as follows. Section 2 formally in-
troduces the notions of pattern, target, fragments, and regions the approach
relies on. Section 3 is devoted to discussing different approaches to measure the
similarity between the pattern and a region identified in the target. Section 4
discusses how to efficiently identify fragments and regions. Section 5 presents
experimental results while Section 6 compares our approach with related work.
Finally, Section 7 concludes the paper.

194 Ismael Sanz et al.

Table 1. Notations

Symbol Meaning

root(T) The root of T
V(T) The set of vertices of T (i.e., V)
|V |,|T | The cardinality of V(T)
label(T) The label associated with the root of T
label(v),label(V) The label associated with a node v and the nodes in V
P(v) The parent of vertex v
desc(v) The set of descendants of v (desc(v) = {u|(v, u) ∈ E∗})
level(T) The depth of T
level(v) The level in which v appears in T
pre(v),post(v) The pre/post-order traversal rank of v
nca(v, u) The nearest common ancestor of v and u
Dist(v, u) The number of vertices from v to u in a pre-order traversal
d(v),dmax d(v) = Dist(root(T), v), dmax = maxv∈V(T)d(v)

2 Pattern, Target, Fragment and Region Trees

Trees. Following standard notations, a tree T is a pair (V, E), where V is a finite
set of vertices (root(T) ∈ V is the tree root) and E is a binary relation on V
that satisfies the following conditions: (i) the root has no parent; (ii) every node
of the tree except the root has exactly one parent; (iii) all nodes are reachable
via edges from the root, i.e. (root(T), v) ∈ E∗ for all nodes in V (E∗ is the
Klein closure of E). u is the parent of v if an edge (u, v) belongs to E. A node
labelling function label assigns to each node in V a label in a set L. Given a
tree T = (V, E), Table 1 reports functions/symbols used throughout the paper.
In using the notations, the tree T is not explicitly reported whenever it is clear
from the context. Otherwise, it is marked as a subscript of the operator.

Document order is determined by a pre-order traversal of the document
tree [1]. In a pre-order traversal, a tree node v is visited and assigned its pre-
order rank pre(v) before its children are recursively traversed from left to right.
A post-order traversal is the dual of the pre-order traversal: a node v is assigned
its post-order rank post(v) after all its children have been traversed from left
to right. Each node v is thus coupled with a triple (pre(v), post(v), level(v)) as
shown in Figure 1(a). For the sake of clarity, node triples are reported in the
figure only when they are relevant for the discussion. The distance Dist(v, u) be-
tween two vertices u, v in the tree is specified as the number of vertices traversed
moving from v to u in the pre-order traversal.

Pre- and post- ranking can be used to efficiently characterize the descendants
u of v. A node v is a descendant of u, v ∈ desc(u), iff pre(v) < pre(u)∧post(u) <
post(v). Given a tree T = (V, E) and two nodes u, v ∈ V , the nearest common
ancestor of u and v, nca(u, v), is the common ancestor of u and v whose distance
to u (and to v) is smaller than the distance to any other common ancestor. Note
that nca(u, v) = nca(v, u) and nca(u, v) = v if u is a descendant of v.

Two labels in a tree are similar if they are identical, or synonyms relying on
a given Thesaurus, or syntactically similar relying on a string edit function [2].

Approximate Subtree Identification 195

(a) (b) (c) (d)

Fig. 1. (a) Pre/Post order rank, a matching fragment with a different order (b), missing
levels (c), and missing elements (d)

Let l1, l2 be two labels, l1 � l2 iff: (1) l1 = l2 or (2) l1 is a synonym of l2, or
(3) l1 and l2 are syntactically similar. Given a label l and a set of labels L, we
introduce the operator similarly belongs, ∝: l ∝ L iff ∃n ∈ L s.t. l � n.

Pattern and Target Trees. A pattern is a tree representing a collection of
navigational expressions on the target tree (e.g., Xpath expressions in XML
documents) or simply a set of labels for which a “preference” is specified on the
hierarchical or sibling order in which such labels should occur in the target.

Example 1. Consider the pattern in Figure 1(a). Possible matches are reported
in Figure 1(b,c,d). The matching tree in Figure 1(b) contains similar labels but
at different positions, whereas the one in Figure 1(c) contains similar labels but
at different levels. Finally, the matching tree in Figure 1(d) presents a missing
element and both the elements appear at different levels. ©

The target is a set of heterogeneous documents in a source. The target is
conveniently represented as a tree whose root is labelled db and whose subele-
ments are the documents of the source. This representation relies on the common
model adopted by native XML databases (e.g., eXist, Xindice) and simplifies the
adopted notations. A target is shown in Figure 2(a).

Definition 1. (Target). Let {T1, . . . , Tn} be a collection of trees, where Ti =
(Vi, Ei), 1 ≤ i ≤ n. A target is a tree T = (V, E) such that:

– V = ∪n
i=1Vi ∪ {r}, and r �∈ ∪n

i=1Vi,
– E = ∪n

i=1Ei ∪ {(r, root(Ti)), 1 ≤ i ≤ n},
– label(r) = db. �

Fragment and Region Trees. The basic building blocks of matchings in our
approach are fragments. Given a pattern P and a target T , a fragment F is a
subtree of T , in which only nodes with labels similar to those in P are considered.
Two vertices u, v belong to the same fragment F for a pattern P, iff their labels
as well as the label of their common ancestor similarly belong to the labels of
the pattern. A fragment should belong to a single document of the target.

Definition 2. (Fragment Node Set). A fragment node set of a target T with
respect to a pattern P is one of the maximal subsets V of V(T) for which
root(T) �∈ V and ∀u, v ∈ V, label(u), label(v), label(nca(u, v)) ∝ label(V(P)). �

196 Ismael Sanz et al.

(a)

b

d c

(b)

db

b f h

c d

e f

b e

c d

b d

e e

f

(c)

Fig. 2. (a) A target, (b) a pattern, and in bold (c) the corresponding fragments

The tree structure of each fragment is derived from the ancestor-descendant
relationship existing among vertices in the target.

Definition 3. (Fragment Set). Let FNP (T) be the collection of fragment node
sets of target T with respect to a pattern P . Every set of vertices VF ∈ FNP (T)
defines a fragment as the tree F = (VF , EF) such that:

1. For each v ∈ VF , nca(root(F), v) = root(F);
2. (u, v) ∈ EF if u is an ancestor of v in T , and there is no vertex w ∈ VF ,

w �= u, v such that w ∈ desc(u) and v ∈ desc(w). �

Example 2. Consider the pattern in Figure 2(b) and the target in Figure 2(a).
The corresponding five fragments are shown in bold in Figure 2(c). ©

Starting from fragments, regions are introduced as combinations of fragments
rooted at the nearest common ancestor in the target. Two fragments can be
merged in a region only if they belong to the same document. In other words,
the common root of the two fragments is not the db node of the source.

Example 3. Consider as tree T the tree rooted at node (6, 10, 1) in Figure 2(a).
Its left subtree contains elements b and c, whereas its right subtree contains
element d. T could have a higher similarity with the pattern tree in Figure 2(b)
than its left or right subtrees. Therefore, the need arises of combining fragments
in regions to return subtrees with higher similarities. ©

Definition 4. (Regions). Let FP (T) be the set of fragments btw a pattern P
and a target T . The corresponding set of regions RP (T) is defined as follows.

– FP (T) ⊆ RP (T);
– For each F = (VF , EF) ∈ FP (T) and for each R = (VR, ER) ∈ RP (T) s.t.

label(nca(root(F), root(R))) �= db, S = (VS , ES) ∈ RP (T), where:
• root(S) = nca(root(F), root(R)),
• VS = VF ∪ VR ∪ {root(S)},
• ES = EF ∪ ER ∪ {(root(S), root(F)), (root(S), root(R))}. �

Approximate Subtree Identification 197

Fig. 3. Identification of different mappings

Figure 3 contains the three regions R1, R2, R3 obtained from the fragments
in Figure 2(c). This definition of regions allows one to identify as regions all
possible combinations of fragments in a document of the target. This number
can be exponential in the number of fragments. In Section 4.2 we will discuss
the locality principle to reduce the number of regions to consider.

3 Similarity of a Region w.r.t. a Pattern

In this section we present an approach for measuring the similarity between a
pattern and a region. We first identify the possible matches between the vertices
in the pattern and the vertices in the region having similar labels. Then, the hi-
erarchical structure of nodes is taken into account to choose, among the possible
matches, those that are structurally more similar.

3.1 Mapping Between a Pattern and a Region

A mapping between a pattern and a region is a relationship among their ele-
ments that takes the tags used in the documents into account. Our definition
differs from the mapping definition proposed by other authors ([3, 4]). Since our
focus is on heterogeneous structured data, we do not consider the hierarchical
organization of the pattern and the region in the definition of the mapping. We
only require that the element labels are similar.

Definition 5. (Mapping M). Let P be a pattern, and R a region subtree of a
target T . A mapping M is a partial injective function between the vertices of P
and those of R such that ∀xp ∈ V(P), M(xp) �=⊥⇒ label(xp) � label(M(xp)).�
Example 4. Figure 3 reports the pattern P in the center and the three regions,
R1, R2, R3, obtained from the pattern in Figure 2(a). Dashed lines represent the
mappings among the vertices of the pattern and of each region. ©

Several mappings can be determined between a pattern and a region thus
measures are required to evaluate the “goodness” of a mapping. The similarity
between a pattern and a region depends on the similarity between the ver-
tices having similar labels in the two structures. Possible similarity measures
Sim(xp, xr) between pairs of vertices will be introduced in next section.

198 Ismael Sanz et al.

Definition 6. (Evaluation of a Mapping M). Let M be a mapping between a
pattern P and a region R. The evaluation of M is:

Eval(M) =

∑
xp∈V(P)s.t.M(xp) �=⊥ Sim(xp, M(xp))

max(|V(P)|, |V(R)|) �

Once the evaluation of mappings is computed, we define the similarity be-
tween a pattern and a region as the maximal evaluation so obtained.

Definition 7. (Similarity between a Pattern and a Region). Let M be the set
of mappings between a pattern P and a region R. Their similarity is defined as:

Sim(P, R) = maxM∈MEval(M) �

3.2 Similarity Between Matching Vertices

In this section we present three approaches for computing the similarity between
a pair of matching vertices. In the first approach their similarity is one just
because we have identified a match in the region. This definition of similarity
does not take the structures of the pattern and of the region into account, but
just the occurrence of a match. In the second approach, we consider the level at
which xp and M(xp) appear in the pattern and region structure, respectively.
Whenever they appear in the same level, their similarity is equal to the similarity
computed by the first approach. Otherwise, their similarity linearly decreases as
the number of levels of difference increases. Since two vertices can be in the same
level, but not in the same position, a third approach is introduced. Relying on
the pre-order traversal of the pattern and the region, the similarity is computed
by taking the distance of vertices xp and M(xp) with respect to their roots
into account. Thus, in this case, the similarity is the highest only when the two
vertices are in the same position in the pattern/region.

Definition 8. (Similarity between Matching Vertices). Let P be a pattern, R be
a region in a target T , xp ∈ V(P), and xr = M(xp). The similarity Sim(xp, xr)
can be computed as follows:

1. Match-based similarity: SimM (xp, xr) = 1;

2. Level-based similarity: SimL(xp, xr) = 1 − |levelP (xp)−levelR(xr)|
max(level(P),level(R)) ;

3. Distance-based similarity: SimD(xp, xr) = 1 − |dP (xp)−dR(xr)|
max(dmax

P ,dmax
R) . �

Example 5. Let xp be the vertex tagged d in the pattern P in Figure 3 and
x1

r , x
2
r, x

3
r the corresponding vertices in the regions R1, R2, R3. Table 2(a) reports

the similarity of xp to the corresponding vertices in the three regions. Since in
each region a vertex tagged d appears, the match-based similarity is always 1.
The level-based similarity is 1 both for region R1 and R2 because the vertex
tagged d in that regions appears at the same level it appears in the pattern. By

Approximate Subtree Identification 199

Table 2. (a) Similarity of matching vertices (b) Similarity of a pattern with regions

(a)

SimM SimL SimD

x1
r 1 1 2

3

x2
r 1 1 2

3

x3
r 1 2

3
1
5

(b)

SimM SimL SimD

R1 1 1
1+ 2

3+ 2
3

3
= 7

9

R2
2
3

1+ 1
2

3
= 1

2

2
3 + 2

3
3

= 4
9

R3
3
5

3· 23
5

= 2
5

4
5+ 1

5+1

5
= 2

5

contrast, the level-based similarity between xp and x3
r is 2

3 because x3
r is at the

third level while xp is at the second level (thus one level of difference) and the
maximal number of levels in P and R3 is 3 (1− 1

3). The distance-based similarity
between xp and x1

r and x2
r is the same because in regions R1 and R2 vertex d

has distance 3 while in the pattern it has distance 2. Moreover, the maximal
distance in the pattern/region is the same (3). Things are different for region
R3. Indeed, vertex d has distance 5 (which is the maximal) whereas the distance
in the pattern is 1. Their distance-based similarity is thus 1 − 5−1

5 .
Table 2(b) reports the similarity of P with each region. ©

Proposition 1. SimM ,SimL are order-irrelevant. SimD is order-relevant. �

In the previous definition the context of the two vertices is not taken into
account. The “context” is formed by vertices in the neighborhood of xp and xr

that also match. Such vertices can be sibling, ancestor, or descendant vertices
of xp and xr. Correction factors can be used to tune the similarity obtained by
the previous similarity functions. For space constraints we do not present such
factors even if they have already been included in our implementation.

4 Fragment and Region Construction

In this section we present an approach for the construction of regions in a target.
The first step is to identify fragments F in the target T that satisfy Definition
3. A peculiarity of fragments is that the labels in the path from root(F) and
root(T) do not appear in the pattern P . Thus fragments are disjoint subtrees
of T . Then, we merge fragments in regions only when the similarity between
P and the generated region is greater than the similarity of P with each single
fragment. Thus, regions in the target are single fragments or combination of
regions with fragments. The identification of the fragments in the target, their
merging in regions, and the evaluation of similarity are efficiency performed by
exploiting indexing structures.

4.1 Construction of Fragments

Inverted Index for a Target. Starting from the labels label(T) of a target
T , the set is normalized with respect to � obtaining NL(T) = label(T)/�.

200 Ismael Sanz et al.

(a) (b)

Fig. 4. (a) Inverted index, (b) pattern index

Each label l ∈ NL(T) is associated with the list of vertices labeled by l or a
similar label, ordered relying on the pre-order rank. For each v ∈ V(T), the
list contains the 4-tuple (pre(v), post(v), level(v),P(v)). Figure 4(a) depicts the
inverted index for the target in Figure 2(a). For the sake of graphical readability,
the parent of each vertex is not represented (only a · is reported).

Pattern Index. Given a pattern P , for every node v in P , all occurrences
of nodes u in the target tree such that label(v) � label(u) are retrieved, and
organized level by level in a pattern index. The number of levels of the index
depends on the the levels in T in which vertices occur with labels similar to
those in the patter. For each level, vertices are ordered according to the pre-
order rank. Figure 4(b) contains the pattern index for the pattern in Figure 2(b)
evaluated on the target in Figure 2(a).

Identification of Fragments from the Pattern Index. Once the pattern
index is generated, the fragments are generated through a visit of the structure
and the application of the desc function. Each node v in the first level of the
pattern index is the root of a fragment because, considering the way we construct
the pattern index, no other vertices can be the ancestor of v. Possible descendants
of v can be identified in the underlying levels. Given a generic level l of the
pattern index, a vertex v can be a root of a fragment iff for none of the vertices
u in previous levels, v is a descendant of u. If v is a descendant of a set of vertices
U , v can be considered the child of the vertex u ∈ U s.t. Dist(v, u) is minimal.

The developed algorithm visits each vertex in the pattern index only once by
marking in each level the vertices already included in a fragment. Its complexity
is thus linearly proportional to the number of vertices in the pattern index. Figure
5 illustrates fragments F1, . . . , F5 obtained from the pattern index of Figure 4.

Proposition 2. Let P be a pattern and T be a target. Let K be the maximal size
of a level in the pattern index for P . The complexity of fragment construction is
O(K · |label(P)| · |NL(T)|). �

Approximate Subtree Identification 201

Fig. 5. Construction of fragments and regions

4.2 Construction of Regions

Two fragments should be merged in a single region when, relying on the adopted
similarity function, the similarity of the pattern with the region is higher than
the similarity with the individual fragments.

Whenever a document in the target is quite big and the number of fragments
is high, the regions that should be checked can grow exponentially. To avoid such
a situation we exploit the following locality principle: merging fragments together
or merging fragments to regions makes sense only when the fragments/regions
are close. Indeed, as the size of a region tends to be equal to the size of the
document, the similarity decreases.

In order to meet such locality principle we evaluate regions obtained by
merging adjacent fragments. Operatively, we start from a pair of fragments F, G
obtained for a pattern P whose roots have the lowest pre-order rank and identify
their common ancestor v. If v is the root of the target, the two fragments cannot
be merged. If v is a vertex of the document, the similarity Sim(P, R) is compared
with Sim(P, F) and Sim(P, G). If Sim(P, R) is greater than Sim(P, F) and
Sim(P, G), F and G are removed and only R is kept. Otherwise, F is kept
separate and we try to merge G with the right adjacent fragment.

Example 6. Considering the running example we try to generate regions starting
from the fragments in Figure 5. Since the common ancestor between F1 and F2

is the root of the target, the two fragments cannot be merged. Since the common
ancestor between F2 and F3 is a node of the same document, region Ra in Figure
5 is generated. Since the similarity of P with Ra is higher than its similarity
with F2 and F3, Ra is kept and F2, F3 removed. Then, we try to merge region
Ra with F4, but their common ancestor is the root of the target, thus Ra is kept
the merging of F4 and F5 is evaluated. The region Rb obtained from F4 and F5

has an higher similarity than the fragments, thus Rb is kept and F4 and F5 are
removed. At the end of the process the identified regions are {F1, Ra, Rb}. ©

We wish to remark that the construction of regions is quite fast because
the target should not be explicitly accessed. All the required information are
contained in the inverted indexes. Moreover, thanks to our locality principle the
number of regions to check is proportional to the number of fragments. Finally,
the regions obtained through our process do not present all the vertices occurring

202 Ismael Sanz et al.

Fig. 6. A screenshot of the GUI prototype on the ASSAM dataset

in the target but only those necessary for the computation of similarity. The
evaluation of vertices appearing in the region but not in the pattern is computed
through the pre/post order rank of each node.

Example 7. Consider the region R3 in Figure 3 and the corresponding represen-
tation Rb in Figure 5. Vertex e is not explicitly present in Rb. However, its lack
can be computed by considering the levels of vertex f and vertex d. ©

5 Prototype and Experimental Results

We have developed a prototype of the system, including a indexer module and
a query tool written in Python using the Berkeley DB library. A GTK-based
graphical user interface is also available; Figure 6 shows a screenshot. Several
aspects of the system have been studied: its performance with respect to the
dimension of the dataset, its behavior with respect to structural variations, and
its effectiveness in a real dataset.

Performance. Two synthetic datasets and test patterns have been developed
with different characteristics: Dataset 1 is designed to contain just a few match-
ing results, embedded in a large number of don’t-care nodes (around 7500 rele-
vant elements out of 107 elements). Dataset 2 has a high proportion of relevant
elements (3×105 out of 5×105). Moreover, to check the performance of pattern
identification for a range of dataset sizes, smaller collections have been extracted
from our datasets. The characteristics of each dataset are summarized in Fig-
ure 7. Results in Figure 8 show that performance is linearly dependent on the
size of the result, and don’t-care nodes are effectively discarded.

Effect of Structural Distortions. The second aspect we have evaluated is the
effect of structural variations in fragments. In order to test this, we have gener-
ated another synthetic dataset, in which we have embedded potential matches of

Approximate Subtree Identification 203

1 2 3 4 5 6 7 8 9 10

Subcollection

El
em

en
ts

0e
+0

0
4e

+0
6

8e
+0

6

(a)

1 2 3 4 5

Subcollection

El
em

en
ts

0e
+0

0
2e

+0
5

4e
+0

5

(b)

Fig. 7. (a) Total number of elements in each subcollection extracted from Dataset 1
(b) Total number of elements (dark) and number of relevant elements (light) in each
subcollection extracted from synthetic Dataset 2

0 2000 4000 6000

0.
2

0.
4

0.
6

0.
8

1.
0

Nodes in result set

Q
ue

ry
 ti

m
e

(s
)

(a)

0 50000 150000 250000

0
10

20
30

40
50

60

Nodes in result set

Q
ue

ry
 ti

m
e(

s)

(b)

Fig. 8. Execution time in Dataset 1 (left) and Dataset 2 (right)

2 4 6 8 10

0.
6

0.
8

1.
0

1.
2

1.
4

Nodes added

Av
er

ag
e

sim
ila

rit
y

(a)

2 4 6 8 10

0.
5

0.
6

0.
7

0.
8

0.
9

Nodes removed

Av
er

ag
e

sim
ila

rit
y

(b)

Fig. 9. Change in similarity with the addition and removal of nodes in regions

a 15-element test pattern with controlled distortions of the following kinds: (1)
addition of n random nodes; (2) deletion of n random nodes; (3) switching the
order of nodes in the same level, with a given probability; (4) switching parent
and child nodes, with a given probability.

Results in Figure 9 show that added don’t-care nodes are ignored by the
system, while, predictably, removing relevant nodes in the target does have an
effect in the average relevance of results. The results for switching nodes in the
same level and for interchanging parent and child nodes are similar to those for
nodes addition: fragments with these distortions are successfully retrieved.

Evaluation on the ASSAM Dataset. Preliminar experiments have been con-
ducted on the ASSAM dataset http://moguntia.ucd.ie/repository/datasets/,
a collection of heterogeneous schemas derived from Web Service descriptions.
The original OWL-S schema specifications have been transformed in XML.

Figure 10 shows some sample patterns. The quality of the answers has been
evaluated using the traditional information retrieval measures, namely: precision,

204 Ismael Sanz et al.

Weather

Conditions Forecast Place

Pressure Temperature Wind Station City

Zip

(a) P1

Stock

Quote

Symbol Price Change Open High Low

(b) P3

Postal_Address

Street State Country Zip

(c) P2

Fig. 10. Sample patterns searched for in the ASSAM dataset

Table 3. Results for the ASSAM datasets

Query MinSim Prec. Recall F1

P1 0.2 1 0.75 0.86
P2 0.15 0.29 0.7 0.41
P3 0.2 1 0.8 0.89

recall and the F1 measure. A threshold MinSim has been considered to discard
outliers. AMinSim(P) denotes the results whose SimL similarity is greater than
MinSim. Table 3 shows the results. The first column indicates the pattern, and
the second column indicates the similarity threshold used for the answer set.
While keeping in mind that these are preliminar tests using a simple, generic
distance measure, the results seem encouraging. The low F1 value for pattern 2
is due to the presence of some of the pattern tags in rather different contexts
in the dataset; in a more realistic application, this should be solved by using a
more suitable similarity measure.

6 Related Work

In the last decade, there has been a great interest in the tree embedding (or tree
inclusion) problem and its application to semi-structured and XML-databases.
Classes of tree inclusion problems are analyzed in [5], providing solutions for the
ordered and unordered cases of all of them. The computational cost of the diverse
tree-matching primitives varies widely. Simple ordered XPath-like matching has
linear complexity, while the unordered version of tree embedding is NP-complete.
Flexible and semiflexible matchings have also been proposed in [6] allowing a
path in the pattern to match with a path in the target where nodesw appear in
a different order. Ranked tree-matching approaches have been proposed as well
in the same spirit of Information Retrieval (IR) approaches, where approximate

Approximate Subtree Identification 205

answers are ranked on their matching scores. In these approaches, instead of
generating all candidate subtrees, the algorithms return a ranked list of “good
enough” matches. In [7] a dynamic programming algorithm for ranking query
results according to a cost function is proposed. In [8] a data pruning algorithm
is proposed where intermediate query results are filtered dynamically during
evaluation process. ATreeGrep [9] uses as basis an exact matching algorithm,
but allowing a fixed number of “differences” in the result.

As these approaches, ours also returns a ranked list of “good enough” sub-
tree matches. However, our approach is highly flexible because it allows choosing
the most appropriate structural similarity measures according to the application
semantics. All the considered ranked approaches, indeed, enforce at least the
ancestor-descendant relationship in pattern retrieval. Moreover, our approach
also includes approximate label matching, which allows dealing with heteroge-
neous tag vocabularies. The proposed tool can thus be used in a wide range of
tree-data based applications.

The retrieval of XML documents has also been investigated in the IR area [10].
These approaches mainly focus on the textual part of XML documents, so
that the XML structure is used to guide user queries, and to improve the re-
trieval effectiveness of content indexes. However, current INEX evaluation col-
lections present little heterogeneity in both the tags and structures
http://inex.is.informatik.uni-duisburg.de/2005/. In the future, the combina-
tion of content-based IR techniques with the method proposed in this paper will
allow us to extend the range of applications to large text-rich collections with
many variations in tag names, structures and content.

Finally, some specific structural similarity measures have been proposed in
the areas of Schema Matching [11] and more recently Ontology Alignment. In the
former tree/graph-matching techniques allow determining which target schema
portions can be mapped to the source ones. In this context, node matching de-
pends on datatypes and domain constraints. However, schemas use to present
simple structures that seldom exceed three depth levels (relation-attribute-type).
In the latter, the problem consists in finding out which concepts of a target on-
tology can be associated to concepts of the source ontology, relying on neigh-
borhood and cardinality constraints. However, there are few proposals to state
useful tree-based similarity measures that can help this process.

7 Conclusions and Future Work

In this paper we have developed an approach for the identification of subtrees
similar to a given pattern in a collection of highly heterogeneous tree structured
documents. In this context, the hierarchical structure of the pattern cannot be
employed for the identification of the target subtrees but only for their ranking.
Peculiarities of our approach are the support for tag similarity relying on a
Thesaurus, the use of indexing structures to improve the performance of the
retrieval, and a prototype of the system.

As future work we plan to compare different similarity measures in order
to identify those more adequate depending on the application context and the

206 Ismael Sanz et al.

heterogeneity of the considered data. Such measures can be collected in a frame-
work of functions that a user can select, compose, and apply depending on her
needs. Moreover we plan to consider more sophisticated patterns in which fur-
ther constraints on vertices and edges can be stated. For instance, an element or
a portion of the pattern could be requested to mandatorily appear in the target
regions, or the difference between the levels in which two elements appear could
be constrained by fixing a threshold. The constraints should then be considered
in the similarity evaluation. Finally, we wish to consider subtree identification
in a collection of heterogeneous XML Schemas. In this context, the proposed
approach should be tailored to the typical schema constraints (e.g., optionality
and repeatability of elements, groups, types).

References

1. Grust, T.: Accelerating XPath Location Steps. In: ACM SIGMOD International
Conference on Management of Data. (2002) 109–120

2. Wagner, R.A., Fischer, M.J.: The String-to-string Correction Problem. Journal of
the ACM 21 (1974) 168–173

3. Nierman, A., Jagadish, H.V.: Evaluating Structural Similarity in XML Documents.
In: 5th International Workshop on the Web and Databases. (2002) 61–66

4. Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D.: Adding Structure to
Unstructured Data. In: 6th International Conference on Database Theory. Volume
1186 of LNCS. (1997) 336–350

5. Kilpeläinen, P.: Tree Matching Problems with Applications to Structured Text
Databases. PhD thesis, Dept. of Computer Science, University of Helsinki (1992)

6. Kanza, Y., Sagiv, Y.: Flexible Queries Over Semistructured Data. In: 20th
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.
(2001)

7. Schlieder, T., Naumann, F.: Approximate Tree Embedding for Querying XML
Data. In: ACM SIGIR Workshop On XML and Information Retrieval. (2000)

8. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: 8th Inter-
national Conference on Extending Database Technology. Volume 2287 of LNCS.
(2002) 496–513

9. Shasha, D., Wang, J.T.L., Shan, H., Zhang, K.: ATreeGrep: Approximate Searching
in Unordered Trees. In: 14th International Conference on Scientific and Statistical
Database Management. (2002) 89–98

10. Luk, R.W., Leong, H., Dillon, T.S., Chan, A.T., Croft, W.B., Allen, J.: A Survey
in Indexing and Searching XML Documents. Journal of the American Society for
Information Science and Technology 53 (2002) 415–438

11. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Match-
ing. The VLDB Journal 10 (2001) 334–350

	Approximate Subtree Identification in Heterogeneous XML Documents Collections
	1 Introduction
	2 Pattern, Target, Fragment and Region Trees
	3 Similarity of a Region w.r.t. a Pattern
	3.1 Mapping Between a Pattern and a Region
	3.2 Similarity Between Matching Vertices

	4 Fragment and Region Construction
	4.1 Construction of Fragments
	4.2 Construction of Regions

	5 Prototype and Experimental Results
	6 Related Work
	7 Conclusions and Future Work
	References

